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Motivational and attentional processes energize action sequences to facilitate
evolutionary competition and promote behavioral fitness. Decades of
neuropharmacology, electrophysiology and electrochemistry research indicate that
the mesocorticolimbic DA pathway modulates both motivation and attention. More
recently, it was realized that mesocorticolimbic DA function is tightly regulated by the
brain’s endocannabinoid system and greatly influenced by exogenous cannabinoids—
which have been harnessed by humanity for medicinal, ritualistic, and recreational uses
for 12,000 years. Exogenous cannabinoids, like the primary psychoactive component
of cannabis, delta-9-tetrahydrocannabinol, produce their effects by acting at binding
sites for naturally occurring endocannabinoids. The brain’s endocannabinoid system
consists of two G-protein coupled receptors, endogenous lipid ligands for these
receptor targets, and several synthetic and metabolic enzymes involved in their
production and degradation. Emerging evidence indicates that the endocannabinoid
2-arachidonoylglycerol is necessary to observe concurrent increases in DA release
and motivated behavior. And the historical pharmacology literature indicates a role
for cannabinoid signaling in both motivational and attentional processes. While
both types of behaviors have been scrutinized under manipulation by either DA or
cannabinoid agents, there is considerably less insight into prospective interactions
between these two important signaling systems. This review attempts to summate
the relevance of cannabinoid modulation of DA release during operant tasks designed
to investigate either motivational or attentional control of behavior. We first describe
how cannabinoids influence DA release and goal-directed action under a variety of
reinforcement contingencies. Then we consider the role that endocannabinoids might
play in switching an animal’s motivation from a goal-directed action to the search for an
alternative outcome, in addition to the formation of long-term habits. Finally, dissociable
features of attentional behavior using both the 5-choice serial reaction time task and the
attentional set-shifting task are discussed along with their distinct influences by DA and
cannabinoids. We end with discussing potential targets for further research regarding
DA-cannabinoid interactions within key substrates involved in motivation and attention.
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INTRODUCTION

Statement of Purpose
Because many reviews already exist that describe
endocannabinoid (eCB) signaling (Toczek and Malinowska,
2018; Zou and Kumar, 2018; Cristino et al., 2020; Kaczocha and
Haj-Dahmane, 2021), the risks of cannabis abuse (Ferland and
Hurd, 2020; Hindley et al., 2020), and the potential cannabinoids
may offer in psychiatric medicine (Amar, 2006; Black et al., 2019;
Navarrete et al., 2020), our goal in the present manuscript is
to describe how exogenous cannabinoids and eCBs influence
dopamine (DA) signaling and behavior. While we will emphasize
our own observations, we will also consider how they fit into
the context of the general literature on reinforcement, appetitive
behavior, adjunctive behavior, habit formation, and attentional
processes. We conclude by considering how cannabinoid-
induced changes in one neurobehavior might influence another
if they share overlapping neural circuitry.

Phytocannabinoids, Synthetic
Cannabinoids, Endocannabinoids
Approximately 535 chemicals and 90 different C21
terpenophenolic phytocannabinoids exist in the cannabis
plant (Radwan et al., 2009; Andre et al., 2016). While
these chemicals act synergistically to produce an entourage
effect with delta-9-tetrahydrocannabinol (THC), the latter is
principally responsible for cannabis’s psychoactive effects by
activating G protein-coupled receptors (GPCR) in the brain
(e.g., cannabinoid receptor type 1; CB1) (Casajuana Kögel
et al., 2018; Russo, 2019). The first synthetic cannabinoids
(e.g., CP-55,940) were developed by Pfizer and found to
be more potent and effective at activating the CB1 than
THC (Matsuda et al., 1990; Marzo and Petrocellis, 2006).
The Sterling research group then discovered that uniquely
structured aminoalkylindole agonists also activate the CB1
with high potency and efficacy (D’Ambra et al., 1992). The
aminoalkylindole synthetic cannabinoid WIN 55,212-2 (WIN)
is particularly noteworthy because it has been employed
extensively in psychopharmacology research (D’Ambra et al.,
1992)—including several studies that will be described herein.
However, it should be noted that WIN is about 80% more
effective at activating the CB1 than the phytocannabinoid
THC (Sim et al., 1996). The discovery of a brain cannabinoid
receptor led to an exploration for its endogenous ligands, or
eCBs (Marzo and Petrocellis, 2006). The best characterized
eCBs are 2-arachidonoylglycerol (2AG) (Mechoulam et al.,
1995; Sugiura et al., 1995) and N-arachidonoylethanolamine
(anandamide; AEA) (Devane et al., 1992). It is now recognized
that 2AG and AEA have different synthetic and metabolic
pathways (Lu and Mackie, 2016). 2AG is predominantly
synthesized from 2-arachidonoyl-containing phospholipids (e.g.,
diacylglycerol; DAG) by DAG lipase (DAGL) and metabolized
by monoacylglycerol lipase (MAGL); AEA is predominantly
synthesized from N-acyl-phosphatidylethanolamine (NAPE) by
NAPE-specific phospholipase D (NAPE-PLD) and metabolized
by fatty acid amidohydrolase (FAAH) (Lu and Mackie, 2016;

Toczek and Malinowska, 2018; Zou and Kumar, 2018). In this
review, we will describe several studies that manipulate 2AG
levels by inhibiting either DAGL or MAGL. We attempt to specify
when we are describing the specific effects of phytocannabinoids,
synthetic cannabinoids, or eCBs on neurobiology and behavior.
When making broader conclusions we use the term cannabinoid,
which we define as any ligand that interacts with the cannabinoid
receptors or their associated machinery.

Cannabinoid Receptors
In addition to the aforementioned CB1 it is necessary to
acknowledge several other cannabinoid receptor targets, most
notably the cannabinoid receptor type 2 (CB2). While once
thought to be relegated to the immune system and spleen,
recent evidence suggest that CB2 is expressed in both neurons
and glial cells of the brain as a unique isoform (Jordan and
Xi, 2019). Specifically, mRNA for the CB2A variant was found
to be expressed in the brain and the testis, whereas mRNA
for the CB2B variant was found in the spleen and immune
cells (Liu et al., 2009). The exact role that the CB2A variant
plays in modulating operant behavior remains to be fully
elucidated, but it appears to be involved in multiple cellular
and behavioral functions (Jordan and Xi, 2019). There is also
evidence that AEA activates TRPV1 ion channels (van der Stelt
et al., 2005), which have been shown to modulate habitual
behavior (Shan et al., 2015). But also see (Gianessi et al.,
2019), who recently reported that antagonism of TRPV1 does
not influence habit formation. The GPR55 orphan receptor,
which is thought to be activated by both eCBs and synthetic
cannabinoids (Marichal-Cancino et al., 2017), was also reported
to influence learning in a T-maze (Marichal-Cancino et al.,
2016). Peroxisome proliferator-activated receptors (PPAR) are
yet another target worth considering. PPARs are activated by
various lipids, including eCBs (Iannotti and Vitale, 2021), and
are thought to influence DA release (Melis et al., 2013a). In all,
at least 12 different receptors are known to be activated by eCBs
(Maccarrone, 2020), suggesting that the scope of mechanisms
through which phytocannabinoids, synthetic cannabinoids, and
eCBs regulate behavior are considerably more complex than our
current conception.

eCBs, DSI, and a Model of DA Release
A unique feature of eCB signaling is that these molecules
are not stored in vesicles like classical neurotransmitters but
are instead synthesized de novo and released from post-
synaptic neurons in times of sustained neuronal activity
(Freund et al., 2003; Castillo et al., 2012; Ohno-Shosaku and
Kano, 2014). Heightened neural activity results in increased
intracellular Ca2+ that leads to the activation of synthetic
enzymes (DAGL, NAPE-PLD) responsible for the rapid synthesis
of eCBs (Marsicano et al., 2003; Lu and Mackie, 2016).
Following their release from the postsynaptic neuron into
the synaptic cleft, eCBs retrogradely activate CB1s located on
presynaptic terminals of both GABA and glutamate neurons
(Wilson and Nicoll, 2002; Melis et al., 2004; Alger and Kim,
2011). Retrograde eCB modulation of GABA terminals can
produce depolarization-induced suppression of inhibition (DSI),
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whereas retrograde eCB modulation of glutamate terminals
can produce depolarization-induced suppression of excitation
(DSE) (Fortin and Levine, 2007; Lange et al., 2017). In DSI,
eCB activation of CB1s on GABA terminals is thought to
produce a transient suppression of GABA release onto the
postsynaptic neuron, thereby disinhibiting it. By contrast, during
DSE, eCB activation of CB1s on glutamate terminals is thought
to produce a transient suppression of glutamate release onto
the postsynaptic neuron, thereby inhibiting it. While CB1
activation mediates both DSI and DSE, DSI is believed to
be much more prominent than DSE due to differences in
CB1 sensitivity between inhibitory and excitatory synapses
(Ohno-Shosaku et al., 2002).

Cannabinoid receptor type 1-mediated DSI provides a
model that might explain how phytocannabinoids, synthetic
cannabinoids, and eCBs increase DA release from the midbrain.
For a thorough description of how DSI is thought to modulate
DA release, we refer the reader to a previously published review
clarifying the mechanisms involved (Covey et al., 2017). In
the midbrain, CB1s are thought to occur on GABAergic and
glutamatergic terminals rather than on DA neurons (Julian et al.,
2003; Mátyás et al., 2008). In the awake and behaving animal,
midbrain DA neurons fire in one of two distinct patterns:
tonic and phasic (Grace and Bunney, 1984; Grace, 1991; Grace
et al., 2007). At rest, DA neurons are tonically active and
exhibit steady pacemaker activity, firing at an average rate of
5 Hz. By contrast, DA neurons fire in phasic bursts of 10–
20 Hz when an animal is presented with a motivationally
salient stimulus (Grace et al., 2007). These phasic bursts are
thought to give rise to high-concentration transient DA release
events in the NAc that encode the value of motivationally
salient stimuli and actuate goal seeking (Wise, 2004; Grace
et al., 2007; Schultz et al., 2015; Stauffer et al., 2016). Burst
firing of DA neurons also leads to eCB synthesis, retrograde
signaling, and activation of CB1s on GABA and glutamate
terminals (Szabo et al., 2002; Riegel and Lupica, 2004; Melis
et al., 2013b; Wang et al., 2015). If DSI is more prevalent
than DSE in the midbrain, the result would be disinhibition
of DA neurons and the subsequent release of DA at terminal
sites of the mesocorticolimbic and nigrostriatal DA pathways.
In support of this model, a growing body of evidence using a
multitude of techniques report that eCBs (Solinas et al., 2006;
Oleson et al., 2012), THC (Chen et al., 1990, 1993; Diana
et al., 1998; Gessa et al., 1998; Voruganti et al., 2001; Pistis
et al., 2002; Bossong et al., 2009), and synthetic cannabinoids
(Tanda et al., 1997; Diana et al., 1998; Gessa et al., 1998; Fadda
et al., 2006; Oleson et al., 2014) increase striatal brain DA
levels in both rodents (Gessa et al., 1998; Pistis et al., 2002;
Fadda et al., 2006) and humans (Voruganti et al., 2001; Bossong
et al., 2009, 2015). Using in vitro electrophysiology, Melis et al.
(2013b) demonstrated that this DSI-induced disinhibition of
DA release is principally mediated by 2AG activating CB1s.
Indeed, several studies will be presented herein demonstrating
that the eCB 2AG effectively modulates DA-associated behavior
in a CB1 dependent manner. However, while this model may
explain the effects of synthetic cannabinoids and eCBs on DA
release presented within this review, we acknowledge that it is

incomplete because it does not account for the role of CB2 or
other receptor targets (e.g., PPARs) that likely modulate DA
release as well.

eCB Modulation of the
Mesocorticolimbic System
The mesocorticolimbic DA system originates from DA neurons
in the ventral tegmental area (VTA) that project to a variety of
brain regions. Its most prominent target is the ventral portion
of the striatum, or nucleus accumbens (NAc) (Morales and
Margolis, 2017). While the VTA is primarily composed of
DA neurons (∼60%), GABA (∼25%) and glutamate (∼15%)
neurons also exist and are capable of modulating DA neural
activity, mesocorticolimbic output, and behavior (Swanson,
1982; Morales and Root, 2014; Yoo et al., 2016). It is
theorized that these neurons form subpopulations that then
receive disproportionate afferent input from distinct brain
structures (e.g., periaqueductal gray, lateral hypothalamus, raphe
nuclei, rostromedial tegmental nucleus) to form dissociable
microcircuits that may subserve unique behavioral functions
(Lammel et al., 2014; Breton et al., 2019). Thus, in addition
to disinhibiting DA release in the VTA, it is likely that eCBs
also modulate DA-associated behavior by acting on distinct
afferents that then synapse onto DA neurons. It is also worth
considering eCB modulation of neural activity at terminal fields
of the mesocorticolimbic system. Like other monoamines, DA
functions as a relatively slow neuromodulator of fast glutamate-
and GABA-mediated neurotransmission and, in the awake
and behaving rat, the effect that DA exerts on postsynaptic
potentials is greatly influenced by these converging inputs
into a given terminal field (O’Donnell et al., 1999; Brady
and O’Donnell, 2004). As a prominent mesocorticolimbic hub,
the effect DA exerts in the NAc can therefore be influenced
by eCB modulation of amygdalar, hippocampal, and cortical
input into it. The neuromodulatory effects of DA in the
NAc can also be influenced by co-release of GABA and
glutamate from VTA DA neurons. Emerging evidence suggests
that VTA DA neurons are capable of co-releasing GABA
and glutamate in a manner that regulates motivational drive
along with DA (Tritsch et al., 2012; Zhang et al., 2015;
Yoo et al., 2016).

Dopamine signaling in the NAc is primarily mediated
through D1- and D2-like receptors. D1 receptors generally
exhibit low binding affinity for DA and preferentially couple
to Gs protein subunits. D2 receptors generally exhibit high
binding affinity for DA and preferential coupling to Gi or
Go protein subunits (Beaulieu and Gainetdinov, 2011). Both
D1 and D2 DA receptors are expressed as heteroreceptors
on dendritic spines of medium spiny GABA neurons (MSNs)
within the NAc (Levey et al., 1993; Monory et al., 2007),
though D2s are also expressed on presynaptic DA terminals
where they function as autoreceptors to attenuate DA release
(Bello et al., 2011; Budygin et al., 2017). Notably, CB1s
form heterodimeric complex with D2s where colocalization
exists, suggesting CB1 may interact with D2 autoreceptors
to modulate DA release (Khan and Lee, 2014). It is also
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noteworthy that CB1s are expressed in a subpopulation of
fast-spiking interneurons (FSI) within the NAc (Winters et al.,
2012). Despite only composing 2–3% of striatal neurons, FSI
are thought to powerfully orchestrate the activity of the more
predominate MSNs and, possibly, control gamma frequency
oscillations originating from this region (Tepper et al., 2010).
Individual FSIs innervate hundreds of MSNs and, when excited,
inhibit their collective output (Tepper et al., 2008). Within the
NAc, eCBs are synthesized and released from MSNs following
activation of either D1 (Shonesy et al., 2020) or D2 (Lerner and
Kreitzer, 2012) receptors. Also noteworthy is recent evidence
suggesting that tyrosine receptor kinase B activation augments
intracellular calcium transients to promote eCB synthesis and
spike-timing dependent plasticity in the striatum (Gangarossa
et al., 2020). Upon release from MSNs, the eCBs then travel
retrogradely before acting upon CB1s located on FSIs within
the NAc (Mateo et al., 2017; Wright et al., 2017). Wright
et al. (2017) recently used electrophysiology to demonstrate
that the inhibitory control that CB1-expressing FSIs exert
over MSNs is suppressed by eCB signaling. In addition, these
authors (Wright et al., 2017) found that the CB1 expressing
FSIs that synapse onto MSNs facilitate a long-term form of
eCB-mediated synaptic plasticity (i.e., long-term depression,
LTD) that might be important for learning and memory.
While previous immunohistochemical studies suggested CB1s
are also expressed on cholinergic interneurons within the
striatum (Fusco et al., 2004), a more recent study using
CB1 radioactive antisense riboprobes found no evidence of
CB1 mRNA expression within cholinergic interneurons of the
NAc (Mateo et al., 2017). This latter finding is particularly
relevant for the current review because we primarily focus
on transient DA release events in the NAc. And, it is now
recognized that these transient release events can be promoted by
either local cholinergic interneurons that activate acetylcholine
receptors on adjacent DA terminals (Cachope et al., 2012)
or by VTA DA cell activation, both of which are modulated
by eCB signaling (Mateo et al., 2017). However, the lack of
CB1s on cholinergic interneurons in the NAc suggests that
eCBs modulate the influence local cholinergic interneurons
exert over terminal dopamine release indirectly. In support of
this notion, Mateo et al. (2017) recently reported that eCB
modulation of cholinergic-induced terminal dopamine release
results from CB1 activation on cortical glutamate afferents
into the NAc. In addition to the aforementioned findings
by (Wright et al., 2017), this latter observation is highly
relevant for eCB- and DA-modulation of learning and memory.
D2-dependent eCB-LTD has been verified in glutamatergic
corticostriatal projections within the indirect pathway of the
basal ganglia—a group of subcortical nuclei including the
striatum that modulate behavioral action, procedural learning,
and working memory (Lerner and Kreitzer, 2012; Simonyan,
2019). Thus, eCBs likely influence skill learning and memory
by indirectly modulating terminal DA release and by gating
FSI-control of MSN feedforward inhibition. These separate
mechanisms—comprising eCB-mediated DSI/DSE within the
VTA, eCB modulation of neural signaling with the NAc, and
eCB modulation of afferent input into the NAc and VTA—may

all converge to influence mesolimbic DA neurotransmission
(Covey et al., 2017).

A Synthetic Cannabinoid
Dose-Dependently Increases DA Release
and Tolerance Develops to This Effect
Following Chronic Exposure
Abused drugs are theorized to exert their reinforcing effects by
mimicking these endogenous patterns of DA release in the NAc
that normally strengthen goal-directed behavior (Volkow and
Morales, 2015; Volkow et al., 2017), and cannabinoids are no
exception. We recently confirmed that the synthetic cannabinoid
WIN increases accumbal transient DA release events in a dose-
dependent manner and further investigated whether tolerance
develops to this effect. We used fast-scan cyclic voltammetry
(FSCV) to measure sub-second DA transients using NAc-
implanted electrodes while treating awake and behaving rats
with increasing, cumulative doses of intravenous (IV) WIN. As
illustrated in Figures 1A–C, WIN dose-dependently increased
both the frequency and amplitude of transient DA release events
in the NAc shell (Gomez et al., 2020). We next wanted to
assess whether chronic WIN exposure produces tolerance to
the DA releasing effects of WIN. Although chronic treatment
with synthetic or phytocannabinoids is known to produce
tolerance to a tetrad of behavioral/physiological effects that is
used to screen whether a drug functions as a cannabinoid
(i.e., antinociception, catalepsy, hyopthermia, and hypomotility)
(Little et al., 1988; Wiley and Martin, 2003; Hama and Sagen,
2009; Nealon et al., 2019)—it remains unclear whether tolerance
develops to the rewarding/reinforcing and the DA releasing
effects of cannabinoids. Because the degree of tolerance that
develops to specific cannabimimetic effects varies as a result
of CB1 desensitization occurring in a brain region-dependent
manner (Breivogel et al., 1997; Whitlow et al., 2003), it is possible
that midbrain CB1s show resistance to tolerance. Supporting this
notion, Frau et al. (2019) found that prenatal exposure to THC
produces a hyperDAergic rather than a hypoDAergic phenotype,
Mavrikaki et al. (2010) found that chronic WIN exposure does
not alter brain-reward thresholds, Hirvonen et al. (2012) found
that CB1s are downregulated in cortical but not subcortical
regions of cannabis smokers, and Wu and French (2000) found
that chronic THC treatment does not influence its ability to
induce burst firing in putative DA neurons.

To test whether tolerance develops to the DA-releasing effects
of WIN, we treated rats with either vehicle or intravenous (IV)
WIN using an escalating dosing regimen. To determine if this
dosing regimen produced tolerance to standard cannabimimetic
effects, we first tested the consequences of it using the tetrad
test. As expected, we found that WIN-treated rats displayed
a rightward shift in the dose-response relationship (0.002–
0.8 mg/kg IV) across all behavioral/physiological measures
when compared to vehicle-treated controls. We then used
FSCV to investigate whether the same pharmacological history
produced tolerance to the DA releasing effects of WIN and
cross-tolerance to the DA releasing effects of heroin. We
additionally characterized whether this dosing regimen produces
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FIGURE 1 | Cannabinoids increase the frequency and amplitude of DA transients. Illustrative recording session in which the synthetic cannabinoid WIN was
administered to an awake and freely moving rat. Stitched color plots [voltammetric current (z-axis) × applied scan potential (y-axis) × time (x-axis)] are shown above
corresponding DA concentration traces. Vehicle (A), 0.2 mg/kg (B), and 0.8 mg/kg WIN (C) were administered in cumulative, ascending IV doses while FSCV
measurements of DA release events occurred in the NAc shell in near real-time. Dose dependent increases in the frequency and amplitude of DA release events can
be observed by the larger and more frequent green dots at a potential of +0.6 V in the color plots and the more frequent and pronounced transient peaks in the
corresponding DA concentration traces. (D) WIN increased the frequency of DA release events but was less potent in chronically WIN-treated rats. A higher dose of
WIN (0.8 vs. 0.2 mg/kg IV) was required to produce a significant increase in DA release vs. vehicle treated rats. (E) Heroin dose-dependently increased the frequency
of DA release events but was less effective in chronically WIN-treated rats. In WIN-treated rats, heroin did not significantly increase the frequency of DA transients vs.
vehicle at any dose tested. Republished from Gomez et al. (2020). (F) NAc–related functional connectivity in the left hemispheres. Shown are thresholded Z–score
maps of functional connectivity for each group and each condition. Smoked THC reduced functional connectivity between the NAc and broad areas of the frontal,
temporal, parietal and occipital lobes in occasional, but not chronic cannabis users. Republished from Gomez et al. (2020). ∗p < 0.05.

cross-tolerance to the DA releasing effects of heroin because
Cadoni et al. (2008) observed this effect using microdialysis. In
addition, synthetic cannabinoids/phytocannabinoids and opioids
are well known to produce cross-tolerance to several shared
neurobehavioral effects (Hine, 1985; Thorat and Bhargava, 1994;
Manzanares et al., 1999; Vigano et al., 2005; Gerak et al.,
2015). We found that after chronic WIN exposure, both WIN
(Figure 1D) and heroin (Figure 1E) were less effective at
increasing the frequency of DA release events in the NAc
shell of adult male rats. If DA is important for drug reward

(Di Chiara et al., 2004) or to motivate drug seeking (Volkow
et al., 2017) as is currently theorized, a diminished ability to evoke
DA release could promote the use of larger quantities and more
potent doses. These data support a recent PET imaging study
demonstrating that cannabis-dependent patients show a deficit
in striatal DA release after the investigators controlled for several
comorbidities that may have influenced previous imaging studies
(van de Giessen et al., 2017). In another noteworthy imaging
study, Mason et al. (2021) used resting-state functional magnetic
resonance imaging (fMRI) to determine functional connectivity
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between the NAc and other brain regions of interest in occasional
and chronic cannabis users. Both groups received placebo
and 300-µg/kg THC on separate days. In occasional users,
THC produced a marked reduction in functional connectivity
between the NAc and broad areas of the frontal, temporal,
parietal and occipital lobes (Figure 1F)—a pattern the authors
note is typical of increased DA neurotransmission. In chronic
users, THC did not produce changes in functional connectivity
associated with the NAc (Figure 1F). The occasional, but not
chronic cannabis users, also reported increases in subjective high
and showed impairments in a sustained attention task. From
these observations, the authors conclude that excessive cannabis
use may result in neuroadaptations in accumbal circuitry that
reduce the neurobiological and behavioral response to acute
cannabis impairment.

However, further studies are necessary to compare how
synthetic cannabinoids, eCBs, and phytocannabinoids produce
tolerance, whether each produces tolerance to the DA releasing
effects of a CB1 agonist, and whether these effects vary
with age, sex, or species. It is possible that a synthetic
aminoalkylindole cannabinoid like WIN produce distinct effects
on molecular, cellular, and/or behavioral tolerance in comparison
to a phytocannabinoid like THC. Two complimentary molecular
mechanism are thought to contribute to CB1 desensitization
and downregulation (Nguyen et al., 2012; Nealon et al.,
2019). One involves the recruitment of beta-arrestin2 to GRK-
phosphorylated CB1s (Jin et al., 1999; Nguyen et al., 2012). The
other is a distinct JNK-mediated form of molecular tolerance
that appears to occur in an agonist specific manner (Nealon
et al., 2019). Of note, it was recently reported that disrupting
JNK signaling prevents several forms of behavioral tolerance
induced by THC, but not by WIN (Henderson-Redmond
et al., 2020). Thus, future studies are needed to determine
how different cannabinoid ligands produce tolerance to distinct
behavioral/physiological effects.

CANNABINOIDS AND MOTIVATED
ACTION UNDER A VARIETY OF
REINFORCEMENT CONTINGENCIES

Response Reinforcement and
Schedule-Controlled Behavior
While many different behavioral approaches exist to study the
effects of cannabinoids on behavior, this review will primarily
focus on response reinforcement and operant behavior. Response
reinforcement was first described by Thorndike (1927) as a law of
effect—meaning that responses following a satisfying connection
act upon it to alter its strength. Concepts associated with the
law of effect were further explored in great detail following
Skinner’s inventions of the operant conditioning chamber and
the cumulative recorder (Ferster and Skinner, 1957). The
operant conditioning chamber allows experimenters to measure
repeatable responses in the face of changing conditions. The
cumulative recorder produced a graphical record of the animal’s
responses, allowing experimenters to study how changing

conditions influence the probability of a response. Using this new
technology, Ferster and Skinner (1957) reported that the pattern
of responses can be greatly influenced by the reinforcement
schedule. In the operant context, schedules can be thought
of as the rules under which reinforcement is made available,
or the contingencies of reinforcement. The observation that
reinforcement schedules powerfully modify operant behavior had
profound implications for our understanding of the phylogeny
of behavior and neurobiology. In an evolutionary context, it is
likely that patterns of behaviors were neurobiologically stamped-
in when they maximized the receipt of an advantageous outcome
(e.g., food) in the face of changing environmental conditions
(e.g., the periodic availability of food). Because the environment
changes in recurring patterns, it would therefore be advantageous
for the brain to produce complex patterns of behavior that adapt
to the environmental rules governing reinforcement (Skinner,
1966). In the context of cannabinoid effects on the brain and
behavior, it is equally important to recognize that a drug or
neurochemical can produce unique effects on operant behavior
under different schedules of reinforcement. This phenomenon
was first described by Peter Dews, who used an operant
conditioning chamber and cumulative recorder to demonstrate
that injecting pigeons with the same dose of pentobarbital
increased responding for food under a fixed-ratio scheduled but
decreased responding for food under a fixed-interval schedule
(Dews, 1955). Under a fixed ratio (FR) schedule, behavior is
reinforced after the animal responds a pre-defined number of
times. This contingency of reinforcement produces a bimodal
step-like pattern in which the animal is either responding at a
constant rate or at zero (Ferster and Skinner, 1957) (Figure 2A).
Under a fixed interval (FI) schedule, behavior is reinforced after
the animal responds after a pre-defined period of time. This
contingency of reinforcement produces a scalloped-like pattern
of responding (Dews, 1978) (Figure 2A). Because this review will
focus on the interaction between cannabinoids and DA signaling
in particular, it is also worth noting that DA pharmacology is
well known to produce divergent behavioral effects under these
two schedules of reinforcement. Equivalent doses of the DA
releasers amphetamine and methamphetamine (Cho, 1990; Jones
et al., 1998) both decrease response rate under an FR1 schedule
and increase response rate under a FI schedule (Dews, 1958;
McKearney and Barrett, 1978).

DA Value Signals in Reinforcement and
Goal-Directed Action
In the awake and behaving animal, midbrain DA neurons
fire in phasic bursts (>20 Hz) under a variety of conditions
(Redgrave et al., 2016; Sharpe and Schoenbaum, 2018), including
the presentation of rewarding stimuli (Stauffer et al., 2016).
These phasic bursts of neural activity contribute to transient DA
release events in the primary terminal field of the mesolimbic
pathway, the nucleus accumbens (Dreyer et al., 2010). Currently,
it is thought that transient DA signals within this brain region
encode value as positive or negative reward prediction errors.
In support of this theory, a series of in vivo electrophysiology
studies demonstrated that phasic bursts of DA neural activity

Frontiers in Synaptic Neuroscience | www.frontiersin.org 6 June 2021 | Volume 13 | Article 660218

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


fnsyn-13-660218 June 8, 2021 Time: 14:1 # 7

Oleson et al. Cannabinoids, Motivation, Habit and Attention

FIGURE 2 | Reinforcement schedules engender distinct behaviors and a depiction of two DA pathways. (A) The VI, FR, and FI schedules produce unique patterns of
reinforced behavior. (B) The contingencies of reinforcement can produce adjunctive, goal-directed, or habitual behavior. (C) Illustrative projections associated with
the nigrostriatal (dark red) and mesocorticolimbic (light red) DA pathways. DA in the NAc is thought to modulate converging input from brain regions including the
amygdala (AMY), hippocampus (HIPP), and prefrontal cortex (PFC). Cortico-striatal loops are depicted in multicolor (orange-blue).

respond to gambles that guide economic decision making and
integrate various factors that underlie value representations to
influence choice (Lak et al., 2014, 2016; Stauffer et al., 2014,
2016). We recently tested the notion that transient DA value
signals represent value and influence valuation during both
positive and negative reinforcement (Figure 3) (Schelp et al.,
2017; Pultorak et al., 2018; Oleson and Roberts, 2019). Positive
reinforcement refers to an increase in behavior to receive an
outcome (e.g., appetitive sugar pellet); negative reinforcement
refers to an increase in behavior to avoid an outcome (e.g.,
electrical footshock). Using FSCV, we first demonstrated that
the concentration of transient DA release events evoked by an
appetitive sugar pellet or its conditioned predictor decreased
with the price required to obtain it (Figure 3A) (Schelp et al.,
2017). DA release events and behavioral output were measured
as rats responded in a within-session behavioral economics-
based operant task. In this task, the unit-price (responses/mg
sugar) to obtain reinforcement increased in fixed epochs over
the course of each session. As illustrated by the representative
cumulative response records in Figure 3B, under these response

contingencies lever pressing increases across the fixed epochs
(as price increases) until a maximal price is reached at which
the animal is no longer willing to pay the required opportunity
cost to obtain reinforcement. We then used optogenetics to
augment DA release and found that increasing DA release at
the reward predictive stimulus rendered animals more sensitive
to price and decreased DA concentration at reward delivery,
consistent with a negative reward prediction error (Schelp et al.,
2017). Optogenetics is a neuroscientific technique that allows
the experimenter to transiently turn on/off a neural population
of interest by activating genetically introduced light sensitive
ion channels (i.e., opsins) with a laser (Vlasov et al., 2018). In
comparison to this animal’s baseline cumulative record (light
orange line) increasing DA release at reward delivery (purple line)
resulted in the animal paying a higher price to continue seeking
sugar; whereas, increasing DA release at the reward predictive
cue (dark orange line) resulted in the animal giving up at a
lower price (Figure 3B). We then converted the behavioral data
into demand curves by calculating total sugar in each epoch and
plotting it against the corresponding unit-price. Demand curves
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FIGURE 3 | DA value signals encode price and modify the maximal price rats
will pay for positive or negative reinforcement. Positive reinforcement: DA (DA)
concentration (mean ± SEM) evoked by a reward predictive cue and delivery
of a 45 mg sugar pellet decreased across the first five prices in a
within-session behavioral economics-based task. In this task, the unit-price
(responses/mg sugar) increased across fixed epochs of time (A). Optogenetic
stimulation alters price sensitivity in a representative rat. Cumulative response
records from one animal responding in the behavioral economic task under
baseline conditions (light orange), and those in which DA release is amplified
at cue presentation (dark orange) and at reward delivery (purple) (B). Changes
in value were assessed using demand curves which measure changes in
consumption in response to changes in unit-price. We formally extracted a
dependent measure of value (i.e., α) which, represents the rate at which
demand curve decay. Demand decays at a faster rate when the animal

(Continued)

FIGURE 3 | Continued
becomes more sensitive to price. As the animal is willing to pay less for the
commodity, we would interpret the resulting increase in α as a decrease in
value (C). The same data from the cumulative records in panel (B) are
replotted in the form of demand curves to illustrate the optogenetic-induced
shifts in value (D). Negative reinforcement: The concentration of DA evoked
by a warning signal that predicted the opportunity to avoid decreased with the
price to avoid. Inset: Representative avoidance trial shows that DA
concentration began increasing in anticipation of warning signal presentation
(E). The concentration of DA release events during the safety period
decreased with price in trials in which the rat successfully avoided electrical
foot shock (F). Optogenetic activation of VTA DA neurons at the warning
signal made animals more sensitive to price, consistent with a negative reward
prediction error (G). In contrast, optically stimulating DA neurons at successful
avoidance made animals less sensitive to price, consistent with a positive
reward prediction error (H). Republished from Schelp et al. (2017) and
Pultorak et al. (2018). ∗p < 0.05.

are a common tool used by economists to measure changes in
valuation. If demand becomes more sensitive to price it is said to
be more elastic, suggesting diminished value; if demand becomes
less sensitive to price it is said to be more inelastic, suggesting
enhanced value (Figure 3C). Replotting the same data from the
aforementioned cumulative records revealed that enhancing DA
release at cue presentation made demand for sugar more elastic,
while enhancing DA release at reward delivery made demand
for sugar more inelastic (Figure 3D). From these observations,
we infer that valuation of the sugar pellet was decreased when
the DA value signal was amplified at the reward predictive cue
because the animal perceived that they received less than expected
upon receiving the standard 45 mg sugar pellet. By contrast, an
amplified DA value signal at the receipt of the 45 mg sugar pellet
following a standard prediction might suggest to the animal that
they received a better bargain than expected. Similar observations
were observed during operant behavior maintained by the
avoidance of electrical footshock (Wenzel et al., 2015; Pultorak
et al., 2018). The concentration of DA release events—evoked
by both a warning signal predicting the delivery of electrical
footshock and by the successful avoidance of footshock—
decreased with the price required to avoid it (Figures 3E,F)
(Pultorak et al., 2018). Furthermore, optogenetically increasing
DA release at the warning signal made the demand to avoid more
sensitive to price (Figure 3G) whereas, increasing DA release at
successful avoidance made demand for avoidance less sensitive
to price (Figure 3H) (Pultorak et al., 2018). Taken together,
these findings support the notion that transient DA signals can
represent subjective value during both positive and negative
reinforcement and causally modify reinforcement processes.

ECB Signaling Modulates DA Value
Signals and Reinforcement Under a
Fixed Ratio Schedule
Given the well-established role DA value signals play in
reinforcement and motivating action (Schultz et al., 2015),
we next began to question whether the brain’s endogenous
cannabinoid system capably modulates transient DA release
events during goal-directed behavior. Inspiration for this research
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question originated from early psychopharmacological studies. It
was reported that disrupting eCB signaling by treating rats with
CB1 antagonists reduced food seeking (Ward and Dykstra, 2005)
and generally diminished the effects that conditioned stimuli
exert over goal-directed behavior (Stiglick and Kalant, 1982;
Le Foll and Goldberg, 2005; Ward et al., 2007). Thus, we first
assessed whether treating rats with a CB1 antagonist reduced
conditioned DA release events during positive reinforcement.
Two reinforcers were assessed: brain stimulation reward and
appetitive food. In the case of brain stimulation reward, rats
responded for electrical currents delivered to the origin of the
mesolimbic DA pathway—the VTA, under a FR1 schedule of
reinforcement. The availability of reinforcement was signaled
to the rat by a cue light placed above the lever, which began
to function as a conditioned stimulus. Under these conditions,
the concentration of DA value signals evoked by the cue
light increased across trials as reinforcement was strengthened
(Day et al., 2007; Oleson et al., 2012). Once DA value signals
were determined to be stable, we intravenously treated rats
with vehicle and then a CB1 antagonist (SR141716; AKA,
rimonabant). In comparison to vehicle, systemic administration
of the CB1 antagonist rimonabant significantly decreased the DA
value signal while concurrently delaying reinforced responding
(Figure 4A). Identical trends were found when we measured DA
value signals while rats responded for 45 mg sugar pellets under
a FR1 reinforcement schedule, demonstrating the reliability
of these results during positive reinforcement (Oleson et al.,
2012). And identical trends were found when we infused
rimonabant directly into the VTA during brain stimulation
reward (Figure 4B), suggesting that local eCB modulation of DA
release in the midbrain is alone sufficient to modulate DA value
signals and reward seeking. To assess whether increasing eCB
signaling facilitates positive reinforcement, we then treated rats
with an enzymatic inhibitor that prevents metabolic degradation.
We focused on MAGL inhibitors because FAAH inhibitors
failed to influence reinforcement in our initial studies (Oleson
et al., 2012, 2014) and 2AG is thought to be the principle
eCB that augments DA release by activating CB1s on GABA
terminals (Covey et al., 2017). We replicated our aforementioned
approach by intravenously administered the MAGL inhibitor
JZL184 while rats responded for brain stimulation reward under
a FR1 schedule during ongoing FSCV measurements of DA
value signals. In contrast to rimonabant, intravenous JZL184
amplified DA value signals while concurrently reducing response
latencies (Figure 4C). The same trends were observed when
JZL184 was infused directly in the VTA (Figure 4D). Using a
new and improved iteration of MAGL inhibitor called MJN110,
the Bass lab recently replicated these findings by demonstrating
increasing 2AG facilitates cue-motivated reward seeking (Feja
et al., 2020). To determine whether eCBs modulate DA value
signals during negative reinforcement we also assessed whether
systemic administration of a CB1 antagonist influences DA value
signals during avoidance. Using a signaled active avoidance
operant approach, we treated rats with the CB1 antagonist
rimonabant while conducting FSCV. Avoidance was maintained
under a FR1 schedule. A warning signal was provided 2s prior
to the occurrence of electrical foot shock by illuminating a cue

light placed directly above the lever. In comparison to vehicle
treatment, intravenous rimonabant significantly decreased DA
release time-locked to the warning signal while concurrently
decreasing avoidance (Figure 4E) (Wenzel et al., 2018). We next
sought to assess whether 2AG manipulations specifically modify
the influence of DA value signals on negative reinforcement.
To do this we administered microinfusions of either vehicle or
tetrahydrolipstatin (THL) into the VTA of rats. THL is a potent
inhibitor of the synthetic enzyme responsible for generating
2AG, DAGL (Ortar et al., 2008). As predicted, intrategmental
THL significantly reduced avoidance and 2AG tissue content in
comparison to vehicle treated rats (Figure 4F) (Wenzel et al.,
2018). Finally, we used optogenetics to stimulate DA neurons
during avoidance and found that restoring DA value signals in
the presence of THL was sufficient to rescue avoidance (Wenzel
et al., 2018). Together, these findings suggest that the eCB 2AG
facilitates cue-motivated action by amplifying DA value signals
originating from the VTA (Figure 4G) (Oleson and Cheer, 2014;
Covey et al., 2017; Wenzel et al., 2018; Peters et al., 2021).
These 2AG-modulated patterns of DA release and behavior are
apparent during both positive and negative reinforcement when
a conditioned stimulus signals the availability of a goal-directed
outcome and reinforcement is available under a FR schedule.

Increasing Cannabinoids Amplifies
Temporally Engendered Patterns of DA
Release and Accelerates Responding
Under a Fixed Interval Schedule of
Reinforcement
Whereas FR schedules engender a bimodal response pattern
consisting of recurring response-pause successions, the FI
schedule engenders a scalloped response pattern. Rather
than receiving reinforcement after meeting a fixed response
requirement, on a FI schedule, reinforcement occurs at the end
of a defined period of time. The lever does not retract during the
interval, allowing the experimenter to observe the emergence of a
scalloped temporal response pattern using a cumulative response
recorder (Figure 5A). The scalloped response pattern results
from the animal’s lever pressing accelerating across the interval
until a maximum terminal rate is reached at the interval terminus
(Ferster and Skinner, 1957). In addition to engendering a unique
pattern of behavior relative to the FR schedule, the FI schedule
also produces a unique pattern of accumbal DA release. As
illustrated in Figure 5C, a first peak of DA release can be observed
when reinforcement (an appetitive food pellet) is delivered. After
a brief pause in release, DA concentration then begins to rise
with the onset of the FI before gradually decaying over its
duration (Oleson and Cheer, 2014; Oleson et al., 2014). As DA
concentration is inversely related to local response rate, we infer
that under the contingencies of a FI schedule, DA concentration
represents the primary interoceptive cue driving reinforcement:
time (Oleson et al., 2014; Everett et al., 2020). To investigate how
cannabinoids alter both the patterns of behavior and DA release
engendered by the FI schedule, we applied FSCV while treating
mice with the cannabinoid agonist WIN as they responded
for appetitive food pellets (Oleson et al., 2014). To analyze
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FIGURE 4 | Cannabinoids modulate DA value signals during positive and negative reinforcement maintained under an FR schedule. Positive reinforcement:
Systemically treating (intravenous; IV) rats with the cannabinoid receptor antagonist rimonabant increased the latency to respond for brain stimulation reward and
decreased the concentration of cue-evoked DA value signals (A). Intrategmental infusions (IC) of rimonabant recapitulated these effects on reward seeking and DA
release, demonstrating that eCB modulation of DA neural activity in the VTA is alone sufficient to modulate DA release and positive reinforcement (B). Systemically
increasing 2AG levels by pre-treating rats with JZL184 (IV) reduced the latency to respond for brain stimulation reward and increased the concentration of
cue-evoked DA value signals (C). Intrategmental infusions (IC) of JZL184 recapitulated these effects, suggesting that the action of 2AG in the VTA is alone sufficient
to modulate DA release and positive reinforcement (D). Negative reinforcement: Systemic rimonabant administration (IV) reduced the number of successful
avoidance responses and the concentration of DA evoked by the warning signal (E). Inhibiting DAGL-induced synthesis of 2AG by infusing THL into the VTA
decreased avoidance and reduced 2AG tissue content in the VTA (F). Taken together, these observations generally support a DSI-model of 2AG-modulation of DA
value signals (G) during positive and negative reinforcement maintained under an FR schedule. Republished from Oleson et al. (2012) and Wenzel et al. (2018).
# < 0.05; **p < 0.001; ***p ≤ 0.001.
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how responding changed across the interval, we first calculated
rate/terminal rate values by dividing the local response rate into
five fixed epochs and then dividing each by the terminal rate (i.e.,
the maximal local response rate in the final epoch). We found
that WIN accelerated local response rates across the interval
in a dose- and CB1-dependent manner (Figure 5B). Similarly,
WIN dose-dependently increased DA concentration across the
duration of the interval in a CB1-dependent manner (Figure 5C).
We also performed a more refined behavioral analysis by
assessing the index of curvature of individual scalloped response
patterns (Figure 5D) (Fry et al., 1960; Narayanan et al., 2012).
Using the index of curvature analysis, a negative index of
curvature is detected when the animal’s scalloped response
pattern accelerates prematurely; thereby suggesting that timing
behavior is accelerated. By contrast, a slower acceleration of
responding across the interval produces a positive index of
curvature, suggesting that timing behavior is slowed (Fry et al.,
1960; Narayanan et al., 2012). This additional analysis confirmed
that WIN accelerated the timing of reinforced responding under
a FI schedule while concurrently accelerating the temporally
engendered pattern of DA release (Figure 5E). We then treated
mice with enzymatic inhibitors to investigate whether specifically
increasing the eCBs 2AG or anandamide modulate the scalloped
response pattern observed during fixed interval reinforcement.
We found that systemic treatment with the MAGL inhibitor
JZL184, but not the FAAH inhibitor URB597 accelerated the
temporal response pattern similarly to WIN (cf. Figures 5F,G,H
vs. E,B) (Oleson et al., 2014). These data suggest that the eCB 2AG
modulates goal-directed action under a variety of contingencies,
including periodically reinforced behavior.

ENDOCANNABINOIDS,
EXPLORATORY/ADJUNCTIVE
BEHAVIOR, AND HABITS

Endocannabinoids and
Exploratory/Adjunctive Behavior From
an Ethological Perspective
We next consider these observations from a phylogenetic and
ethological perspective. If cannabinoids amplify patterns of DA
release and accelerate timing behavior under conditions of fixed
periodic reinforcement, it is possible that they contribute to
motivational switching in response to changing environmental
conditions. After waiting a lengthy period of time for a primary
food source, it may become advantageous to switch from seeking
the desired option to foraging for alternative options. In the
operant chamber, these foraging-like actions can be noted as
reinforcement-irrelevant, or adjunctive behaviors (Falk, 1971,
1977). One proposed way to quantify adjunctive behavior in
the operant chamber is the measure responding on a secondary
inactive lever (Killeen and Fetterman, 1988). To assess whether
cannabinoids influence adjunctive behavior, we reanalyzed the FI
data and found that increasing 2AG using the MAGL inhibitor
JZL184 (Figure 5I) or antagonizing CB1 with AM251 (Oleson
et al., 2014) significantly reduced inactive lever presses. We

interpret these findings to suggest that a basal eCB tone and
a moderate concentration of accumbal DA provide the sweet
spot of intermittency necessary to switch an animal’s incentive
to obtain a primary goal (e.g., food) to the pursuit of alternative
options (e.g., foraging for an alternative food source) (Oleson
et al., 2014). Additionally, sudden increases or decreases in eCB
signaling can lead to perseverative goal seeking. In agreement
with this supposition, cannabinoids have been reported to
promote perseverative action and infiexibility (Hill et al., 2006;
Jiao et al., 2011).

The Variable Interval Schedule and Habit
Formation
Recent studies utilizing the variable interval (VI) schedule
demonstrate that eCBs are critically involved in habit formation.
As previously described, when reinforcement is delivered in fixed
intervals, the animal learns to time the interval and accelerate
their responding toward its culmination. By contrast, under a
VI schedule, responding is reinforced after a random period of
time has elapsed since the first response. Under these conditions,
the cumulative response pattern is maintained at a high, constant
rate—presumably because the animal is uncertain about the time
of reward availability (Ferster and Skinner, 1957) (Figure 2A). In
comparison to ratio schedules or the FI schedule, the VI schedule
is known to produce habitual behavior (DeRusso et al., 2010).
To determine if a behavior is habitual rather than goal-directed,
experimenters determine if the instrumental action is driven by
a valued outcome or devoid of its consequences (Figure 2B).
To characterize and parse the purpose of action, Adams and
Dickinson developed what is known as the devaluation test
(Adams and Dickinson, 1981). After training an animal to
respond for what was originally a valued outcome, the outcome
is then devalued. In the case of food-maintained responding, the
animal is either over-fed or subjected to food poisoning. If the
animal’s responding is significantly affected by devaluation, it is
inferred that action is still directed toward a valued goal; however,
if the animal’s responding is insensitive to devaluation, it is
inferred that action has become habitual. In the latter scenario,
the habitual behavior is believed to be unresponsive to changes in
outcome value and the contingency between action and outcome
(Dickinson and Balleine, 1994).

eCBs May Be Involved in Habit
Formation
Growing evidence suggests that eCB signaling is crucial for
habit formation, although the precise roles each eCB play in
habit formation and whether these roles differ at distinct loci
in the brain remains to be determined. Hilário et al. (2007)
first demonstrated a role for eCBs in habit formation. First,
these authors confirmed that a history of responding under a
VI-reinforcement schedule is particularly suited for establishing
habitual responding. After providing mice with a history of
responding for a sugar solution under either a VI schedule
or a variable-ratio (i.e., VR) schedule, they were tested in a
devaluation test. In this test all mice were given access to
either a sugar solution (i.e., reinforcer from operant training) or
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FIGURE 5 | Cannabinoids modulate a temporally engendered pattern DA release during reinforcement maintained under an FI schedule and adjunctive behavior. An
illustrative cumulative response pattern (top: raster plots; bottom: corresponding peri-event histograms) of a WIN-treated mouse responding for food reinforcement
under a FI schedule. The pattern of lever pressing lawfully increases in the FI task to form a scalloped response pattern. The raster plot shows responses (black
ticks) preceding food reinforcement (red triangle) across the 30 s interval. All trials are shown in chronological order as they occurred in a representative experimental
session. The peri-event histogram shows the summation of responding under each corresponding raster plot. (A). WIN 55,212-2 accelerated the timing of scallop
response pattern in a dose- and CB1-dependent manner. Mean behavioral response patterns following cannabinoid administration are plotted as a function of the
interval duration (B). WIN amplified a temporally engendered pattern of DA release in a dose- and CB1-dependent manner. Mean DA concentration traces for each
drug treatment conditions are plotted as a function of the interval (C). Cannabinoid-induced changes in interval timing were quantified by assessing the index of
curvature—a computational measure of the extent and direction of change in the temporal response pattern produced by the FI schedule (D). WIN produced a
negative index of curvature, suggesting an acceleration of timing behavior (E). Increasing 2AG with JZL184, but not increasing anandamide with URB597,
accelerated interval timing (F,G). eCB-induced changes in reinforcement irrelevant or adjunctive behavior were assessed by quantifying responses on an inactive
lever. Mean responses on the inactive lever initially increase before declining through the interval (H). JZL184 significantly decreased the percentage of time spent
responding on the inactive lever, suggesting that adjunctive behavior was reduced by elevating 2AG levels (I). These data show that cannabinoids module
periodically reinforced behavior and DA release under an FI schedule and, might suggest that a delicate balance of 2AG and DA release are necessary to produce
the sweet-spot of intermittency that produces adjunctive behavior. Reproduced from Oleson et al. (2014).

standard chow (home cage food) for 1hr preceding an extinction
session. During the extinction session, mice were given access
to the sugar-paired lever used in operant training; however,
no scheduled consequences occurred when it was pressed. As
predicted, they found that a history of responding under VI
schedule, but not the VR schedule, resulted in sugar-sated mice
persevering in their responses on the sugar-paired lever. The
authors also conducted a separate exploration test in which mice
were given access to the previously active lever and a novel level.

They found that in comparison to mice with a history under the
VR schedule, mice with a history of responding under the VI
schedule were more likely to engage with it. To test the effects of
eCB signaling, the authors replicated their experimental approach
using CB1 mutant mice and their wild-type littermates. After
a history of responding for sugar under a VI schedule, wild-
type (WT), heterozygous CB+/− (HET) and homozygous CB+/−

(HO) mice were given access to the regularly active lever in
either a sugar-sated or non-sated state. As shown in Figure 6A,
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FIGURE 6 | CB1s are necessary for habit formation and
adjunctive/exploratory behavior. To investigate the role of eCBs in habit
formation and adjunctive behavior WT, CB1+/−, and CB1−/− were trained on

(Continued)

FIGURE 6 | Continued
a variable interval schedule and then tested in devaluation and exploration
tests. (A) Normalized lever pressing during the valued versus the devalued
condition for WT, CB1+/−, and CB1−/− mice. CB1 mutants showed
sensitivity to sensory-specific satiety, suggesting that their actions were
goal-directed rather than habitual. These data suggest that the CB1 and
eCBs are necessary for habit formation. (B) Lever pressing (normalized) on the
training lever versus a novel lever in WT, CB1+/−, and CB1−/− mice. Relative
to other groups, CB1−/− mice responded less on the novel lever, suggesting
that the CB1 and eCBs may be involved in adjunctive behavior. (Republished
from Hilário et al., 2007). (C) Graph shows responses in the valued (V) and
devalued (DV) states in RI and RR training contexts. RR, random ratio (aka
FR); RI, random interval (aka VI). During outcome devaluation procedures,
control mice showed reduced lever pressing in the devalued state in the RR
context but not the RI context. However, mice that lacked CB1s on OFC
projection neurons into the striatum responded less in the devalued state
under both RR and RI conditions. These data suggest that CB1s in
cortical-striatal loops are necessary for habit formation (Republished from
Gremel et al., 2016). Mice lacking the enzyme for the synthesis of 2AG from
D1 MSNs (D1-Cre+) showed decreased exploration of a novel conspecific (D)
and a novel environment (E). These data suggest that 2AG in the striatum
plays an important role during adjunctive behavior (Republished from Shonesy
et al., 2018). (F) Surprisingly, blocking metabolism of AEA with URB597 and
2AG with JZL184 disrupted rather than promote habit formation. These latter
findings might suggest that AEA and 2AG are not important in habit formation
or that non-specific behavioral effects (e.g., increased motivation for food) can
confound tests of habitual behavior. **p < 0.01; ***p ≤ 0.001.

devaluing the sugar solution failed to affect responding on the
previously sugar-paired lever. This finding supports the notion
that a history of responding under the VI schedule produces
habitual responding. However, both the HET and HO groups
CB1 mutant mice showed sensitivity to sugar devaluation. As
evidenced by the green and blue bars, providing ad libitum
access to the sugar solution before the devaluation test resulted
in both CB1 mutant groups responding less in the sated state,
suggesting that habit formation is impaired in CB1 mutant mice.
As illustrated in Figure 6B, in the exploration test they found that
HO mice, but not HET or WT mice, failed to explore the novel
level. Taken together, these data suggest that CB1 signaling may
play an important role in habit formation and exploring novel
options. These data are in agreement with our aforementioned
finding that pretreating mice with AM251 reduced inactive
lever responses; although, it remains unclear why increasing
2AG levels with JZL184 also reduced adjunctive, or exploratory
behavior. One likely possibility is that systemically increasing
2AG produces an array of physiological and behavioral effects
at different levels of distinct neural networks. By harnessing
recent technical advances, investigators are beginning to target
specific cellular populations and neural circuits responsible for
habit formation, but many additional studies are required to
completely understand the mechanisms involve.

A Brief Introduction to the Nigrostriatal
Habit Circuitry
The majority of aforementioned DA studies measured its release
in the primary terminal field of the mesocorticolimbic pathway
(Figure 2C), the NAc. The NAc is typically thought of as a
Pavlovian-motor interface that guides model-based goal-directed
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actions (Yin and Knowlton, 2006; Bornstein and Daw, 2011)—
including reward seeking, conditioned active avoidance, and
periodically reinforced behavior. In contrast, habits are thought
to mediated by interactions between the dorsal striatum and the
cortex, or cortico-striatal loops (Figure 2C). The dorsal striatum
is often divided into the dorsomedial (caudate in primates)
and the dorsolateral (putamen in primates) striatum (Yin and
Knowlton, 2006). The dorsomedial striatum is thought to guide
model-based, goal-directed actions using environmental rules
that dictate the contingencies of reinforcement. By contrast, the
dorsolateral striatum is thought to play a role in guiding model-
free, habitual action using previously learned associations (Yin
and Knowlton, 2006; Lee et al., 2014). This form of model-
free habitual action is thought to arise from sensorimotor loops
that can be modified by eCB signaling and DA release at the
level of the dorsal striatum. Whereas the NAc receives DAergic
input from mesocorticolimbic pathway originating in the VTA,
the dorsal striatum primarily receives DAergic input from the
nigrostriatal pathway originating in the substantia nigra pars
compacta (Figure 2C).

eCB Modulation of Cortico-Striatal Input
Into the Dorsal Striatum Gates
Goal-Directed and Habitual Behavior
Gremel et al. (2016) provided incisive insight into the role
eCBs might play in orbitostriatal input into the dorsal striatum.
The orbitofrontal cortex (OFC) is thought to contribute to
cortico-striatal loops that may gate behavior between being
goal-directed and habitual. Using viral technology to selectively
knock-out CB1 from OFC neurons, they first demonstrated
that OFC neurons projecting to the dorsomedial striatum
exhibit greater activity during goal-directed behavior in a VR
than in a VI task. Similar to Hilario, they further confirmed
that VI training produced more habitual responding than VR
training. They then used a retrograde virus and chemogenetics
to selectively inhibit OFC projections into the dorsomedial
striatum. While control mice reduced responding on both the
VR and VI task when in the devalued (i.e., sugar-sated) state,
chemogenetic inhibition of OFC input into the dorsomedial
striatum did not reduce responding in either the VR or VI
task (Figure 6C). To better assess the local contribution of
OFC input in the dorsomedial striatum, they repeated their
experiment but injected the clozapine-n-oxide used to induce
chemogenetic suppression directly into the dorsal striatum rather
than into the intraperitoneal space. They found that handling the
WT mice during microinfusions abolished habitual responding;
specifically, mice only responded on the sucrose-paired lever
when in a sucrose-sated, or devalued state. However, when
the microinfusion produced chemogenetic inhibition of OFC
input into the dorsal striatum, responding on the previously
sucrose-paired lever persisted in-spite of sucrose devaluation.
Taken together, these data suggest that eCB-modulation of OFC
input into the dorsal striatum might gate behavior between
dorsomedial-mediated goal-directed behavior and dorsolateral-
mediated habitual behavior. Future studies are necessary to
clarify the specific roles distinct eCBs play in modulating

behavior; the specific eCBs involved, the circuit they are acting
in, and the specific cell-type they are acting on are all important
variables to consider in future studies.

2AG From D1-Expressing MSNs
Mediates Exploratory Behavior and
Perseverative Responding
To provide cell-type and eCB specific data, Shonesy et al. (2018)
investigated the effects of conditionally knocking down the
primary synthetic enzyme of 2AG (i.e., DAGL) from striatal
MSNs. The majority of MSNs in the dorsal striatum can be
segregated into one of two populations. The D1-expressing
neurons of the direct pathway are thought to promote action
during reinforcement, whereas the D2-expressing neurons of
the indirect pathway are thought to inhibit action during
reinforcement (Kravitz et al., 2012). Shonesy et al. (2018) found
that knocking down DAGL from the D2-expressing neurons of
the indirect pathway failed to influence any of the behavioral
outcomes they assessed. In contrast, they found that removing
2AG signaling from D1-expressing neurons of the direct pathway
produced distinct behavioral effects depending on whether the
conditional knock down occurred in the dorsal or ventral
striatum. Specifically, they found that removing 2AG from dorsal
striatal D1-containing MSNs reduced both social (Figure 6D)
and spatial (Figure 6E) exploration of novelty. However, it
should be noted that repetitive grooming occurred following
removal of 2AG signaling from the ventral rather than the dorsal
striatum. The authors also found that removing 2AG signaling
from MSNs failed to influence operant behavior maintained
under either fixed-ratio or progressive-ratio schedule. These
paradoxical behavioral findings notwithstanding, Shonesy et al.
(2018) also provided important information regarding the role of
2AG in modulating synaptic plasticity in striatal circuits. Using
electrophysiology, they found that removing 2AG signaling from
D1-MSNs reduced feedback inhibition at both glutamatergic and
GABAergic MSN synapses and increased basal glutamatergic
release onto D1-MSNs. Specifically, they found that KO of DAGL
from D1-MSNs significantly increased the frequency of their
excitatory post-synaptic currents, suggesting an impairment of
eCB mediated feedback inhibition on glutamate release (i.e.,
DSE). They also found that the KO of DAGL from D1-
MSNs impaired DSI at these cells arising from GABAergic
synapses, although GABAergic transmission was determined
to be unchanged. Overall, these data suggest DAGL-KO from
D1-MSNs excite dMSNs due to a loss of DSE. When this
breakdown in feedback regulation occurs in the dorsal striatum,
exploration of social and spatial novelty are impaired; when
this breakdown occurs in the ventral striatum, perseverative
grooming behavior is observed.

Surprising Findings and Important
Considerations Regarding the Overlap
Between Measures of Appetitive
Goal-Seeking and Habitual Responding
While the aforementioned studies offer compelling evidence
that increases in 2AG within the dorsal striatum act on CB1s
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to modulate habitual behavior, a recent study by Gianessi
et al. (2021), suggest there is considerable nuance to this story
that still needs to be considered. These investigators trained
mice to respond for sucrose-sweetened grain pellets under a
VI schedule and then tested for habitual responding using
contingency degradation. As opposed to sating the mice with
ad libitum sugar, the reinforcement contingency was degraded
by allowing the animal to respond as if in the VI-task but
lever presses resulted in no programmed consequence. Rather,
reinforcers were delivered at equal intervals, matching the
total number of reinforcers earned the previous day. The
FAAH inhibitor URB597 was administered to test the effects of
elevated AEA levels on habitual responding; the MAGL inhibitor
JZL184 was administered to test the effects of elevated 2AG
levels on habitual responding. Contrary to their predictions,
they found that both drugs reduced responding during the
test day following contingency degradation (Figure 6F). These
findings paradoxically suggest that elevating neither anandamide
nor 2AG strengthens habitual responding. Furthermore, they
demonstrated that the effects of the CB1 antagonist/inverse
agonist AM251 on habitual responding varied depending on
the vehicle used and the relative time of drug pre-treatment.
The authors first note that solubility of prepared cannabinoid
solutions varies greatly across labs because these lipophilic
compounds are not easily dissolved in water. They demonstrate
that dissolving AM251 in a mixture of DMSO and TWEEN
produced dose-dependent reductions in operant responding, but
dissolving AM251 in DMSO alone did not. Thus, it is important
to note differences in vehicle and drug preparation may
drastically impact bioavailability when comparing cannabinoid
studies. For example, while the Gianessi et al., 2021 study
reported that 1 mg/kg AM251 reduced operant responding, the
Hilario study reported that neither 3 nor 6 mg/kg AM251 did.
Perhaps more importantly, Gianessi et al., 2019., also found
that the timing of habitual testing relative to drug-treatment
is important to consider during experimental design. When
they assessed for habitual behavior immediately after a series
of AM251 treatments, they observed a significant increase in
responding. However, when they assessed for habitual behavior
after allowing for AM251 to clear the system, responding was
found to be decreased. From this observation, and their finding
that AM251 reduced responding for sugar pellets, the authors
concluded that mice increased responding after the series of
AM251 treatments because they had not been reaching satiety
across the VI training sessions and were therefore showing an
increase in goal-directed appetitive behavior rather than habitual
responding during the first contingency degradation session. It
is also worth noting that this group also reported that when
administered alone, JZL184 does not alter the expression of
food habits (Gianessi et al., 2019) or alcohol habits (Gianessi
et al., 2020). However, in the latter study Gianessi et al.
(2020) did find that JZL184 increased motivation for food
as assessed using a progressive ratio schedule. Thus, while
compelling evidence suggests that 2AG may be important in
gating goal-directed to habitual action, many more studies
are required to reconcile the nodes of the neural circuitry
involved, the role of specific receptors and cell-types being

acted upon within each node, and the contributions of distinct
eCBs. Furthermore, the potential confound of CB1-mediated
changes in appetitive behavior on habitual testing underscores the
importance of concurrently considering the literature on eCB-
modulation of appetitive behaviors, habitual responding, and
attentional processes.

Transition From Reinforcement to
Attentional Processes
The manifestation of motivationally switching from a primary
reinforcer to an alternative outcome and habit-formation likely
involve the additional recruitment of attentional processes.
And, when considering the neural substrates involved in
motivational switching, it became readily apparent that this
circuitry often overlaps with the neural substrates of attention
(e.g., OFC-dorsal striatum) (O’Hare et al., 2018). Furthermore,
mesocorticolimbic DA signaling is believed to modulate value-
driven goal-directed action, habit formation, and attentional
processes. Thus, we next turn the focus of our review to the
seemingly intertwined literature on cannabinoid and DAergic
modulation of attentional processes.

CANNABINOIDS AND DA BOTH
MODULATE ATTENTIONAL PROCESSES
AS WELL

Introduction to the Study of Attention
and Attentional Processes
The concept of attention has long historical roots in psychology
and bears several definitions. While modern terminology
surrounding attention may refer to disparate concepts such as
arousal, vigilance, and distractibility, it may be broadly defined as
selective activation of neural representations during information
processing. Through this definition, attention may be best
illustrated in relation to the highly related process of working
memory. Whereas attention uploads information ‘on-line’ at any
discrete timepoint, working memory stores and utilizes these
activated representations during recall across small spans of
time (Baddeley, 1986; Cowan, 1993; McElree, 2001; Oberauer,
2019). While attention has different aspects or components
associated with it, including its most fundamental sensory-
based component involuntarily elicited in response to salient
environmental stimuli, the behavioral paradigms referenced
below generally focus on attentional control. An executive
function, attentional control incorporates top-down regulation
of bottom-up sensory driven attentional processes to subserve
appropriate attendance toward behaviorally relevant stimuli
(Posner and Petersen, 1990; Cohen et al., 1993; Hopfinger et al.,
2000; Fan et al., 2002). Proper allocation of attention within
complex, changing environments is an evolutionarily conserved
trait crucial for effective information processing (Matzel and
Kolata, 2010; Chun et al., 2011), allowing an animal’s behavior
to be adaptively modified by external contingencies in order
to successfully engage in signal detection and goal-directed
decision making (Broadbent and Gregory, 1963; Endler, 1992;
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Verghese, 2001; Smith and Ratcliff, 2009; Asplund et al., 2010;
Voloh et al., 2015). So, dysfunctions in attention weaken an
individual’s ability to allocate cognitive resources effectively to
the task at hand. Therefore, deficits in attentional control are
potential barriers to adaptive behavior and overall survivability of
the organism, with pathologies affecting this executive function
leading to maladaptive traits that negatively impact quality of
life (Baddeley et al., 2001; Rueda et al., 2004; Williams-Gray
et al., 2008; Burgess et al., 2010; Fajkowska and Derryberry,
2010; Schoorl et al., 2014; Stefanopoulou et al., 2014; Heeren and
McNally, 2016).

Cortical Regulation of Attentional
Control
Although the neuroanatomical loci of attention are many and
work as an integrated network of multiple brain regions,
attentional control is largely mediated by cortical regions. Spatial
and visual attentional control, for instance, have been evidenced
to be strongly regulated by frontoparietal regions that filter
sensory information in a top-down fashion, with injury to
these areas resulting in spatial neglect despite intact bottom-up,
sensory-driven networks (Jeannerod, 1987; Karnath et al., 2001;
Mort et al., 2003; Corbetta et al., 2005; Fiebelkorn et al., 2018). In
terms of attentional command and action selection, the PFC and
OFC have been shown to mediate selective attentional control
during cognitive tasks, with the PFC regulating attentional focus
during interference (Milham et al., 2001), redirection of attention
based on task demands (Rossi et al., 2007), and attentional
shifting across perceptual features (Owen et al., 1991; Birrell and
Brown, 2000; Liston et al., 2009), while the OFC primarily serves
redirecting attention during reinforcement switching within
reversal learning (Hampshire and Owen, 2006). As the PFC
is fundamental to cognitive control in general and regulates
working memory, decision making, and other processes crucial
to goal-directed behavior (Fuster, 2015), its involvement in
attentional processes is perhaps self-evident. The OFC, on the
other hand, has a more indirect relationship to attention as it is
more associated with value encoding and behavioral inhibition
(Teitelbaum, 1964; Gallagher et al., 1999; Izquierdo et al., 2004;
Kim and Ragozzino, 2005; Jonker et al., 2015). Nonetheless,
attention-based modulation of value encoding in the OFC has
been recently supported, leaving an interesting role for the OFC
in value-based decision making that may be under the control of
attentional focus (Xie et al., 2018).

DA and eCB Regulation of Cortical
Function
The multifaceted cortical functions of cognitive control are
tightly regulated by both intra- and intercortical activity states
mediated greatly by pyramidal cells, the principal neurons of the
cortex. Far from being self-contained, pyramidal cell activity is
impinged by numerous signaling molecules, including DA, which
is projected in the cortex by rich innervations arising from the
VTA (Lewis et al., 1986). DA regulates pyramidal cell function
through numerous ways to primarily modulate glutamatergic
and GABAergic signaling in the cortex (Law-Tho et al., 1994;

Zheng et al., 1999; Gao et al., 2001; Seamans et al., 2001a; Flores-
Hernandez et al., 2002; Gao and Goldman-Rakic, 2003; Wang
et al., 2003; Beazely et al., 2006; Liu et al., 2006; Onn et al.,
2006; Li et al., 2009; Hu et al., 2010; Tritsch and Sabatini, 2012).
Overall DA has a dampening effect on excitatory transmission
in the PFC through a presynaptic mechanism, reducing the
probability of glutamate release (Gao et al., 2001). DA also
modulates inhibitory signaling in the PFC, biphasically altering
inhibition of pyramidal cells via Gi-coupled D2 DA receptor
activation on presynaptic GABA cells and a complex interplay
between signaling of postsynaptic pyramidal cell DA receptors
D1 (Gs-coupled), D2, and D4 (Gi-coupled) (Seamans et al.,
2001b; Wang et al., 2002; Trantham-Davidson et al., 2004).
Pyramidal cell activity is modulated by DA in more direct ways
too; postsynaptic mechanisms of intrinsic excitability have been
shown to be adjusted in rats by VTA DA projections that modify
spike frequency adaption and afterhyperpolarization potentials in
the PFC (Buchta et al., 2017).

Cortical function is also mediated by eCB signaling. In
the PFC, CB1 expression has been found to be preferential
to GABAergic presynaptic terminals adjacent to glutamatergic
ones, both synapsing onto dendrites of mGluR5-containing
pyramidal cells. This places CB1 in a position to integrate
and balance excitatory and inhibitory signaling during activity-
dependent eCB mobilization (Fitzgerald et al., 2019). This
mGluR5-mediated integration of PFC pyramidal signaling may
take place post-synaptically to directly increase pyramidal cell
excitability and synaptic drive, or pre-synaptically as this ligand
gated Gq protein-coupled receptor is capable of stimulating eCB
production to induce DSI-mediated disinhibition of pyramidal
cells via CB1 signaling (Kiritoshi et al., 2013). eCB signaling may
also simultaneously modulate glutamate and DA in the PFC as
systemic administration of the CB1 agonist WIN has been shown
to increase transmission of both within this region (Polissidis
et al., 2013). Furthermore, intra-PFC WIN administration
induces bi-phasic functional effects in VTA DA cell activity, with
low doses increasing and high doses decreasing spontaneous DA
cell firing (Draycott et al., 2014). Although less characterized,
eCB signaling within the OFC influences pyramidal function
too. Similar to the PFC, postsynaptic mGluR5 activation has
been shown to increase local eCB release and enhance CB1
signaling within GABAergic presynaptic terminals of the OFC
(Lau et al., 2020). Interestingly, in the lateral aspect of the OFC,
impaired astrocytic glutamate transport has been found to result
in aberrant eCB tone and subsequent LTD of inhibition onto
pyramidal cells, presumably via increased mGluR5 activation
from excess extrasynaptic glutamate. Whether this eCB-mediated
astrocytic regulation of mGluR5 activation is shared by PFC
synapses remains to be investigated.

DA and eCB Regulation of Attentional
Processes
The influence of cortical DA on cognition, including attentional
processes, is a well-researched subject that has been intensely
studied by neurobiologists and computational neuroscientists
alike. Broadly, DA in the PFC facilitates integration of complex

Frontiers in Synaptic Neuroscience | www.frontiersin.org 16 June 2021 | Volume 13 | Article 660218

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


fnsyn-13-660218 June 8, 2021 Time: 14:1 # 17

Oleson et al. Cannabinoids, Motivation, Habit and Attention

signals between sensorimotor networks by synchronizing
different brain networks in response to both external signals and
internal representations (Ott and Nieder, 2019). This is enabled
by stabilizing neural representations in the cortex through
gating sensory signals at the level of the PFC and gain changes
of different pyramidal cell subpopulations, which support
action selection and goal-directed behavior in stimuli-rich
environments (Foote et al., 1975; Durstewitz et al., 2000; Mehta
et al., 2000; Assad, 2003; Yantis and Serences, 2003; Maunsell and
Treue, 2006; Scolari and Serences, 2009; Dang et al., 2012; Byers
and Serences, 2014; Shafiei et al., 2019). As a neuromodulator,
DA’s influence via the signaling dynamics referenced above are
tightly regulated at both the synaptic and systems level and
are subject to the classic Yerkes-Dodson (inverted U-shaped
curve) dose-response relationship, with hyper- or hypoDAergic
levels resulting in cognitive dysfunction (Yerkes and Dodson,
1908; Vijayraghavan et al., 2007). This DA-sensitive nature of
attentional control has been demonstrated by both human and
rodent studies showing measures of inattentiveness correlated
with low levels of DA release may be repaired by increasing DA
transmission by means of neural stimulation or pharmacological
manipulation (Turner et al., 2017; Fukai et al., 2019). In contrast,
administering the D2 antagonist haloperidol to healthy human
subjects increases involuntary directing of attention toward
task-irrelevant events (Kähkönen et al., 2002). eCB signaling
within the cortex must also walk a fine line to sustain attentional
control and while local cortical CB1 dynamics are less studied
than those within cortico-accumbens projections within this
context, their effect on cognition is duly noted. In the PFC, viral-
induced overexpression of CB1 results in impaired cognitive
flexibility in the form of decreased reversal learning in rats
(Klugmann et al., 2011). Within the OFC, the medial but not the
lateral aspect has been found to display low levels of CB1 gene
expression in rats with high impulsivity (Ucha et al., 2019). And,
goal-directed behavior in mice has been shown to be regulated by
a CB1-dependent mechanism in OFC projections to the dorsal
striatum, with genetic knock out of CB1 here preventing habit
formation of instrumental responding (Gremel et al., 2016).

Common Methods to Investigate the
Components of Attention
While there are many components of attentional control, this
review will focus on sustained attention, response control
(impulsivity), attentional set-shifting and reversal learning as
indices of attentional control as well as their respective
deficits. Of the many factors that may influence attentional
control, reversal learning – instrumental responding to swapped
outcome contingencies between manipulanda – and impulsivity
are both affective state-sensitive, pathology-related variables
readily examined in the operant setting as adjuncts to more
direct measures of attention itself (Puumala and Sirviö, 1998;
Kenemans et al., 2005; Izquierdo and Jentsch, 2012; Linley et al.,
2016; Paret and Bublatzky, 2020). While these two measures
remain technically distinct from those of attention per se, they
index prioritization of attentional demand to reward-associated
stimuli (Mackintosh and Little, 1969; Oemisch et al., 2017).

Accordingly, their relationship to attention and its operant tests
are discussed alongside attention itself. Because performance
inconsistencies are more informative than absolute performance,
and because anatomical and neurochemical specificity is more
readily correlated to specific measures, focus will be given
to impairments and enhancements of these measures under
different pharmacological conditions. Limitations are inherent in
each reported finding as no pure test of attention is currently
accepted, although evidence supporting correlations between
certain pathologies and specific attentional dysfunctions will
be highlighted. As attention is both inherently sensitive and
limited, unique internal (e.g., neurofunctional) and external (e.g.,
experiential) factors may affect its processing to either enhance
or constrain different attentional components. Furthermore,
individual differences in attentional control may result in
differing perceptions and behavioral outputs across samples
under identical environmental conditions (Dukas and Kamil,
2000; Derryberry and Reed, 2002; Mathews et al., 2004; Ólafsson
et al., 2011; Sali et al., 2015; Yuan et al., 2019). Such factors will be
considered here, focusing on how key mesocorticolimbic regions
regulate commonly investigated attentional control processes
while also relating changes in functional activity to pathology.
The review will then culminate with DA/eCB interactions
evidenced to modulate these processes with special consideration
toward gaps in the literature. To best frame the aforementioned
components of attention, the behavioral tests most popularly
used for their measurement will be introduced below, with the
5-Choice Serial Reaction Time Test (5-CSRTT) used to assess
sustained attention and impulsivity and the Attentional Set
Shifting Test (ASST) used to measure shifting attentional set and
reversal learning.

Operant Methods to Assess for Changes
in Attentional Processes
The 5-Choice Serial Reaction Time Test (5-CSRTT)
The 5-CSRTT for rodents was refurbished from a similar
test of attentional processing during discrimination of visual
stimuli in humans (Wilkinson, 1963; Carli et al., 1983). The
paradigm consists of a food cup positioned in front of a hinged
window, which once pushed open by the rodent initiates the
behavioral session and delivery of the first food-based reward,
usually a food pellet or measured amount of liquid sucrose.
Additional manipulanda consists of five nose poke ports, each
with their own cue lights positioned behind them as well as
photobeams to detect individual nose pokes. After initial reward
delivery following the opening of the food cup window, each
successive delivery of reward is contingent upon a successful,
exclusive nose poke through the port in which a cue light
is randomly illuminated per trial. Responses for any port not
signaled with an illuminated cue light may either terminate the
trial without reward delivery or be tallied as non-rewarding
errors within a lengthened response period (depending on
the behavioral script ran at the time), after which the next
trial begins. As the cue light is only briefly illuminated and
responding via nose pokes is only allowed during a confined
time period, a temporal domain is imposed onto the spatial
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domain defined by the five different manipulanda separated
by the apparatus. This dual-domain aspect of the paradigm
demands attention be afforded to both domains simultaneously
but also allows experimenters to dissociate each as they see
fit, for instance by expanding the spatial separation of cues
by exclusively illuminating peripheral ports or modifying time
periods of cue illumination and/or delay periods. The dual-
domain component of the task also allows multiple aspects
of attention to be measured within a single experimental
session. For instance, errors counted across nose-poke responses
within unilluminated ports, considered inaccurate responses,
are interpreted as lapses in sustained attention. Additional
demands of ‘attentional load’ placed on the animal may be
measured by modifying the temporal domain to increase
uncertainty and/or duration of cue illumination. Another type
of error may also be measured by tallying responses made
during a brief inter-trial interval period programed before cue
illumination at the onset of each trial (Figure 7A). These
premature responses are interpreted as lapses in inhibitory
control, or impulsivity. Other types of errors may also be
measured by additional modifications programmed into the
paradigm, though this review will focus on those of inaccurate
and premature responding as a bulk of literature supports both
DA and eCBs mediate these aspects of the task as commonly
used with rodents.

The Attentional Set Shifting Test (ASST)
Like the 5-CSRTT, the ASST for rodents was adapted from
behavioral assessments originally designed for human subjects.
The most commonly cited comparison is with the Wisconsin
Card Sorting Test (WCST), though a more direct comparison
may be made with the Cambridge Neuropsychological
Automated Testing Battery (CANTAB). Both are used to
investigate ‘behavioral flexibility’ in healthy and abnormal
neurological states by measuring the ability to shift attention
from one reward-predictive perceptual feature to another
following an unexpected switch (Berg, 1948; Grant and Berg,
1948; Weinberger et al., 1986; Sahakian and Owen, 1992; Paolo
et al., 1995; West, 1996; Nieuwenstein et al., 2001; Barceló
and Knight, 2002; Ridderinkhof et al., 2002; Romine et al.,
2004; Nagahama et al., 2005). Specifically, the CANTAB design
involves two-choice discriminations between either simple or
complex exemplars to assess attentional bias toward a feature
of perceptual stimuli, or dimension. One exemplar initially
predicts reward faithfully at onset of the task and constitutes a
single dimension (e.g., shape), while the other non-predictive
exemplar is a presentation of a separate stimulus within the same
dimension, in this case a separate shape. Once subjects learn this
simple discrimination, a complex discrimination must be made
after introduction of a second dimension (e.g., line segments)
overlaying the first dimension in each exemplar that remains
reward-predictive (shape). As both exemplars now consist of
separate stimuli constituting two different dimensions (e.g.,
two different shapes with two superimposed line segments),
the reward-predictive stimuli may be ‘shifted’ within the same
dimension or to the other dimension. Changing stimuli while
retaining reward-predictability to the initial dimension (shape)

is labeled an ‘intradimensional shift’ (ID shift), while switching
the reward-predictive dimension (shape→line segments) is
labeled an ‘extradimensional shift’ (ED shift). Adding another
level of analysis, each of these test components is followed
by a reversal learning test, in which the reward-predictive
stimuli of the two exemplars is reversed while the relevant
dimension stays the same.

The ASST adapted for rodents has been designed as both
a reward-digging task, in which exemplars comprise different
combinations of digging materials and odors as dimensions
(Figure 7B, panel A), and an instrumental operant task, in
which reward delivery associations may be switched between two
different levers and their respective cue light illumination settings
(on/off) (Figure 7B, panel B). In these tasks, a bias toward one
of the two dimensions is considered formation of an attentional
set, expressed as relatively quicker and more accurate responding
during intradimensional shifts than either extradimensional
shifts or the initial simple discrimination test (Birrell and Brown,
2000). Attentional sets are therefore interpreted as information
stores maintaining the reward-associative value of a perceptual
feature that leads to relative ignorance toward other features
(Folk et al., 1992).

In addition to assessing attentional sets, the separate reversal
learning tests allow dissociation and detection of deficits relating
to this ability alone. While similar to attentional set-shifting,
reversal learning is considered a less complex but important
process that relies on inhibition of previously rewarding actions
(Jones and Mishkin, 1972). Because shifting attentional set
requires a higher demand of attentional orientation and an aspect
of learned irrelevance – accurately responding to rearrangement
of complex, multidimensional stimulus pairings not correlated
with reward – it is widely considered to be more cognitively
challenging than reversal learning (Dias et al., 1996; Bissonette
et al., 2008; Nilsson et al., 2015). Owing to its regulation
of complex cognitive functions, it is logical that the PFC
has been found to be critical to attentional set-shifting, with
the non-human primate lateral PFC and homologous rodent
medial PFC specifically evidenced to mediate this process (Dias
et al., 1996; Birrell and Brown, 2000). Conversely, reversal
learning is specifically impaired following damage to the OFC
of both monkeys and rodents, perhaps owing to this region’s
encoding of reward value during decision-making processes that
may influence response inhibition toward previously rewarding
actions (Dias et al., 1997; McAlonan and Brown, 2003).

DA and eCB Signaling Effects on
5-CSRTT Performance
While both mesocorticolimbic DA and eCB signaling have
been shown to affect 5-CSRTT performance, their influence
on sustained attention and impulsivity may be separable. DA
has been shown to play a crucial role in controlling inhibitory
responding, with converging data indicating elevating synaptic
DA increases impulsivity by activation of both D1 and D2
receptors (van Gaalen et al., 2006; Baarendse and Vanderschuren,
2012; Xue et al., 2018). In rodents, impulsivity has been linked
to DA signaling specifically within the medial PFC and NAc
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FIGURE 7 | Cannabinoids modulate attentional processes. (A) Schematic of a
single trial in the 5-choice serial reaction time task (5-CSRTT). Animals are
trained to perform a nose poke when one of five cue lights is presented in any

(Continued)

FIGURE 7 | Continued
of the five nose-poke apertures following a fixed inter-trial interval (ITI), usually
4–6 s in length. Premature responses are tallied when made during this ITI.
Responses made in one of the four nose pokes not illuminated is counted as
an error of sustained attention. Reproduced from Cope et al. (2016). (B) Task
schematics of two common set-shifting assessments for rodents. Panel (A)
shows a schematic of the apparatus and examples of the stimuli used in the
“dig” set-shifting task. Each pot has a unique odor (i.e., rose on left and citrus
on right) and is filled with a unique digging medium (sequins on left, gravel on
right). Only one stimulus feature is relevant to the location of a buried food
reward in each phase of testing. Panel (B) shows a schematic of set-shift
procedures performed in an operant version of the task. Rats are first trained
to choose between two extended levers based on a light cue that is
associated with one of the levers. After reaching criterion performance on that
discrimination, there is an unsignaled change in rule and now the rat must
ignore the light and choose levers based on their spatial location. Reproduced
from Bizon et al. (2012). (C) Effect of CB1 antagonist/reverse agonist on
impulsivity. Coadministration of WIN55,212-2 at 1.0 mg/kg (WIN1) prevents
the effects of 3.0 mg/kg SR14716A (SR3) on inhibitory control in the
5-CSRTT. Reproduced from Pattij et al. (2007a). (D) Effect of acute THC
administration on reversal learning. At 30 min before the start of the task, rats
were administered vehicle, 0.01 mg/kg THC, or 1.0 mg/kg THC and the
number of trials to reach criterion performance was recorded for a series of
discriminations (SD, simple discrimination; CD, compound discrimination;
Rev1,2,3, first, second, and third reversal stages; IDS, intradimensional shift;
EDS, extradimensional shift). Animals in the 1 mg/kg THC treatment group
exhibited marked deficits in performance at each of the reversal stages but
not in the EDS stage. Reproduced from Egerton et al. (2005). (E) Altered
compartmentalization of D2 immunogold stain in dendrites containing
immunoperoxidase labeling for parvalbumin in the PL of the CB1−/− mice.
Cluster analysis reveals a significant change in compartmental distribution of
D2 immunogold in parvalbumin dendrites of CB1−/− mice. D2 immunogold
density was assessed as particles of D2 immunogold/square µm dendritic
area. In CB1−/− mice relative to CB1+/+ controls, a significant (p < 0.05)
increase in D2 immunogold was observed in small dendrites, while a decrease
in D2 immunogold per µm dendritic area was observed in medium
parvalbumin dendrites in CB1−/− mice relative to controls. Reproduced
from Fitzgerald et al. (2012). *p < 0.01; **p ≤ 0.001.

core and shell (Cole and Robbins, 1987; Miller and Cohen,
2001; Chudasama and Robbins, 2004; Dalley et al., 2004;
Economidou et al., 2012). eCB tone may also be primed to
modulate impulsivity as the synthetic CB1 antagonist rimonabant
dose-dependently decrease it in rats, an effect occluded by co-
administered WIN 55 (Pattij et al., 2007a) (Figure 7C). CB1
activity likely mediates its influence on impulsivity through
regulating DA signaling as the CB1 antagonist rimonabant dose-
dependently attenuates the impulsivity-inducing effects of the
psychostimulants d-amphetamine and cocaine (Wiskerke et al.,
2011; Hernandez et al., 2014). Additionally, THC and WIN
administered twice daily across 2 weeks results in reduced DA
turnover exclusively in the PFC and not in the dorsal nor ventral
striatum of rats, with effects lasting up to at least 14 days post-
abstinence (Verrico et al., 2003). This study is interesting in light
of evidence supporting that response inhibition is regulated by
cortical substrates and that protracted abstinence from chronic
THC administration selectively impairs response inhibition in
rats (Eagle and Baunez, 2010; Irimia et al., 2015). Collectively,
these data suggest that following chronic cannabinoid exposure,
long-term adaptations of DA function within the PFC increase
likelihood of impulsivity.
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In contrast to CB1-dependent effects on impulsivity,
cannabinergic effects on more direct measures of attention in the
5-CSRTT are relatively null. Accordingly, modest impairments
in sustained attention have been found to be reversed after
2 weeks abstinence following chronic THC administration in
rats, with more pronounced increases in impulsivity persisting
after 5 weeks of abstinence (Irimia et al., 2015). The distinction
between impulsivity- and sustained attention-related effects of
DA signaling have been scrutinized more than those by eCB
signaling though results are conflicting. DA-dependent effects on
5-CSRTT performance differ based on pharmacological modality
of altered activity (chemogenetics vs. psychostimulants),
individual differences in baseline task performance between
subjects and region-specificity of manipulations made within
the mesocorticolimbic system. These variables notwithstanding,
evidence reveals DA signaling regulates sustained attention
albeit to a lesser degree than impulsivity. In general, sustained
attention is enhanced following local D1 receptor agonism in
the medial PFC and NAc as well as after increased neuronal
activation of the VTA via selective pharmacological manipulation
of modified Gi-coupled muscarinic GPCRs (i.e., chemogenetics)
(Granon et al., 2000; van Gaalen et al., 2006; Pattij et al.,
2007b; Baarendse and Vanderschuren, 2012; Boekhoudt
et al., 2017; Xue et al., 2018; Fitzpatrick et al., 2019). Yet,
multiple pharmacological and biological variables must be
accounted for when manipulating DA function for behavioral
output in general, though perhaps more so with cognitive
tasks susceptible to numerous factors. Further dissecting
any dissociable effects of chemogenetics from other types of
DAergic manipulations, as well differentiating region-specific
effects, may prove useful to probe DA’s attentional functions
within the 5-CSRTT.

DA and eCB Signaling Effects on ASST
Performance
The effects of both mesocorticolimbic DA and eCB signaling on
ASST performance diverge by the task’s separate components,
with DA impacting both shifting attentional set and reversal
learning and cannabinergic effects restricted to reversal learning.
Converging lines of evidence suggest that D1 signaling within
the medial PFC in rodents and the homologous DLPFC in
primates is central to attentional set formation and shifting
in the ASST (Dias et al., 1997; Ragozzino et al., 1999; Birrell
and Brown, 2000; Stuss et al., 2000; Stefani et al., 2003;
Tunbridge et al., 2004; Fletcher et al., 2005; Floresco et al.,
2008; Nagano-Saito et al., 2008; Parsegian et al., 2011) while
D2 and DAT signaling within the OFC and striatum support
reversal learning, respectively (Cools et al., 2009; Izquierdo et al.,
2010; Cheng and Li, 2013). Indeed, cognitive flexibility training
has been shown to enhance measures of prelimbic DA and
therapeutic cognitive benefits in rats (Chaby et al., 2019), while
ADHD and schizophrenia patients, both strongly associated
with dysregulated cortical DA function, display attentional
dysfunctions particularly related to shifting attentional set similar
to patients with frontal lobe damage (Pantelis et al., 1999;
Luna-Rodriguez et al., 2018). In terms of OFC DA, low but

not high doses of methylphenidate remediate the impairment
of both attentional-set formation and reversal learning in the
spontaneously hypertensive rat (SHR) model of ADHD (Cao
et al., 2012), though this effect on reversal learning specifically
is occluded by intra-OFC injections of the D2 antagonist
haloperidol (Cheng and Li, 2013).

Insight into the cannabinergic effects on ASST, on the
other hand, are far outnumbered by those of DA, though
these limited studies suggest eCBs may be more important for
reversal learning than shifting attentional set. Egerton et al.
(2005) first demonstrated that acute THC in rats impairs
reversal learning while sparing extradimensional set-shifting
ability in the ASST (Figure 7D). This selective effect on
reversal learning by THC has been corroborated in non-human
primates in the CANTAB test (WrightJr., Vandewater et al.,
2013). Reversal learning has also been shown to be impaired
in rats by THC in an olfactory go/no-go discrimination task
and by adolescent WIN exposure in the ASST (Sokolic et al.,
2011; Gomes et al., 2015). Surprisingly, cannabinoid-induced
deficits to ASST may violate notions of a PFC/OFC task-specific
dichotomy as overexpression of CB1 specific to the medial
PFC has been shown to selectively impair reversal learning in
rats, a cognitive component of the ASST typically associated
with OFC function (Klugmann et al., 2011). Also surprising
is a recent finding that intra-PFC injection of cannabidiol
(CBD), but not similarly administered THC, impairs shifting
of attentional set in rats (Szkudlarek et al., 2019). While its
pharmacodynamic profile is complicated, it is worth noting
that CBD functions as a negative allosteric modulator at CB1
(Laprairie et al., 2015).

Finally, several studies using rats prenatally treated with
methylazoxymethanol acetate (MAM) as a developmental model
of schizophrenia suggest persistent psychotomimetic effects
related to mesocortical neuroadaptations may result from
aberrant eCB signaling during adolescence (Renard et al., 2017).
Both MAM and pubertal WIN have been shown to impair
reversal learning in the ASST, as well as enhance mobility
effects of d-amphetamine administration and an increased
number of spontaneously active VTA DA neurons (Gomes et al.,
2015). Somewhat remarkably, cannabinoid effects on MAM
treatment are suggested to be transgenerational as adolescent
WIN exposure also increases VTA DA population activity,
decreased burst firing and sensitization to d-amphetamine
locomotor responses in Figure 2 generation MAM-treated rats
(Aguilar et al., 2018).

These results bring into question both the locus of
reversal learning and the neural mechanisms underlining its
impairment by cannabinoids. Also important are considerations
of dissimilarities between DA manipulations and ASST models,
since like most laboratory-controlled behaviors, performance
variations may be attributed to different protocols. This is
underlined by cannabinoid administration having been suggested
to impact visual discrimination in general, which may broadly
affect performance in operant chamber-based ASST paradigms
(Arguello and Jentsch, 2004; Hill et al., 2006). Future research
of reversal learning following cannabinoid exposure and
manipulation should take such details into account.
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Comparable Studies Targeting Separate
Signaling Systems May Benefit Analysis
of DA/eCB Interaction and Attentional
Dysfunction
To assist in clarifying DA/eCB interactions and their effects on
attention, a few effective approaches may be noted. Behavioral
effects of DA/eCB interactions have been demonstrated
combining targeted pharmacological manipulations with
measures of negative affect, showing anxiolytic effects of CB1
activation in the amygdala is D1 and D2 dependent (Zarrindast
et al., 2011). Additional work with conditional knock-out mice
with CB1 expression constitutively removed from D1-expressing
neurons revealed CB1/D1 interactions modify negative affect as
well (Terzian et al., 2011). Another comparative pharmacology
study reported acute cannabis decreases while cocaine increases
reversal learning performance in human subjects (Spronk et al.,
2016). Interestingly, recent data combining chemical lesions of
the medial forebrain bundle and single-unit electrophysiological
recordings suggests the hypoDAergic states associated with many
neuropsychiatric disorders affecting attention may themselves
cause impairments in CB1 functional modulation of both
sensorimotor and executive networks (Antonazzo et al., 2020).
This novel conception expands the operative role for DA as not
only a modulator of glutamate and GABA transmission, but
also as a newfound gatekeeper of CB1’s own robust modulation
of transmission in substrates important for attentional and
behavioral control. Future studies in the causality of CB1
functional modification within DA-affected pathologies and
related changes to attentional processes are certainly warranted.

Finally, DA/eCB interactions may also be investigated at
the level of GABAergic interneurons. Many of the previously
described alterations to mesocorticolimbic functional dynamics
may involve FSI that are either directly targeted by eCBs
or are ultimately subject to eCB-dependent adaptations, with
attentional processing being impacted by both. In the PFC,
parvalbumin expressing FSIs critically gate pyramidal activity
and are sensitive to DA signaling. Furthermore, levels of
dendritic D2 expression in PFC parvalbumin cells have been
demonstrated to be regulated by CB1 signaling (Fitzgerald et al.,
2012) (Figure 7E). CB1-expressing FSIs in the striatum are
also associated with cognitive functions, strongly associated with
impulsive behavior and most recently suggested to gate attention
toward reward-predicting visual features (Caprioli et al., 2014;
Wright et al., 2017; Pisansky et al., 2019; Boroujeni et al.,
2020). As eCB-sensitive FSIs in both cortical and striatal regions
hold strong potential as a nexus for DA/eCB overlap, studies
investigating their role in cannabinoid-modulated attentional
processes may clarify much detail lacking in the field.

CONCLUSION

Summary of Conclusion
In this review, we describe recent scientific studies suggesting
cannabinoids modulate transient DA release events in a manner
that may influence motivational and attentional processes alike.

While we’ve acknowledged that DA/eCB interactions still need
to be better investigated across multiple overlapping neural
circuits, we would like to close by further considering the
intertwined relationship between DA transients, motivation and
attention. And finally, we offer some speculation into the
clinical implications these findings may offer the treatment of
neurobehavioral symptoms in psychiatric medicine.

Complex Interactions Complicate the
Relationship Between DA and the Neural
Circuitry of Motivation and Attention
Transient DA release events, the neural substrates of motivation,
and the neural substrates of attention interact within a tangled
thicket of intertwined circuits—the nodes of which likely
influence each other and can be differentially modulated by eCBs
at multiple levels. First, it is important to recognize that activation
of either subcortical nodes of pre-attentive visual processing (e.g.,
the superior colliculus) or cortical nodes of attentional visual
processing (e.g., V1) are sufficient to evoke transient DA release
events in the striatum of the basal ganglia (Redgrave et al., 2008,
2016; Takakuwa et al., 2017, 2018). Thus, it becomes difficult to
definitively know whether a striatal DA transient truly reflects
the value of a desired outcome within a motivational context
(as was the general assumption of this review), is the result
of an animal responding to a pre-attentive visual stimulus or
is the result of an animal giving a visual stimulus attentional
consideration. Furthermore, it is becoming abundantly clear
that DA transient release events are accompanied by the co-
release of additional neurotransmitters (e.g., GABA, glutamate)
from the same DA neuron, which may profoundly impact the
post-synaptic effects of DA (Tritsch et al., 2016; Morales and
Margolis, 2017). In addition, a wide array of discrete neural
circuits converge on midbrain DA neurons and their striatal-
terminals within the basal ganglia (Morales and Margolis, 2017).
It is likely that these discrete circuits can be differentially
modulated by eCBs to influence neural input onto DA neurons,
the generation of action potentials within DA neurons, and/or the
concentrations of neurotransmitter released from the terminals
of DA neurons. Following this multifaceted level of modulation,
the transient DA release events are then integrated with other
neural signals encoding various functions of motivation and
attention within nuclei of the basal ganglia to ultimately influence
the generation of behavioral action (Den Ouden et al., 2012).
Difficulty in dissociating such neural representations has been
considered before and ascribed to confounding neural signals
of reward expectancy and attentional allocation (Maunsell,
2004). Indeed, DA value signals and motivational states are
commonly recognized variables that capably modulate shifts in
attention (Engelmann and Pessoa, 2007; Mohanty et al., 2008;
Sali et al., 2014; Bourgeois et al., 2016; Anderson, 2019). And,
at the level of behavioral output, common measures of both
motivation and attention are highly DA-sensitive. This makes
dissociating DA’s contribution to their different components
somewhat difficult as most experimental assessments of attention
are dependent on the subject’s motivation. Take, for example,
individual differences in DA function and their effect on cognitive
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measures demanding attention in a clinical setting. Healthy
individuals with relatively lower DA synthesis capacity have been
found to exert relatively low cognitive effort, while increasing
their DA levels with methylphenidate and the D2 antagonist
sulpiride has been reported to enhance their reward perception
and motivation for cognitive engagement (Westbrook et al.,
2020). This observation of a low DA-low effort relationship
may be applied to preclinical settings and aligns with a study
in mice reporting that chemogenetic inhibition of VTA DA
neurons decreased motivated responding in a 5-CSRTT but
not measures of attentional processing per se—suggesting an
apparent dissociation (Fitzpatrick et al., 2019). However, it
has also been reported that increasing DA levels through
chemogenetic excitation of the VTA, using selective activation
of modified Gq-coupled muscarinic GPCRs, impairs sustained
attention in the 5-CSRTT (Boekhoudt et al., 2017). While
separate types of neural DA manipulations were utilized between
these studies (cf. inhibitory Gi vs. excitatory Gq DREADDs), the
seeming contradiction may indicate the difficulty in separating
the components of motivation and attention by performing DA
manipulations in operant tasks.

Clinical Implications and Considerations
The interrelated nature of motivation and attention may be
an asset to research as much as a liability, and cannabinoid
modulation of either may underline therapeutic targets for
both constructs. In the clinical context, DA/eCB interactions
may play a specialized role in ADHD patients to impact
both motivation and attention. Impaired activity in both
motivational and attentional networks typical in ADHD
patients are stabilized by pharmacologically increasing brain
DA concentration; furthermore, while cannabinoids generally
negatively affect measures of impulsivity and attention, they
uniquely enhance them in ADHD patients (Rubia et al., 2009;
Cooper et al., 2017). Commonalities between motivation and
attention in the preclinical setting may be found in the 5-
CSRTT and impulsivity’s translatability to compulsive behavior,
as cannabinergic regulation of this particular trait may be applied
to constructs other than attentional dysfunction. For example,
modulation of impulsivity through CB1 antagonism has been
correlated with decreases in both alcohol and nicotine intake
in rats, offering potential for therapies targeting eCB tone in
addiction-related disorders (De Bruin et al., 2011). DA’s role in

this broadly applicable trait is also noted. In humans, decreased
D2/D3 binding and increased d-amphetamine-induced striatal
DA release has been correlated with high levels of trait impulsivity
and drug cravings (Buckholtz et al., 2010). Strongly modulated
by both DA and eCBs, FSIs in the NAc are one candidate as
a mediator of impulsive behavior through DA/eCB interaction,
directly gating medium spiny neuron activity to regulate tracking
of reward-predicting cues and inhibit premature responding
(Caprioli et al., 2014; Wright et al., 2017; Pisansky et al., 2019;
Boroujeni et al., 2020).

Generalizing this example of impulsivity to other behavioral
components linked by motivation and attention, it is possible
to conceive of various constructs impacted by both, and in
turn, their susceptibility to eCB-modulated DA function. In this
sense, interrogation of DA/eCB interactions within substrates
known to modulate either motivation or attention might share
explanatory potential across translatable constructs, particularly
substance use disorders. Such studies may assess cannabinoid-
induced changes to motivational and attentional processes
through modifications of DA-mediated reward value signals,
which have been shown to influence both types of measures. Yet,
for clear dissociations between each measure, it will be important
to characterize the separate neural representations contributing
to their respective behavioral outputs. It is also important to note
that while distinct measures of motivation and attention have
been studied under conditions of cannabinoid exposure, there
remains much to be learned about how these measures overlap
within the context of DA/eCB interactions.
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