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Abstract  
Vimentin is a major type III intermediate filament protein that plays important roles in several 
basic cellular functions including cell migration, proliferation, and division. Although vimentin is a 
cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies 
have shown that vimentin may exert multiple physiological effects in different nervous system injuries 
and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on 
the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved 
motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein 
knockout (GFAP–/–VIM–/–) mice. However, attenuated glial scar formation in post-stroke in GFAP–/– 
VIM–/– mice resulted in abnormal neuronal network restoration and worse neurological recovery. 
These opposite results have been attributed to the multiple roles of glial scar in different temporal 
and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes 
axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of 
bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple 
pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. 
Compared with wild type mice, VIM–/– mice are less susceptible to bacterial infection and exhibit a 
reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis 
of meningitis. Recently published literature showed that vimentin serves as a double-edged sword 
in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. 
This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, 
gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving 
vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor 
progression, and enhancing nerve myelination.
Key Words: astrocytes; axonal regeneration; bacterial meningitis; glial scar; gliomas; nervous system 
diseases; peripheral nervous system injury; spinal cord injury; stroke; vimentin

Introduction 
Vimentin was the first member of the intermediate filament protein III 
coding genes to be cloned (Zehner and Paterson, 1983). Vimentin has been 
identified in the cells and tissues of many organs and has a molecular weight 
of approximately 57 kDa. Vimentin has mainly been described in a variety of 
cancers and immune system diseases in the past decades, and a large number 
of review articles have elaborated the role of vimentin in various cancers (Kidd 
et al., 2014; Chen et al., 2021). Other reviews have focused mainly on the role 
of vimentin in immunity (Kuna, 2012; Musaelyan et al., 2018) and on cellular 
functions (Ivaska et al., 2007; Patteson et al., 2020). Increasing findings have 
suggested that vimentin exerts diverse effects on nervous system injuries 
and diseases. The present review is aimed at elaborating on the biochemical 
cascade of vimentin and describing its implication in the pathological 
processes of diverse neurological diseases.

Vimentin knockout (VIM–/–) mice are ideal models used by researchers 
to investigate the functions of vimentin (Ridge et al., 2022). Through 
comprehensive analysis of the phenotypes of VIM–/– and wild-type (WT) 
mice, vimentin’s functional significance was easily explored. One of earliest 
and most profound studies on vimentin deficiency showed its ability to 
promote axonal regeneration after spinal cord injury (SCI). The lack of axonal 
regeneration in the injured central nervous system (CNS), especially in injured 
spinal cord, is closely related to the inhospitable environment formed by 
glial scar. Compared with WT mice, GFAP–/– VIM–/– mice exhibit significantly 
reduced glial reactivity and increased axonal sprouting of neurons as well as 
functional recovery (Menet et al., 2003). Lack of vimentin and GFAP could 
change the morphological features of reactive astrocytes by reducing glial scar 
formation, thereby creating an environment favoring axonal regeneration. 

In neural regeneration following SCI, vimentin might indirectly take part in 
determining axonal plasticity by influencing glial scar formation. However, 
other studies have found that the attenuated reactive astrocytes in GFAP–/– 
VIM–/– mice significantly reduced axonal regeneration and impaired normal 
neural plasticity. Increasing evidence suggests that reactive astrocytes limit 
neuroplasticity and neural regeneration in the CNS, and attenuated reactive 
astrocytes are also required for normal recovery of neuronal connection 
reconstruction in peri-infarct areas post-stroke (Liu et al., 2014; Aswendt et 
al., 2022). 

Although vimentin is a principally intracellular cytoskeletal protein involved 
in regulating cell stiffness, cell motility, and cytoplasmic organization, it can 
also appear within the extracellular matrix via secretion and at the surface 
of various cells, often in association with axonal plasticity, inflammation, 
and bacterial infection. For instance, extracellular vimentin released 
from astrocytes is regarded as a novel axonal regeneration facilitator, and 
recombinant vimentin exerts neurotrophic effects by promoting axonal 
extension after SCI (Shigyo and Tohda, 2016). Additionally, extracellular 
vimentin interacts with von Willebrand factor (VWF) to induce spontaneous 
platelet adhesion in the vascular lumen, leading to microthrombus formation 
and stroke pathology (Fasipe et al., 2018). At the cell surface, vimentin 
functions as a receptor or co-receptor for multiple pathogenic bacteria, 
including E. coli K1, L. monocytogenes, and group B streptococcus. Thus, cell 
surface vimentin is regarded as a central meningitis facilitator that mediates 
transport of multiple pathogenic bacteria across the blood-brain barrier 
(BBB), allowing them to colonize in the brain (Zou et al., 2006; Chi et al., 2012; 
Manzer et al., 2022).

Recently, the novel functions of vimentin in neural stem cells (NSCs) have 
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been found. These results showed that vimentin knockout NSCs had a 
reduced capacity to exit quiescence, and that quiescent NSCs recovered 
proteostasis through asymmetrical mitosis such that damaged proteins co-
segregate with vimentin. Thus, vimentin is a critical regulator of quiescence 
exit and protein clearance in NSCs. In addition, vimentin knockout in NSCs 
reduced the ability of NSCs to recover from increased levels of misfolded or 
polyubiquitinated proteins. Interestingly, vimentin knockout NSCs exhibited 
increased autophagy flux, suggesting that vimentin knockout NSCs are more 
reliant on increased levels of autophagy to clear aggregated proteins (Morrow 
et al., 2020). The current understanding of vimentin’s function is limited, and 
more research is needed to continue to characterize the potent biological 
roles of vimentin. These new findings warrant a further understanding and 
elucidation of the roles of vimentin in neurological studies.

This review presents the most recent studies and current understanding 
of vimentin functions in various nervous system injuries or diseases and 
discusses the possible therapeutic effects of vimentin manipulation in 
neurological function restoration and the clinical relevance of high vimentin 
expression in CNS disorders.

Search Strategy and Selection Criteria 
For the present review, the literature was searched using the following terms: 
“vimentin” AND “nervous system”; “vimentin” AND “neural stem cells” 
OR “NSCs”; “vimentin” AND “spinal cord injury” OR “SCI”; “vimentin” AND 
“stroke”; “vimentin” AND “glial scar” OR “astrocytic scar”; “vimentin” AND 
“meningitis”; “vimentin” AND “brain tumors”; “vimentin” AND “gliomas”; 
“vimentin” AND “peripheral nerve”; “vimentin” AND “Alzheimer’s disease” 
OR “AD”; “vimentin” AND “multiple sclerosis” OR “MS”. A PubMed literature 
search of articles published during the period mainly from January 2000 to 
April 2022 was conducted. The results were further screened by title and 
abstract, and only those studies exploring the relationship between vimentin 
and neurosciences were included to investigate the effects of vimentin in 
nervous system diseases.

Vimentin in Spinal Cord Injury
SCI can result from a variety of causes, including direct trauma, inflammation, 
infection, tumor or neurodegeneration. By far the most common causes of 
damage to the spinal cord are traumatic injuries (Fernández et al., 2022). 
Regarding traumatic spinal cord injuries, the injury site determines the 
different degrees of motion and sensory dysfunction. Generally, cervical level 
injuries and extreme severe trauma frequently result in serious neurological 
problems that cause respiratory depression, motor-sensory system deficiency, 
and seriously threaten the lifespan of victims (Korovessis et al., 2021). Many 
SCI patients are young and make up the main part of the workforce, so 
their permanent disability imposes a heavy burden. Additionally, current 
treatments fail to meet the expectation of SCI patients around the world. 
Therefore, explorations of the SCI-induced microenvironment are imperative. 
Accumulating evidence indicates that astrocytic scar formation is widely 
perceived as a physical and chemical barrier to axonal regeneration after SCI 
(Orr and Gensel, 2018; Raspa et al., 2021; Zhang et al., 2021). The underlying 
mechanisms for this phenomenon may be associated with the inhospitable 
local environment formed by astrocytic scar and inhibitor molecules secreted 
by reactive gliosis. 

Silence of vimentin and GFAP improves functional recovery after SCI
Vimentin, a major protein of the astrocyte cytoskeleton, and GFAP commonly 
contribute to glial scar formation. Vimentin is generally expressed in 
both the gray and the white matter of the spinal cord, and its levels are 
significantly increased after SCI, suggesting that vimentin may be involved 
in the pathogenesis of traumatic spinal cord. Early studies have found that 
silencing vimentin and GFAP alleviates over-proliferation of reactive astrocytes 
and promotes supraspinal axons regeneration, leading to neural circuit 
reconstruction and locomotor functional rehabilitation (Menet et al., 2003; 
Toyooka et al., 2011; Desclaux et al., 2015). Interestingly, only GFAP/vimentin 
double mutant mice exhibited remarkable functional restoration associated 
with reduced astrocyte reactivity after hemisection of the spinal cord. Single 
GFAP or vimentin mutant mice exhibited minimal alteration in astroglial 
response and acquired limited axonal sprouting (Menet et al., 2003). Glial 
scar acts as a firm wall that blocks spared axonal regrowth. Double vimentin 
and GFAP knockout reduced glial scar formation, which is beneficial for axonal 
regrowth (Zhang et al., 2021). Nevertheless, it is possible that vimentin 
and GFAP have some redundant functions in glial scar formation, and gene 
modification of either may not alter functional consequences. A separate 
study demonstrated that lentivirus-induced silencing of both GFAP and 
vimentin leads to an efficient reduction in astrogliosis, improves functional 
outcomes, and promotes spared axonal plasticity in a preclinical mouse model 
of SCI (Desclaux et al., 2015). Moreover, administration of atelocollagen 
combined with both GFAP and vimentin siRNA suppresses glial scar formation 
and improves acute urinary dysfunction caused by SCI. It can be inferred that 
RNAi against GFAP and vimentin might improve SCI-induced acute urinary 
dysfunction by downregulating intermediate filament proteins (Toyooka et al., 
2011). Normal urination, a result of bladder detrusor contraction and urethral 
sphincter relaxation, is controlled by both spinal and supraspinal circuitry. 
The coordination between the bladder detrusor and the urethral sphincter 
is interrupted by thoracic SCI, mainly because of the loss of white matter in 
the lateral and ventral funiculi, which includes ascending and descending 
micturition reflex fiber tracts. It is plausible that inhibition of glial activity in 

white matter surrounding the micturition reflex pathways is beneficial for 
residual neurons to bridge the gap of the nerve defects.

Combination strategies targeting vimentin to reduce glial scar formation 
represent potential methods to promote axonal extension and functional 
recovery. In rat models of hemisected spinal cord, a combination of 
retroviruses carrying antisense vimentin cDNA and Chondroitinase ABC 
(ChABC) reduces glial scar and cystic cavity formation (Xia et al., 2008). 
Further study by this group found that vimentin inhibition combined with 
ChABC also plays an important role in stimulating axon regeneration and 
locomotor function recovery (Xia et al., 2015). Together with their previous 
research, the combined treatment targeting vimentin implied a beneficial 
role in SCI repair, emphasizing the role of vimentin inhibition and ChABC in 
reducing glial scar and degrading chondroitin sulfate proteoglycan (CSPG), 
which are inhibitory molecules for axonal sprouting. At present, spinal 
injury scar is generally recognized as an inhibitor of axonal regeneration and 
impairs functional recovery (Figure 1). However, there has been some recent 
debate about whether spinal cord scar is good or bad for spinal cord repair 
(Bradbury and Burnside, 2019). Two different viewpoints could be interpreted 
two different ways. Although widely regarded as causal in restricting axonal 
extension, astrocytic scars play a protective role in separating healthy tissue 
from injured spinal cord. Meanwhile, Anderson et al. (2016) found that 
contrary to the prevailing viewpoint, glial scar formation is not a main cause 
for failure of SCI-induced injured axons to regenerate across central spinal 
cord lesions. Further studies will clarify the function of vimentin in SCI repair.

Figure 1 ｜ Astrocytic reactivity after SCI may play a detrimental role in neurological 
recovery.
Glial scar formation is detrimental to functional restoration after SCI. Glial scar within 
the traumatic spinal cord may be a physical and chemical barrier for nerve regeneration. 
Knockout of GFAP and vimentin reduces astrogliosis, which is beneficial for promoting 
spared axonal plasticity and functional recovery after SCI. GFAP: Glial fibrillary acidic 
protein; SCI: spinal cord injury; VIM: vimentin; WT: wild type.

Extracellular vimentin secreted by astrocytes is beneficial for axonal 
regeneration
In addition to the effect of vimentin on glial scar formation, the extracellular 
vimentin secreted by activated macrophages and reactive astrocytes has been 
investigated. Existing evidence has confirmed that extracellular vimentin is 
a novel neurotrophic factor that could promote the regrowth of axons and 
contribute to motor function rehabilitation following SCI (Shigyo and Tohda, 
2016). Denosomin, a novel compound, has been certified as a facilitator that 
increases the concentration of astrocyte-secreted vimentin, and this is closely 
linked to axonal regeneration in spinal cord-traumatic mice (Teshigawara 
et al., 2013). Another study from this group also showed that recombinant 
vimentin treatment enhances axonal growth and improves performance in 
motor function in SCI mice (Shigyo and Tohda, 2016). However, the signaling 
mechanisms of axonal regrowth arising from recombinant vimentin remain 
unclear. In order to elucidate these mechanisms, further studies found that 
recombinant vimentin, in a manner similar to insulin-like growth factor 
(IGF1), may function as a novel ligand that directly binds to insulin-like growth 
factor 1 receptor (IGF1R) to cause axonal regeneration in cultured cortical 
neurons (Shigyo et al., 2015). Many studies have shown that IGF1-IGF1R 
crosstalk contributes to neurite outgrowth. Additionally, the study above 
has shown that both IGF1 and extracellular vimentin significantly promote 
phosphorylation of IGF1R. In other words, the extracellular vimentin-IGF1R 
signaling pathway may exert a similar effect as the IGF1-IGF1R signaling 
pathway in enhancing axonal regeneration. Notably, inhibition of intermediate 
filament proteins, such as vimentin and GFAP, could promote axon extension 
by reducing the formation of glial scar after SCI. However, recombinant 
vimentin treatment is associated with neurite outgrowth. The reasons why 
intracellular and extracellular vimentin play different roles in axonal regrowth 
remain unclear. It is unlikely that intracellular vimentin is involved in glial scar 
formation but rather that extracellular vimentin functions as a ligand that 
interacts with IGF1R to promote axonal plasticity. Therefore, further studies 
are needed to explore the relationship between intracellular and extracellular 
vimentin, and intelligent regulation of vimentin may provide a potential 
axonal regrowth strategy (Shigyo et al., 2015).
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Vimentin in Stroke 
Stoke, which is also known as cerebrovascular accident, is attributed to 
interrupted brain blood supply, usually due to blood vessel hemorrhage or 
blockage. Disruptions in oxygen and nutrient supply due to reduced blood 
flow cause brain tissue damage. At present, stroke has become a serious issue 
worldwide and is associated with prominent morbidity and mortality. Reports 
of vimentin in connection with stroke mainly focus on its role in astrocytic 
reactivity. The effect of reactive astrocytes post-stroke remains controversial, 
despite several reports (Liu et al., 2014). Stroke-induced astrocyte activation 
may exert both detrimental and beneficial roles under certain temporal and 
spatial conditions (Huang et al., 2018; Daidone et al., 2021; Wen et al., 2021). 
For instance, the expression of inhibitory molecules on reactive astrocytes is 
inextricably linked to a reduction in axonal regeneration. However, astrocytic 
scar may also separate damaged sites from intact tissue, preventing healthy 
tissue from uncontrolled cascade reactions (Faulkner et al., 2004). Moreover, 
reactive astrocytes may also alleviate neuronal damage due to ischemic stress 
due to its ability to secrete numerous neurotrophic factors (Jiao et al., 2020).

Absence of vimentin and GFAP impairs neurological recovery after ischemic 
stroke
Existing evidence indicates that astrocytic reactivity after stroke may play 
a protective role in neurological recovery (Liu et al., 2014; Liu and Chopp, 
2016; Aswendt et al., 2022). Seven days after ischemic stroke induced by 
middle cerebral artery occlusion, GFAP–/–VIM–/– mice exhibited enlarged 
infarct volume, 2.1–3.5 fold larger than that of WT mice, suggesting a 
protective role of reactive astrocytes (Li and Murphy, 2008). However, there 
was no significant difference in infarct size between GFAP–/–VIM–/– and WT 
mice after ischemic stroke induced by cortical photothrombosis. Liu et al. 
(2014) reported that similar cerebral infarct volume induced by the Rose 
Bengal technique was generated in WT and GFAP–/–VIM–/– mice. As expected, 
research demonstrated that attenuated reactive astrocytes in GFAP–/–VIM–/– 
mice delayed or impaired functional recovery by increasing CSPG expression, 
reducing corticospinal tract (CST) axonal length, and decreasing peri-
lesion astrocyte density. Compared with WT mice, the expression of CSPG 
was significantly increased in the cortical area at the outer ischemic lesion 
boundary zone and in the contralesional cerebral hemisphere in GFAP–/–

VIM–/– mice. CSPG is an inhibitory protein secreted by reactive astrocytes that 
prevents axonal regeneration (Liu et al., 2014). Thus, the reduced CST axonal 
regeneration in GFAP–/–VIM–/– mice may in part be attributed to increased 
CSPG expression (Figure 2). 

are no surviving neurons in the ischemic infarct tissue, it is unnecessary to 
promote nerve regeneration across the scar into the infarct area. By contrast, 
adjacent glial scar seems likely to play a beneficial role in improving functional 
recovery by protecting heathy tissue from ischemic infarcted tissue. Thus, it 
is not necessary to promote neurite extension across the glial scar and into 
the infarcted lesion. Collectively, reactive astrocytes play various roles with 
different effects on neuronal regrowth in SCI and stroke. Thus, instead of 
inhibition, adaptive modulation of reactive astrocytes within the correct time 
window may be a promising strategy for enhancing functional restoration 
after ischemic stroke. 

Vimentin is associated with stroke pathology  
Extracellular vimentin also participates in the pathogenesis of ischemic stroke. 
Endothelium surface vimentin binds to the A2 domain of newly released 
VWF strings in the vascular lumen (Da et al., 2014), which may lead to 
thrombogenesis and thereby cause stroke (Wieberdink et al., 2010). Briefly, 
vimentin/VWF interaction leads to the onset of ischemic stroke. Therefore, 
the targeted destruction of vimentin/VWF interactions can decrease injury 
due to ischemia reperfusion. To investigate the effects of vimentin in VWF 
string formation, cerebral arteries from WT and vimentin knockout mice were 
isolated to perform pressure treatment and histamine was used to activate 
endothelium and induce VWF string formation. Notably, less VWF string 
formation occurred in the pressurized cerebral artery of vimentin knockout 
mice compared with WT mice. In addition, VWF strings were significantly 
decreased in the presence of anti-vimentin antibodies and recombinant A2 
protein in histamine-stimulated human umbilical vein endothelial cells (Fasipe 
et al., 2018). These findings demonstrate an important role of extracellular 
vimentin in VWF string formation via binding with the A2 domain and 
restricting vimentin/VWF interaction, which may improve reperfusion after 
ischemic stroke. 

In addition, a recent study has found that high vimentin is strongly related to 
the incidence of ischemic stroke (Xiao et al., 2021). Xiao et al. (2021) carried 
out a prospective study to investigate the relationship between vimentin 
in serum and stroke incidence in the Malmö Diet and Cancer Cohort. The 
results showed that high plasma levels of vimentin and carotid plaque 
are both associated with a higher risk of ischemic stroke. One potential 
explanation of this relationship might be associated with the role of vimentin 
in atherosclerosis (Håversen et al., 2018; Gong et al., 2019). An earlier study 
suggested that elevated serum levels of secretory vimentin in patients are 
associated with coronary artery disease. In ApoE knockout mice, recombinant 
vimentin significantly promotes atherogenesis, which is one of the 
principal causes of stroke (Gong et al., 2019). Thus, vimentin may promote 
atherosclerosis and thereby induce stroke. Collectively, high vimentin is 
closely associated with stroke pathology, especially in individuals with carotid 
plaque. However, it is unclear whether high vimentin results in increased 
stroke incidence by promoting atherogenesis.

Vimentin in Bacterial Meningitis 
Bacterial meningitis is an acute infectious CNS disease with rapid onset, 
epidemic potential and high case-fatality rate (Lorton et al., 2018). 
Unfortunately, 50% of bacterial meningitis survivors are left with some type 
of neurological or neuro-behavioral sequelae (Jumanne et al., 2018). The 
common mechanisms underlying the pathogenesis of bacterial meningitis 
include bacterial colonization and invasion of the mucosal barrier in the 
nasopharynx and survival and multiplication of bacteria in the bloodstream 
that penetrate the BBB and invade into the CNS (Travier et al., 2021; Tsang, 
2021; Wall et al., 2021). 

Cell surface vimentin interacts with multiple bacterial pathogens in the 
pathogenesis of meningitis
Escherichia coli K1 (E. coli K1), a common gram-negative bacteria, usually 
causes meningitis during the neonatal period (Huang et al., 2000). Research 
has indicated that the IbeA gene produced by E. coli K1 is a virulence factor 
that binds with human brain microvascular endothelial cell (HBMEC) surface 
vimentin to form a IbeA-vimentin interaction. The main domain of HBMECs 
surface vimentin and middle region of IbeA (271–370 residues) act as binding 
sites for the IbeA-vimentin interaction (Zou et al., 2006). Hence, vimentin is 
involved in the pathological process of bacterial meningitis.

In addition to vimentin acting as a primary receptor, studies published in 2012 
showed that polypyrimidine tract-binding protein (PTB)-associated splicing 
factor (PSF) acts as a co-receptor that plays a cooperative role in IbeA-induced 
E. coli K1 invasion (Chi et al., 2012). The NF-κB signaling pathway, which was 
previously identified as a master regulator of innate immunity, is activated 
in cerebrospinal fluid cells in patients with meningitis and in epithelial cells 
with Neisseria meningitidis invasion (Griffiths et al., 2007). Chi et al. (2012) 
found that two IbeA-binding proteins, the primary receptor vimentin and 
the co-receptor PSF, are required to activate the NF-κB signaling pathway in 
IbeA+ E. coli K1 meningitis infection. Vimentin can form a complex with NF-
κB during cell arrest, but the complex dissociates IbeA stimulation. Vimentin 
and PSF are required for IbeA+ E. coli K1-induced activation and translocation 
of NF-κB, which subsequently upregulate the expression of vimentin and 
proinflammatory factors that result in bacterial infections (Chi et al., 2012). 
Moreover, the first in vivo study has verified that vimentin-dependent 
mechanisms underlie the triad of pathogenic features in E. coli meningitis. 
These results suggest that vimentin deficiency is a favorable factor protecting 
neonatal mice from E. coli K1-induced bacterial meningitis and inhibiting the 
inflammatory response in CNS (Huang et al., 2016). 

Figure 2 ｜ Astrocytic reactivity after stroke may play a beneficial role in neurological 
recovery.
Glial scar formation is beneficial to behavioral restoration after stroke. Attenuated 
astrocytic reactivity in GFAP–/–VIM–/– does not affect infarct volume. CSPG is increased in 
the cortical area at the outer ischemic lesion boundary zone and in the contralesional 
cerebral hemisphere in GFAP–/–VIM–/– mice. As an inhibitor of axonal regeneration, 
increased CSPG secreted by reactive astrocytes partly contributes to reduced axonal 
regeneration. CSPG: Chondroitin sulfate proteoglycan; GFAP: glial fibrillary acidic protein; 
VIM: vimentin; WT: wild type.

In a recent study of stroke-induced changes in GFAP–/–VIM–/– mice, decreased 
astrocytic reactivity impaired normal sensorimotor network recovery and 
induced new neural connections as well as altered neural regeneration 
responses around the infarct area. These findings suggest that stroke-induced 
astrocytic reactivity is necessary for axonal regeneration and optimal neuronal 
network reorganization (Aswendt et al., 2022). However, there are still many 
questions concerning reactive gliosis in stroke and SCI to be answered. 
First, glial scar formation in cerebral infarction leads to enhanced functional 
recovery after stroke; but glial scar formation is detrimental to functional 
restoration after SCI (Liu et al., 2020). When SCI-induced glial scar is formed, 
it may be a physical and chemical barrier for nerve regeneration that impedes 
regeneration of descending nerve fibers into the injured site, which leads to 
loss of connections with remaining neurons in the damaged site (Wilhelmsson 
et al., 2004). Thus, attenuated glial scar in injured spinal cord may have 
a beneficial role in facilitating neurite extension and functional recovery. 
Unlike SCI-induced glial scar, stroke-induced reactive gliosis around areas of 
infarct may not be a barrier for neurogenesis. Owing to the fact that there 
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The role of vimentin in inflammation in bacterial meningitis
In addition to E. coli K1, L. monocytogenes may also disrupt the integrity of 
the BBB and lead to threatening meningitis and encephalitis. Ghosh et al. 
(2018) found that the L. monocytogenes surface protein, InlF, could interact 
with host cell surface vimentin to colonize the brain. However, vimentin 
absence contributes to severely compromised L. monocytogenes colonization 
in the mice brain. Notably, vimentin is a central meningitis factor that 
mediates the penetration and destruction of the BBB and colonization of 
the brain by multiple bacterial pathogens. Similarly, Deng et al. (2019) also 
found that host cell vimentin interacts with the group B streptococcal surface 
antigen I/II protein, BspC, to facilitate colonization in the brain endothelium 
and CNS inflammation during the pathogenesis of Group B Streptococcus 
(GBS) meningitis. In a mouse model of hematogenous meningitis, vimentin 
knockout mice were significantly less susceptible to GBS infection, resulting in 
a reduced inflammatory response. Recent data indicate that the BspC variable 
domain is the binding site of vimentin (Manzer et al., 2022). Conclusively, 
the interaction of BspC-vimentin is crucial in GBS adherence to the BBB 
and promotes the pathogenesis of GBS meningitis. However, the role of 
vimentin in inflammation is unclear. Thus, their lab further explored the roles 
of vimentin in mediating the inflammatory response during GBS meningitis. 
The results demonstrated that vimentin plays a direct role in mediating 
the expression of chemokines, and that vimentin regulates the activity of 
nucleotide-binding oligomerization domain containing protein 2 in HBMEC, 
which is a classical activator of the NF-κB signaling pathway. Additionally, 
localized disruption of vimentin by withaferin-A (WFA) ameliorates chemokine 
activation (Villarreal et al., 2021).

Collectively, existing evidence shows that vimentin is mainly involved in the 
pathogenesis of meningitis at the level of the host cell surface receptors and 
mediates the crossing of pathogenic bacteria across the BBB and colonization 
in the brain by binding with surface ligands of a variety of pathogenic bacteria, 
causing meningitis. Blocking this receptor-ligand interaction might represent a 
promising strategy for preventing bacterial meningitis.

Vimentin in Gliomas 
Gliomas are the most prevalent and malignant primary brain tumors of the 
CNS. They mainly emanate from neuroglial progenitor cells and develop into 
oligodendroglioma, oligoastrocytoma, astrocytoma, or ependymoma (Na et 
al., 2012; Ostrom et al., 2018). Glioblastoma multiforme (GBM) is the most 
common grade IV glioma, accounting for about 50% of glioma cases. GBM is 
highly invasive, well vascularized, and deadly, with a 5-year survival rate of less 
than 5%. The current gold standard therapy of GBM consists of fractionated 
radiotherapy and temozolomide (TMZ) and was implemented more than a 
decade ago. Unfortunately, this therapy represents only a palliative treatment 
for patients, and the average survival time after diagnosis is 14 months. 
Recently, vimentin, a pro-invasive tumor marker, was shown to be closely 
linked with malignant glial cell invasion (Van Meir et al., 2010). However, the 
definite mechanism of vimentin action in GBM is still unknown.

High vimentin is associated with the poorer outcomes in gliomas and TMZ 
resistance
Early studies have found that the expression of vimentin is relevant to the 
progression and outcome of glioblastoma. Compared with those patients 
with low vimentin expression, a significantly shorter overall survival and 
a poorer outcome has been observed in glioblastoma patients with high 
vimentin expression (Zhao et al., 2018). Several studies have demonstrated 
that vimentin is a canonical epithelial-mesenchymal transition marker, that 
is frequently expressed in various cancer types, including lung cancers (Al-
Saad et al., 2008; Dauphin et al., 2013), oral squamous cell carcinoma (Islam 
et al., 2000), prostate cancer (Steinmetz et al., 2011), breast cancer (Chen 
et al., 2008), malignant melanoma (Li et al., 2010), and brain tumors (Satelli 
and Li, 2011). There is sufficient evidence to support the use of vimentin as 
a pro-invasion molecular marker, making it widely considered as a potential 
therapeutic target for GBM.

To further explore the effect of vimentin suppression in GBM cells, WFA, an 
inhibitor targeting vimentin protein, was used to treat human glioblastoma 
cell lines, U251 and U87. In both U251 and U87 cells, WFA exhibits a negative 
effect on proliferation at micromole doses that inhibit the ability of migration 
and invasion. Therefore, it is reasonable to presume that the anti-GBM effects 
were attributed to WFA-induced vimentin degradation (Zhao et al., 2018). 
Another study also indicated that high vimentin expression correlates with 
shorter survival time in high-grade glioma patients, which is in accordance 
with the previous data analysis. 

In addition, vimentin takes part in TMZ resistance, and high vimentin 
expression might counteract TMZ treatment efficacy (Lin et al., 2016). TMZ is 
a widely approved chemotherapy agent for GBM treatment (Messaoudi et al., 
2015). Moreover, vimentin expression is strongly associated with the efficacy 
of TMZ chemotherapy. In low vimentin expression groups, patients treated 
with TMZ had better overall survival rates and progression-free survival 
than patients without TMZ treatment. However, in high vimentin expression 
groups, no significant survival benefit was observed in patients with or 
without TMZ treatment.

The 86C-vimentin complex can inhibit GBM progression
As mentioned above, vimentin plays a crucial role in the epithelial 
mesenchymal transition, proliferation and invasion. However, the exact roles 
of cell surface vimentin (CSV) are still unclear. Noh et al. (2016) described a 

novel monoclonal antibody (mAb), 86C, which can target CSV-activated rapid 
internalization of the 86C-vimentin complex. Once onto the GBM cells, the 
86C-vimentin complex activates apoptosis signaling, leading to apoptosis 
in vitro and inhibiting GBM progression in vivo. It was demonstrated that 
CSV-specific 86C mAb therapy may increase caspase-3 activity, making 
it a promising therapeutic target (Noh et al., 2016). Glioma stem cells 
(GSCs) are attractive candidate targets for anti-cancer therapy, owning to 
the fact that tumor initiation and recurrence are closely associated with 
GSCs. Destruction of GSCs is key to prolonging the survival of GBM patients 
(Singh et al., 2003). This group continues to characterize novel multifarious 
biological roles for CSV-targeted mAb 86C. The results found that 86C, 
acting as a TMZ chemosensitizer, could reverse GSCs chemoresistance. The 
combination of TMZ and 86C exerts better anti-tumor effects than TMZ 
alone in most GSCs lines. The synergistic anti-tumor effect of TMZ and 86C 
was further investigated in a GBM mouse model. The TMZ + 86C-treated 
mice survived longer than those treated with either drug alone (Noh et al., 
2018). In addition to interacting with 86C, vimentin has been found to be a 
Nogo receptor (NgR) regulator. NgR maturation plays a role in inhibiting the 
migration and invasion of human glioma cells. The interaction between NgR 
and vimentin may suppress NgR maturation. Hence, vimentin knockdown may 
suppress GBM migration and invasion by promoting maturation of NgR (Kang 
et al., 2019). Collectively, vimentin is considered to be a promising glioma 
biomarker and target for GBM treatment. 

Vimentin in Peripheral Nervous System Injury 
The peripheral nervous system (PNS) is indispensable for various physiological 
functions and behaviors that connect organs and the CNS. Common 
approaches for modulating peripheral nerve activities include surgery, 
pharmacology, and electrical stimulation (Chang, 2019). Although existing 
neuromodulation approaches promote peripheral nerve repair and are 
currently used in animal research and human therapies, its curative effect 
is poor because the PNS is highly intricate and heterogenous. Reports of 
vimentin in connection with peripheral nerve injury mainly focus on its role in 
negatively regulating myelination.

Vimentin negatively regulates myelination by interacting with TACE
Myelin thickness is essential for proper action potential propagation along 
axons and for structural integrity. Frequently, peripheral nerve injuries are 
characterized by impaired myelin thickness, which may lead to secondary 
damage in the axon. Triolo et al. (2012) found that vimentin acts as a negative 
regulator of myelination and neuregulin 1 (NRG1) type III. Compared with 
control fibers, the nerve fibers in vimentin-null mouse were thicker when 
assessed using electron micrographs. Additionally, hypermyelination in 
vimentin-null mice may be due to increased levels of NRG1 type III. In fact, 
tumor necrosis factor-α-converting enzyme (TACE) may convert the active 
form of NRG1 to the resting form, thus acting as a negative regulator of 
myelination (Hu et al., 2006; La Marca et al., 2011). In order to investigate 
whether vimentin exerts a synergistical role with TACE in inducing 
hypermyelination, double heterozygous Vim+/–Tace+/– mouse nerves were 
compared to control nerves. Of note, the protein level of myelin basic protein 
was significantly increased and hypermyelination was observed in double 
heterozygous mice (Triolo et al., 2012). It was demonstrated that vimentin 
interacts with TACE to regulate NRG1 type III and myelination.

MiR-138-5p negatively regulates vimentin and inhibits Schwann cell 
migration and proliferation  
Early research found that upregulated vimentin expression enhances the 
ability of Schwann cells (SCs) to guide and promote axon regeneration after 
sciatic nerve injury (Perlson et al., 2005; Berg et al., 2013). SCs are the 
main glial cells of the PNS and play an important role in guiding peripheral 
nerve regeneration. Indeed, following injury, SCs and macrophages begin to 
clean debris at the injured site. In addition, SCs from distal sites proliferate 
and migrate to the injured site and form a framework to guide nerve 
regeneration. Eventually, the regenerated nerve fiber reinnervates its targets, 
and SCs remyelinate the regenerated axon (Abe and Cavalli, 2008). Sullivan 
et al. (2018) found that an increase in miR-138-5p decreases vimentin 
expression in SCs, and the 3′UTR of vimentin is a direct target of miR-138-
5p. It is worth mentioning that low levels of miR-138-5p have been observed 
in the regenerated nerve, particularly at the time when SC migration peaks. 
Based on this, a potential mechanism of vimentin in regulating peripheral 
nerves became clear: the decreased expression of miR-138-5p facilitates the 
expression of vimentin, which is beneficial to SC migration (Sullivan et al., 
2018). However, an early study found that vimentin is a negative regulator 
of myelination (Triolo et al., 2012). It is possible that SC migration inhibits 
myelination.

LncRNA BC088259 directly binds with vimentin to promote SC migration
Previously, it was verified that lncRNA BC088259 affects neurite outgrowth 
(Yu et al., 2013). A recent study demonstrated that lncRNA BC088259 directly 
binds with vimentin to promote SC migration after peripheral nerve injury. The 
expression of lncRNA BC088259 was high 4 days following sciatic nerve injury, 
mainly within SCs. Both in vivo and in vitro lncRNA BC088259 expression 
promote SC migration, and decreased expression of vimentin inhibits SC 
migration. To investigate the interaction between lncRNA BC088259 and 
vimentin, rescue experiments were performed. After the expression of 
vimentin was downregulated by siRNA technology, the migration ability of SCs 
decreased, followed by the overexpression of BC088259 and recovery of the 
migration ability of SCs. These data suggest that BC088259 may regulate the 
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migration of SCs through vimentin (Yao et al., 2020).

In summary, vimentin affects SC migration and myelin sheath formation in 
peripheral nerves and is also regulated by other factors, such as miRNAs 
and lncRNAs. These studies provide a new potential therapeutic target for 
peripheral nerve injury and contribute to understanding the molecular 
mechanisms of peripheral nerve injury.

Vimentin in Other Neurological Diseases
Vimentin participates in the neuronal damage-response mechanism of 
Alzheimer’s disease
Alzheimer’s disease (AD), a neurodegeneration disease, is the most common 
cause of dementia affecting elderly people worldwide (Quiroz et al., 2020). 
The role of vimentin in AD requires further elucidation. Previous study has 
found that human and mouse brains express vimentin in response to damage 
and/or disease. In addition, neuronal vimentin expression is positively 
correlated with amyloid deposition in AD brains. The role of vimentin in 
neuronal damage-response mechanisms can be roughly summarized as 
follows. In the initial pathological event, damage in neurons causes synaptic 
disruption and dendrite retraction. After several hours or several days, the 
neuron expresses and transports vimentin to the damaged dendrite where 
it participates in neuron repair (Levin et al., 2009). At present, there are still 
many questions to be answered regarding the increase in vimentin and GFAP 
around amyloid plaques in AD. The functions of upregulated vimentin in AD 
are still unclear (Kamphuis et al., 2015).

Vimentin is a 14-3-3 protein-interacting protein, which is expressed in 
reactive astrocytes in demyelinating lesions of multiple sclerosis
Multiple sclerosis (MS) is an autoimmune disease of CNS in which 
T lymphocytes cross the BBB, resulting in demyelination and axonal 
degeneration (Lassmann, 2018). Early studies found that the 14-3-3 protein 
acts as an adaptor to connect vimentin and GFAP in reactive astrocytes at the 
site of demyelinating lesions in MS. Vimentin is heavily expressed in reactive 
astrocytes found in the demyelinating lesions of MS, and vimentin is one of 
the 14-3-3 protein-interacting proteins found in cultured human astrocytes 
(Satoh et al., 2004). These observations suggest that the 14-3-3 protein may 
bundle vimentin and GFAP in the same assembled filaments. Compared with 
resting astrocytes, the proteins highly expressed in reactive astrocytes and the 
14-3-3 protein require more effort to regulate the coordination of vimentin 
and GFAP. However, the functions of vimentin in AD and MS remain unclear 
and deserve further study. 

Discussion
Vimentin is a multifunctional protein involved in multiple nervous system 
injuries and diseases
The aim of this review is to provide an overview of the current knowledge 
of vimentin in nervous system injuries and diseases, including SCI, stroke, 
bacterial meningitis, glioma, and PNS injury. From the above studies, it is 
evident that vimentin, a multifunctional protein, interacts with numerous 
factors involved in the pathogenesis of nervous system injuries or diseases 
(Table 1). However, the exact mechanism of vimentin deserves further 
investigation.

The brief summary of vimentin in nervous system injuries or diseases
After spinal cord injury and stroke, vimentin is overexpressed, resulting in glial 
scar formation. Several studies have shown that glial scar formation severely 
affects neurogenesis (Menet et al., 2003; Liu et al., 2014; Aswendt et al., 
2022). Reactive astrocytes not only impair axonal regrowth following SCI but 
also have beneficial roles in improving normal neural plasticity and neuronal 
connection reconstruction after stroke (Aswendt et al., 2022). Studies 
continue to elucidate the similar and different roles of SCI-induced and stroke-
induced glial scar in future. In addition, vimentin has been proposed to serve 
as a potential biomarker for the progression of stroke and brain tumors and as 
a possible therapeutic molecular target in multiple nervous system disorders. 
Until now, the exact mechanisms of vimentin involvement in the onset of 
disorders and neural repair after injury are not entirely clear, but it is evident 
that vimentin is a multifunctional protein involved in scar formation, axonal 
regeneration, the inflammatory response, and apoptosis activation. 

In the majority of tumors, vimentin is overexpressed. For instance, in brain 
tumors, high vimentin expression is regarded as an important marker 
of poor prognosis (Zhao et al., 2018). Interestingly, brain tumor-related 
and meningitis-related studies have mostly addressed the functions of 
cell surface vimentin, while the functions of intracellular or extracellular-
associated vimentin remain unclear. Additionally, vimentin not only promotes 
the migration of SCs but also inhibits myelination. There is a possibility 
that SC migration might inhibit myelination (Triolo et al., 2012). Therefore, 
understanding the mechanism of vimentin regulation may contribute to a 
better understanding of various nervous system injuries and diseases.

Limitations of review
There are two major limitations in this review. First, this review only included 
studies on the roles of vimentin in some common neurological diseases and 
the functions of vimentin in other nervous system diseases deserves to be 
further summarized. Second, the exact role of vimentin in nervous system 
injuries and diseases is still unknown. Because vimentin is a cytoskeletal 
protein involved in several basic cellular functions, its potential roles in 
pathologic processes of neurological diseases are easily neglected. 

Conclusions and perspectives
While current knowledge on the functions of vimentin has recently increased, 
this knowledge is just the tip of the iceberg and further studies are needed to 
better understand the novel functions of vimentin in neurological diseases. 
Vimentin is a predominantly cytoskeletal protein that plays important roles 
in basic cellular processes, such as cell migration, proliferation, and division. 
Therefore, vimentin has complicated implications in the pathophysiology 
of various neurological diseases. In view of the available data, implications 
that vimentin plays an important role in nervous system diseases provides 
us with a novel biomarker and therapeutic target. How to accurately assess 
disease progression and ensure the stability and specificity of vimentin as a 
serum marker of disease remains an objective of research efforts. In addition, 
because vimentin may serve as a therapeutic target of multiple meningitis 
pathologies and gliomas, interfering with the vimentin cascade may delay 
or inhibit the processes of brain tumors and meningitis. Most importantly, 
developing multi-targeted therapies that target vimentin may enhance 
treatment outcomes; however, current studies using these strategies are at 
the experimental stage. Hence, how to fully utilize vimentin, how to further 
improve the therapeutic effects of therapies targeting vimentin, and how 
to achieve effective treatment in nervous system diseases remain topics of 
further studies. 
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Table 1 ｜ The roles of vimentin in diverse nervous system injuries and diseases

Disease The functions of vimentin References

Spinal cord injury (1) Both of vimentin and glial fibrillary acidic 
protein involve in the formation of glial scar 
which is regarded as a barrier to inhibit 
axonal regeneration.

Desclaux et al., 
2015

(2) Extracellular vimentin is a novel ligand of 
insulin-like growth factor 1 receptor (IGF1R) 
in enhancing axonal regeneration.

Shigyo et al., 2016 

Stroke (1) Both of vimentin and glial fibrillary acidic 
protein involve in the formation of astrocytic 
scar which is beneficial to neurological 
recovery by axonal regeneration and optimal 
neuronal network reorganization.

Liu et al., 2014; 
Aswendt et al., 2022

(2) Vimentin/Von Willebrand factor (VWF) 
interaction easily results in microthrombus 
formation and the onset of ischemic stroke.

Fasipe et al., 2018

(3) High vimentin is positively associated with 
the risk of ischemic stroke 

Xiao et al., 2021

Bacterial meningitis Cell surface vimentin functions as a primary 
receptor interacts with multiple bacterial 
pathogens (E. coli K1, Listeria monocytogenes 
and group B streptococcal) to involve in the 
pathological process of bacterial meningitis.

Zou et al., 2006;  
Chi et al., 2012; 
Manzer et al., 2022

Gliomas (1) The expression of vimentin is relevant to 
progression and outcome of glioblastoma. 

Zhao et al., 2018

(2) The expression of vimentin is closely 
related to anti-GBM drug resistance.

Lin et al., 2016

(3) The 86C-vimentin complex could 
activate apoptosis signal pathway, resulting 
in apoptosis in vitro and inhibition of 
glioblastoma multiforme (GBM) progression 
in vivo.

Noh et al., 2016

Peripheral nervous 
system injury  

(1)  Vimentin is a negative regulator of 
myelination by interaction with tumor 
necrosis factor-α-converting enzyme (TACE). 

Triolo et al., 2012

(2) The upregulated vimentin expression 
could enhance the ability of Schwann cells in 
guiding and promoting regenerate axons.

Berg et al., 2013

(3) MiR-138-5p negatively regulates vimentin 
and inhibits Schwann cells migration and 
proliferation. 

Sullivan et al., 2018

(4) LncRNA BC088259 directly binds with 
vimentin to promote Schwann cells migration

Yao et al., 2019
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