1	Herpes Simplex Virus 1 Envelope Glycoprotein C Shields
2	Glycoprotein D to Protect Virions from Entry-Blocking Antibodies
3	McKenna A. Hull, Suzanne M. Pritchard, and Anthony V. Nicola
4	Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine,
5	Washington State University, Pullman, WA, USA
6	
7	
8	
9	
10	
11	
12	
13	
14	Running title: HSV gC SHIELDS VIRIONS FROM gD ANTIBODIES
15	
16	
17	
18	
19	
20	
21	Address correspondence to Anthony V. Nicola, anthony.nicola@wsu.edu
22	

23 Abstract

Herpes simplex virus 1 (HSV-1) gD interaction with the host cell receptor nectin-1 24 25 triggers the membrane fusion cascade during viral entry. Potent neutralizing antibodies to gD 26 prevent receptor-binding or prevent gD interaction with gH/gL critical for fusion. HSV has many 27 strategies to evade host immune responses. We investigated the ability of virion envelope gC to 28 protect envelope gD from antibody neutralization. HSV-1 lacking gC was more sensitive to 29 neutralization by anti-gD monoclonal antibodies than a wild type rescuant virus. gD in the HSV-1 gC-null viral envelope had enhanced reactivity to anti-gD antibodies compared to wild type. 30 31 HSV-1 Δ gC binding to the nectin-1 receptor was more readily inhibited by a neutralizing anti-gD 32 monoclonal antibody. HSV-1 Δ gC was also more sensitive to inhibition by soluble nectin-1 33 receptor. The viral membrane protein composition of HSV-1 ΔgC was equivalent to that of wild 34 type, suggesting that the lack of gC is responsible for the increased reactivity of gD-specific antibodies and the consequent increased susceptibility to neutralization by those antibodies. 35 36 Together, the results suggest that gC in the HSV-1 envelope shields both receptor-binding domains and gH/gL-interacting domains of gD from neutralizing antibodies, facilitating HSV 37 38 cell entry.

39

40 Importance

HSV-1 causes lifelong infections. There is no vaccine and no cure. Understanding HSV
immune evasion strategies is an important goal. HSV-1 gC is a multi-functional envelope
glycoprotein. This study suggests that virion gC physically shields neighboring gD from
antibodies, including neutralizing monoclonal antibodies. This mechanism may allow HSV to
escape immune detection, promoting HSV infection in the host.

46

47 Introduction

48	Herpes simplex virus 1 (HSV-1) is a ubiquitous pathogen that is estimated to affect 90%
49	of adults worldwide (1). Typical symptoms include recurrent oral or genital lesions. Infection is
50	lifelong and there is no vaccine (2). Grave outcomes of HSV infection include encephalitis,
51	blindness, and disseminated infections of the immunocompromised (3, 4). The high prevalence
52	and persistence of HSV is partly due to immune evasion strategies employed by the virus.
53	HSV-1 glycoprotein C (gC) is a multifunctional 511 amino acid, type 1 membrane
54	glycoprotein present in the virion envelope and on the surface of infected cells (5). gC is specific
55	to the alphaherpesviruses. Virion envelope gC functions in viral entry into host cells (6-9). gC
56	also plays roles in immune evasion and has been a focus of HSV vaccine strategies (10-18).
57	Virion gC protects gB from antibody-mediated neutralization (13, 15). Here we investigate the
58	ability of gC to shield the HSV receptor-binding protein gD.
59	HSV-1 glycoprotein D (gD) is a 369 amino acid type I envelope glycoprotein (19). Host
60	cell receptors nectin-1 and HVEM bind to the same face of gD, near the C-terminus of the gD
61	ectodomain (Fig. 1), but at distinct sites (20-29). Binding of gD to a cognate receptor triggers the
62	movement of the C-terminal extension, revealing receptor contact sites on the core. The receptor-
63	triggered structural change in gD is thought to initiate the membrane fusion cascade by
64	promoting interaction with gH/gL (30-36). HSV-1 gD is the major target of neutralizing
65	antibodies and is a prime target for vaccine development (37, 38). MAbs to gD can block HSV
66	entry by preventing binding to host cell receptors or can block fusion with no effect on receptor
67	binding.

In this study, we provide evidence that gC protects gD from antibody recognition of
neutralizing epitopes. The envelope glycoproteins of several viruses protect themselves from
antibody neutralization (39-42). The results support a unique viral immune protection
mechanism whereby HSV-1 gC shields distinct neighboring glycoproteins from entry-blocking
antibodies.

A						
	MAb	gD Domain	Neutralizes HSV-1	Epitope includes residues	Mechanism of Neutralization	Reference
	MC23	la	Yes	213, 216	Blocks binding to nectin-1	45
	DL11	lb	Yes	38, 132, 140, 222- 224	Blocks binding to HVEM and nectin-1	24, 27, 71, 72
	MC14	lla	No	262-272	-	45
	DL6	llb	No	272-279	-	73, 74
	MC5	ш	Yes	75-79	Blocks interaction with gH/gL	45
	1D3	VII	Yes	10-20	Blocks binding to HVEM	12, 27
	H170	VII	Yes	1-23	Blocks binding to HVEM	75, 76, 77

в

73

- r5 ectodomain (PDB accession number 2C36) (25) with MAb epitopes indicated. The receptor
- ⁷⁶ binding face of gD is on the left. MAb 1D3 binds to gD residues near the N-terminus that are not

77 resolved in this structure.

78 The absence of gC renders HSV-1 more sensitive to neutralization by gD antibodies on two 79 distinct cell types.

80	To determine the impact of virion gC on HSV-1 infectivity in the presence of neutralizing
81	MAbs we employed a panel of mouse anti-gD MAbs against multiple epitopes and functions of
82	gD (Fig. 1). We tested two-fold dilutions of these MAbs ranging from 2 $\mu g/mL$ to 9.76 x 10^{-6}
83	μ g/mL on Vero cells. HSV-1 neutralization was defined as a reduction in infectivity of >50% in
84	the presence of anti-gD MAb. Importantly, HSV-1 gCR and Δ gC contain similar levels of viral
85	proteins gB, gD, gH, and VP5 (data not shown) (9, 15). Thus, differences detected between the
86	two viruses may be attributed to the lack of gC in the gC-null virus. HSV-1 Δ gC was more
87	sensitive to MAb neutralization ranging from 2-16-fold more sensitive compared to HSV-1 gCR
88	(Fig. 2). The negative control MAb MC14 failed to neutralize either virus, as expected (Fig. 2).
89	MAb 1D3, which blocks gD from interacting with HVEM, neutralized Δ gC at a concentration of
90	$3.9 \text{ x } 10^{-3} \mu\text{g/mL}$. 1D3 neutralized gCR at 0.125 $\mu\text{g/mL}$, which was 16-fold higher than the
91	concentration required to neutralize ΔgC (Fig. 2E). MAb MC5, which blocks gD from
92	interacting with gH/gL, neutralized HSV-1 ΔgC at 3.9 x 10 ⁻³ $\mu g/mL$ and gCR at a concentration
93	of 1.5 x 10^{-2} µg/mL on Vero cells (Fig. 2D). This was a 4-fold difference in MAb MC5
94	concentration. MAb MC23, which blocks gD interaction with nectin-1, required a 2-fold higher
95	concentration to neutralize HSV-1 gCR. MAb DL11, which blocks gD interactions with both
96	nectin-1 and HVEM, required an 8-fold higher concentration to neutralize gCR (Fig. 2A and B).
97	In summary, 2- to 16-fold more antibody was required to neutralize HSV-1 when gC was present
98	(Fig. 2G).

MAb	HSV-1 gCR (µg/ml)	HSV-1 ∆gC (µg/ml)	Fold Difference
MC23	7.8 x 10 ⁻³	3.9 x 10 ⁻³	2
DL11	3.1 x 10 ⁻²	3.9 x 10 ⁻³	8
MC5	1.5 x 10 ⁻²	1.9 x 10 ⁻³	8
1D3	6.2 x 10 ⁻²	3.9 x 10 ⁻³	16
H170	1.2 x 10 -1	3.1 x 10 ⁻²	4

Fig. 2. Neutralization of gC-null mutant HSV-1 infection of Vero cells by antibodies to gD.

101	HSV-1 gCR (black) or HSV-1 Δ gC (red) (100 PFU) was treated with monoclonal antibodies
102	MC23 (A), DL11 (B), MC14 (C), MC5 (D), 1D3 (E), or H170 (F) for 1 h at 37°C. Infectivity
103	was determined by plaque formation on Vero cells. Each experiment was performed with
104	triplicate samples. Values are the means and standard errors of results from three independent
105	experiments. Statistical significance was determined via Student's t-test where *, $p < 0.05$; **, p
106	< 0.01; ***, $p < 0.001$; ns, not significant. (G) Antibody concentration at which $> 50%$ of virus
107	was neutralized. Fold difference was calculated by dividing the concentration of MAb required
108	to neutralize HSV-1 gCR by the concentration of MAb required to neutralize Δ gC.
109	
110	Next, we investigated whether virion gC impacts the ability of nectin-1 blocking
111	antibodies to neutralize HSV-1 infection specifically mediated by nectin-1. Mouse melanoma
112	B78 cells are resistant to HSV entry and must be supplied with a gD-receptor to render them
113	permissive to HSV entry and infection (43). On B78-nectin-1 cells, MAb DL11 neutralized HSV-
114	$1 \Delta gC$ at a concentration of 1.9 x10 ⁻³ µg/mL. Four-fold more DL11 (7.8 x 10 ⁻³ µg/mL) was
115	required to neutralize gCR (Fig. 3B). MAb MC23 neutralized HSV-1 Δ gC at 7.8 x10 ⁻³ μ g/ml and
116	gCR at 0.3125 μ g/ml. Thus, 4-fold more antibody was required to neutralize gCR (Fig. 3A).
117	MAb 1D3 failed to neutralize HSV-1 infection mediated by nectin-1, as expected (Fig. 3C). In
118	summary, on B78-nectin-1 cells, 4-fold more MAb was required to neutralize HSV-1 gCR
119	compared to ΔgC (Fig. 3D). HSV-1 that lacks gC had enhanced sensitivity to anti-gD MAbs
120	across two cell types and across all domains of gD tested. It was previously shown that MAb
121	DL6 neutralized HSV-1 Δ gC at a dilution of 1:2000 on Vero cells and failed to neutralize gCR
122	(15). These data demonstrate that the absence of gC renders HSV-1 more sensitive to
123	neutralization by gD MAbs.

Fig. 3. Neutralization of gC-null mutant HSV-1 infection mediated specifically by the nectin-1 125 126 receptor. HSV-1 gCR (black) or HSV-1 Δ gC (red) was treated with gD monoclonal antibodies 127 MC23 (A), DL11 (B), or 1D3 (C) for 1 h at 37°C. Infectivity was determined by plaque 128 formation on B78-nectin-1 cells. Values are the means and standard errors from three 129 independent experiments. Statistical significance was determined via Student's t-test where *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant. (D) Antibody concentration at which > 130 131 50% of virus was neutralized. Fold difference was calculated by dividing the concentration of 132 MAb required to neutralize HSV-1 gCR by the concentration of MAb required to neutralize Δ gC. 133 The absence of virion gC enhances HSV-1 reactivity to gD antibodies. 134

134 The absence of virion gC enhances HSV-1 reactivity to gD antibodies.

135 To interrogate the mechanism by which HSV-1 ΔgC is more sensitive to neutralization,

136 we assessed the antigenic reactivity of gD MAbs with both HSV-1 gCR and Δ gC. The binding of

137 the panel of gD antibodies to HSV-1 Δ gC and gCR was compared by dot blot immunoassay.

- 138 Virus was blotted directly onto nitrocellulose membrane under native conditions. The membrane
- 139 was probed with anti-gD Mabs, and binding was determined via fluorescence imaging (Fig. 4)
- followed by densitometry (Fig. 5). HSV-1 Δ gC was more sensitive to gD MAb binding
- 141 compared to gCR, ranging from 2.7- to 5.6-fold more sensitive. MAb MC23, which blocks gD
- 142 from interacting with nectin-1, bound to HSV-1 Δ gC 3.1-fold more intensely than to gCR (Fig.
- 143 4A and 5A). MAb MC14, which is non-neutralizing, bound to ΔgC 5.6-fold more intensely than
- to gCR (Fig. 4C and 5C). This trend remained constant across all domains of gD tested, with
- 145 every antibody being more reactive with HSV-1 Δ gC. For Δ gC, there was an enhanced reactivity
- 146 of 3.9-fold with DL11, 5.2-fold with DL6, 3.5-fold with MC5, 2.9-fold with 1D3, and 2.7-fold
- 147 with 1D3 (Fig. 4 and 5). In summary, HSV-1 ΔgC was more sensitive to gD MAb binding
- 148 regardless of the MAb's epitope or function (Fig. 5H).
- 149

150

Fig. 4. Reactivity of HSV-1 Δ gC with MAbs to gD. Equivalent infectious particles of HSV-1

152 ΔgC or gCR were serially diluted and blotted directly onto nitrocellulose membranes and probed

- 153 with gD MAbs MC23 (A), DL11 (B), MC14 (C), DL6 (D), MC5 (E), 1D3 (F), or H170 (G).
- 154 MAb reactivity was determined via densitometry with ImageJ (Fig. 5).
- 155

156

Fig. 5. Reactivity of HSV-1 Δ gC with MAbs to gD. (A-G) HSV-1 Δ gC (red) or gCR (black) was blotted onto a nitrocellulose membrane and probed with antibodies against gD. Antibody

159	reactivity was determined via densitometry with ImageJ. Results are the mean and standard error
160	of three independent experiments. Representative blots are shown in Figure 4. Statistical
161	significance was determined via Student's t-test where *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$.
162	(H) Differences in HSV-1 Δ gC and gCR reactivity were determined by comparing slopes of the
163	best fit lines in panels A-G.
164	
165	The presence of gC in HSV-1 reduces the ability of a gD monoclonal antibody to block
166	receptor binding.
167	We next assessed the effect of gC on the ability of anti-gD antibody to inhibit HSV-1
168	binding to receptor. Soluble ectodomain forms of gD-receptors bind directly to HSV particles
169	and block entry and infection (24, 27, 44). We tested the ability of HSV-1 ΔgC to bind to soluble
170	nectin-1 in the presence of nectin-1 blocking gD MAb DL11 (24, 27). HSV-1 Δ gC or gCR was
171	pre-incubated with gD MAb, and then soluble nectin-1 was added. Samples were layered onto a
172	sucrose gradient and separated by ultracentrifugation. The virion fraction was recovered and
173	blotted directly onto a nitrocellulose membrane, and then probed for the presence of soluble
174	nectin-1 (Fig. 6A).
175	Following pre-incubation with 20 μ g MC14, a non-neutralizing gD MAb, soluble nectin-
176	1 binding to HSV-1 Δ gC and gCR was not inhibited, as expected (Fig. 6A and B). MAb MC14
177	enhanced nectin-1 reactivity with both HSV-1 gCR and HSV-1 Δ gC, as previously reported (45).
178	MAb MC14's impact on Δ gC binding to nectin-1 was similar to gCR (Fig. 6B). gD MAb DL11
179	inhibited nectin-1 binding to both viruses (Fig. 6A). MAb DL11 inhibited 51% of soluble nectin-
180	1 binding to HSV-1 Δ gC and inhibited 37% of soluble nectin-1 binding to gCR (Fig. 6C). This is

181 consistent with findings from the dot blot assay (Fig. 4 and 5) and neutralization assay (Fig. 2

Fig. 6. Inhibition of HSV-1 Δ gC binding to nectin-1 by gD antibodies. (A) HSV-1 Δ gC (red) or gCR (black) was treated with gD MAb DL11 or MC14 at 37°C for 1 h. Soluble nectin-1 was added at 4°C for 2 h. Samples were separated on a sucrose gradient, and the HSV-1-containing fraction was blotted onto a nitrocellulose membranes and probed with anti-6x-HIS tag MAb to detect nectin-1. (B, C) Nectin-1 binding was determined via densitometry with ImageJ. Results are the mean and standard error of three independent experiments.

- 190
- 191

The absence of gC renders HSV-1 more sensitive to inhibition by soluble nectin-1. 192

193	We investigated the ability of a recombinant nectin-1 ectodomain to block entry of HSV-
194	1 in the absence of gC. Soluble nectin-1 receptor inhibits HSV-1 entry and infection by
195	competing with receptors on target cells (44). To evaluate the ability of soluble nectin-1 to inhibit
196	HSV-1 ΔgC entry, we conducted a β -galactosidase reporter assay. B78-nectin-1 cells contain the
197	<i>E. coli lacZ</i> gene under the control of the HSV-1 ICP4 gene promoter (43). HSV-1 Δ gC or gCR
198	was incubated with soluble nectin-1 for 2 h at 4°C and then added to B78-nectin-1 cells. At 6 h
199	p.i., β -galactosidase activity was determined. Soluble nectin-1 inhibited entry of both HSV-1
200	Δ gC and gCR in a concentration-dependent manner starting at 0.01 μ M (Fig. 7). However,
201	soluble nectin-1 hampered HSV-1 Δ gC entry more robustly than HSV-1 gCR. Following
202	pretreatment with 1 μ M soluble nectin-1, HSV-1 Δ gC entry was reduced to 21% vs. 48% for
203	HSV-1 gCR entry (Fig. 7). Together, the results suggest that virion gC renders HSV-1 less
204	sensitive to inhibition by both gD antibodies and soluble receptor.

205

215	Fig. 7. Inhibition of HSV-1 Δ gC entry by soluble nectin-1. HSV-1 Δ gC (red) or gCR (black) (2 x
216	10 ⁵ PFU) was treated with soluble nectin-1 at 4°C for 2 h and then added to B78-nectin-1 cells
217	(MOI 5). At 6 h p.i., β -galactosidase activity was detected as an indicator of entry and infection.
218	Results are the mean and standard error of three independent experiments.
219	
220	Discussion
221	HSV-1 gC has multiple functions during the viral infectious cycle, including entry,
222	egress, and immune evasion. The current study demonstrates the ability of virion gC to shield the
223	essential receptor-binding protein gD. We present several lines of evidence suggesting that gC in
224	the HSV particle protects against neutralizing antibody to gD and against inhibition by soluble
225	gD-receptors. We propose that gC is broadly shielding the entire neighboring gD molecule,
226	including important functional domains for fusion and entry.
227	HSV-1 harbors many immune protective features that contribute to persistence in the
228	host. HSV-1 gE, an envelope glycoprotein that is non-essential for entry, forms a high affinity Fc
229	receptor with its partner gI. gE/gI binds to the Fc region of immunoglobulin G (IgG) antibodies
230	to prevent epitope recognition (46, 47). gC prevents complement activation by binding and
231	sequestering complement protein C3b (12, 18). Antibodies to gC can block this function (48).
232	The increased sensitivity of gC-null HSV-1 to antibody-mediated neutralization (Fig. 2 and 3)
233	can be explained at least in part by enhanced binding of antibodies to the virus in the absence of
234	virion gC (Fig. 4 and 5). Neutralizing and non-neutralizing antibodies bound better to HSV that
235	lacks gC. gC also shields gB and gH/gL from monoclonal antibody binding and neutralization
236	(13, 15). This protective role is specific to gC. The absence of gE from the HSV-1 particle had
237	little to no effect on MAb-mediated neutralization of HSV-1 (15).

238	For several viruses including influenza, HIV, and Nipah virus, the N-linked glycans of the
239	viral fusion protein shield its own epitopes from neutralization (39-42, 49). The N-linked glycans
240	of HSV-1 fusion protein gB provide self-protection against antibody-mediated neutralization and
241	antibody-dependent cytotoxicity (50). gC is not a fusion protein, but it contains a heavily
242	glycosylated N-terminal domain. Future research will determine whether N-glycans on gC shield
243	neighboring glycoproteins. Whether N-glycans on gC block the binding of anti-gC antibodies
244	also remains to be determined. This would be a unique feature for a non-fusion glycoprotein.
245	Importantly, gC is in close enough proximity to gD to be chemically crosslinked in HSV
246	particles (51). However, direct interaction between gC and gD has not been detected. Low-
247	affinity or transient interactions may be difficult to capture. Physical interactions between and
248	among HSV-1 gD, gH/gL and gB have also been difficult to capture, despite demonstrations of
249	functional interactions (33, 52-56). The specifics of how gC protects neighboring glycoproteins
250	from antibody-mediated neutralization is the subject of ongoing work.
251	Initial attachment of HSV-1 to the host cell is mediated by gC interaction with cell
252	surface proteoglycans, principally heparan sulfate (6, 7). Alphaherpesviruses utilize low pH
253	endosomal entry pathways in a cell-specific manner (57-62). The fusion protein gB undergoes
254	well-documented antigenic changes upon exposure to mildly acidic pH, such as that present in
255	the host cell endosomes (63-68). During endosomal entry into epithelial cells, gC undergoes pH-
256	triggered changes and is thought to regulate the conformational change and function of the fusion
257	protein gB (8, 9). gC also enhances virion release from infected cells (69).
258	This study highlights gC as an immune protective molecule that shields neighboring entry

260 immune evasion functions (14). Several vaccine candidates for HSV-1 and HSV-2 contain two or

glycoproteins from neutralizing antibody binding and activity. Antibodies against gC can block

- 261 more different surface glycoprotein immunogens, including gC (10, 11, 14, 16, 17). Inclusion of
 262 gC in an HSV vaccine may block intrinsic protective properties of HSV.
- 263

264 Materials and Methods

265 Cells and viruses

- 266 Vero cells (American Type Culture collection; ATCC; Rockville, MD) were cultured in
- 267 Dulbecco's modified Eagle's medium (DMEM; Life Technologies Corporation, Grand Island,
- 268 NY) supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals, Atlanta, GA) and
- 269 penicillin, streptomycin, and glutamine (PSG; Life Technologies Corporation). B78 murine
- 270 melanoma cells expressing nectin-1 (B78-nectin-1) (43), gifted by G. Cohen and R. Eisenberg
- 271 (University of Pennsylvania), were cultured with the same medium. B78-nectin-1 cells were
- selected every third passage in culture medium supplemented with 250 μ g/mL geneticin (G418;
- 273 Sigma-Aldrich, St. Louis, MO) and 6 µg/ml puromycin (Sigma-Aldrich). HSV-1 KOS strain with
- the gC gene deleted, HSV-1 Δ gC2-3 (Δ gC), and its rescuant, HSV-1gC2-3R (gCR) (70) were
- 275 gifts from C.R. Brandt (University of Wisconsin, Madison).

276 Antibodies

- 277 Anti-HSV-1 gD mouse monoclonal antibodies MC23 (domain Ia) (45), DL11 (domain Ib) (24,
- 278 27, 71, 72), MC14 (domain IIa) (45), DL6 (domain IIb) (73, 74), MC5 (domain III) (45), and
- 279 1D3 (domain VII) (12, 27) were gifts from G. Cohen and R. Eisenberg (University of
- 280 Pennsylvania). H170 (domain VII) (75-77) was purchased from Virusys (Milford, MA).

281 Plaque inhibition (neutralization) assay

- 282 Antibodies to gD were diluted two-fold in complete DMEM to achieve final concentrations
- ranging from 2 μ g/ml to 2.4 x 10⁻⁴ μ g/ml. HSV-1 Δ gC or gCR (100 PFU) was added to the

284	antibody dilutions and incubated at 37°C for 1 h. The antibody-virus mixture was added to
285	subconfluent Vero cells or B78-nectin-1 cells grown in 24-well plates. At 1 h p.i., the antibody-
286	virus mixture was removed and replaced with fresh culture medium. At 18 to 24 h p.i., cells were
287	fixed with an ice-cold 1:2 methanol-acetone solution. Plaque formation was determined by
288	immunoperoxidase staining. Anti-HSV polyclonal antibody HR50 (Fitzgerald Industries
289	International Inc., Acton, MA) was added to cells overnight at room temperature. Pro A-
290	horseradish peroxidase (Invitrogen, Rockford, IL) secondary antibody was added for 2 h at room
291	temperature. 4-chloro-1-napthol substrate (Sigma-Aldrich) was added for 15 min at room
292	temperature. A MAb was considered neutralizing if there was a >50% reduction in plaque
293	formation (infectivity).
294	Dot blot assay
295	Serial dilutions of cell-free HSV-1 Δ gC or gCR, were prepared in Dulbecco's phosphate buffered
296	saline (PBS)(Life Technologies Limited, Paisley, UK). Samples were blotted onto a
297	nitrocellulose membrane using a Minifold dot blot system (78) (Whatman, Kent, UK). Five
298	percent milk in 0.2% PBS-Tween 20 blocking buffer was added, and the membrane was gently
299	rocked for 30 min. Primary anti-HSV-1 gD antibody was prepared in blocking buffer and added
300	to the membrane overnight at 4°C. Goat-anti-mouse polyclonal antibody conjugated with Alexa
301	Fluor 647 (Invitrogen) was prepared in blocking buffer and added to the membrane at room
302	temperature for 30 min. The membrane was imaged with an Azure Biosystems c400 fluorescent
303	western blot imager and quantified via densitometry (ImageJ).
304	Receptor binding assay
305	VP5 equivalents of HSV-1 Δ gC or gCR were incubated with 20 µg anti-gD-MAbs MC14 or

306 DL11 in 10% BSA in PBS for 1 h at 37°C. 15 µg of a soluble ectodomain form of nectin-1

307	(containing amino acids Gln 31 – Thr 334) truncated prior to the transmembrane region and
308	containing a C-terminal 6 x His tag (ACRO Biosystems, Newark, DE) was added. The mixture
309	was incubated at 4°C for 2 h. Samples were added to the top of a 60%-30%-10% sucrose/PBS
310	gradient and centrifuged at 16,000 x g for 4.5 h at 4°C with an SW32 Ti rotor (Beckman, Brea,
311	CA). Virus bands at the 60%-30% sucrose interface were collected via tube side puncture. Virus
312	bands were then blotted onto nitrocellulose membrane. Membranes were incubated in blocking
313	buffer as described above. To detect nectin-1, a 6x-HIS antibody conjugated with CoraLite Plus
314	647 (Proteintech Group, Rosemont, IL) was added for 1.5 h at RT. The membrane was imaged
315	with an Azure Biosystems c400 fluorescent western blot imager and quantified via densitometry
316	(ImageJ)
317	β-galactosidase reporter assay for HSV-1 entry
318	HSV-1 gCR or Δ gC was incubated with 1 x 10 ⁻⁴ μ M to 1 μ M soluble nectin-1 in cell culture
319	medium for 2 h at 4°C. B78-nectin-1 cells were infected with the virus-nectin-1 mixture in
320	quadruplicate for 6 h at 37°C. Cells were lysed with 1% IGEPAL C-630 (Sigma-Aldrich) and
321	frozen at -80°C overnight. Lysates were thawed and chlorophenol red-beta-d-galactopyranoside
322	(Roche Diagnostics, Indianapolis, IN) substrate was added. β -galactosidase activity was read at
323	595 nm with an ELx808 microtiter plate reader (BioTek Instruments, Winooski, VT).
324	
325	Acknowledgments
326	We thank Curtis Brandt, Gary Cohen, and Roselyn Eisenberg for the gifts of reagents.
327	This work was supported by National Institutes of Health grant R56AI119159 (A.V. N.).
328	
329	References

330 331 332	1.	Looker KJ, Magaret AS, May MT, Turner KM, Vickerman P, Gottlieb SL, Newman LM. 2015. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS One 10:e0140765.
333 334 335	2.	Whitley RJ, Johnston C. 2022. Herpes Simplex Viruses: Pathogenesis and Clinical Insights, p 297-323. <i>In</i> Knipe DM, Howley PM (ed), Fields Virology, 7th edition, vol 2. Wolters Kluwer.
336 337	3.	Kennedy PG, Steiner I. 2013. Recent issues in herpes simplex encephalitis. J Neurovirol 19:346-50.
338 339	4.	Liesegang TJ. 2001. Herpes simplex virus epidemiology and ocular importance. Cornea 20:1-13.
340	5.	Heine JW, Honess RW, Cassai E, Roizman B. 1974. Proteins specified by herpes simplex
341		virus. XII. The virion polypeptides of type 1 strains. J Virol 14:640-51.
342	6.	Herold BC, WuDunn D, Soltys N, Spear PG. 1991. Glycoprotein C of herpes simplex
343 344		virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol 65:1090-8.
345	7.	WuDunn D, Spear PG. 1989. Initial interaction of herpes simplex virus with cells is
346		binding to heparan sulfate. J Virol 63:52-8.
347	8.	Gianopulos KA, Komala Sari T, Weed DJ, Pritchard SM, Nicola AV. 2022.
348	_	Conformational Changes in Herpes Simplex Virus Glycoprotein C. J Virol 96:e0016322.
349	9.	Komala Sari T, Gianopulos KA, Weed DJ, Schneider SM, Pritchard SM, Nicola AV.
350	1.0	2020. Herpes Simplex Virus Glycoprotein C Regulates Low-pH Entry. mSphere 5.
351 352	10.	Awasthi S, Lubinski JM, Shaw CE, Barrett SM, Cai M, Wang F, Betts M, Kingsley S, Distefano DJ, Balliet JW, Flynn JA, Casimiro DR, Bryan JT, Friedman HM. 2011.
353		Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C
354		(gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces
355 356		the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. J Virol 85:10472-86.
357	11.	Awasthi S, Hook LM, Pardi N, Wang F, Myles A, Cancro MP, Cohen GH, Weissman D,
358		Friedman HM. 2019. Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D,
359		and E prevents clinical and subclinical genital herpes. Sci Immunol 4.
360	12.	Friedman HM, Cohen GH, Eisenberg RJ, Seidel CA, Cines DB. 1984. Glycoprotein C of
361		herpes simplex virus 1 acts as a receptor for the C3b complement component on infected
362		cells. Nature 309:633-5.
363	13.	Hook LM, Huang J, Jiang M, Hodinka R, Friedman HM. 2008. Blocking antibody access
364		to neutralizing domains on glycoproteins involved in entry as a novel mechanism of
365		immune evasion by herpes simplex virus type 1 glycoproteins C and E. J Virol 82:6935-
366		41.
367	14.	Hook LM, Awasthi S, Dubin J, Flechtner J, Long D, Friedman HM. 2019. A trivalent
368		gC2/gD2/gE2 vaccine for herpes simplex virus generates antibody responses that block
369		immune evasion domains on gC2 better than natural infection. Vaccine 37:664-669.
370	15.	Komala Sari T, Gianopulos KA, Nicola AV. 2020. Glycoprotein C of Herpes Simplex
3/1	16	VIRUS I Shields Glycoprotein B from Antibody Neutralization. J Virol 94.
372	16.	Pater CD, Taylor SA, Menrbach J, Awastni S, Friedman HM, Leib DA. 2020. Trivalent
3/3		Glycoprotein Subunit vaccine Prevents Neonatal Herpes Simplex Virus Mortality and
3/4		wordiaity. J Virol 94.

375	17.	Weir JP, Bennett M, Allen EM, Elkins KL, Martin S, Rouse BT. 1989. Recombinant
376		vaccinia virus expressing the herpes simplex virus type 1 glycoprotein C protects mice
377		against herpes simplex virus challenge. J Gen Virol 70 (Pt 10):2587-94.
378	18.	Eisenberg RJ, Ponce de Leon M, Friedman HM, Fries LF, Frank MM, Hastings JC,
379		Cohen GH. 1987. Complement component C3b binds directly to purified glycoprotein C
380		of herpes simplex virus types 1 and 2. Microb Pathog 3:423-35.
381	19.	Watson RJ, Weis JH, Salstrom JS, Enquist LW. 1982. Herpes simplex virus type-1
382		glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science
383		218:381-4.
384	20.	Carfi A, Willis SH, Whitbeck JC, Krummenacher C, Cohen GH, Eisenberg RJ, Wiley
385		DC. 2001. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol
386		Cell 8:169-79.
387	21.	Connolly SA, Landsburg DJ, Carfi A, Wiley DC, Cohen GH, Eisenberg RJ, 2003.
388		Structure-based mutagenesis of herpes simplex virus glycoprotein D defines three critical
389		regions at the gD-HveA/HVEM binding interface. J Virol 77:8127-40.
390	22.	Connolly SA, Landsburg DJ, Carfi A, Whitbeck JC, Zuo Y, Wiley DC, Cohen GH,
391		Eisenberg RJ. 2005. Potential nectin-1 binding site on herpes simplex virus glycoprotein
392		d. J Virol 79:1282-95.
393	23.	Di Giovine P, Settembre EC, Bhargava AK, Luftig MA, Lou H, Cohen GH, Eisenberg RJ,
394		Krummenacher C, Carfi A. 2011. Structure of herpes simplex virus glycoprotein D bound
395		to the human receptor nectin-1. PLoS Pathog 7:e1002277.
396	24.	Krummenacher C, Nicola AV, Whitbeck JC, Lou H, Hou W, Lambris JD, Geraghty RJ,
397		Spear PG, Cohen GH, Eisenberg RJ. 1998. Herpes simplex virus glycoprotein D can bind
398		to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally
399		unrelated mediators of virus entry. J Virol 72:7064-74.
400	25.	Krummenacher C, Supekar VM, Whitbeck JC, Lazear E, Connolly SA, Eisenberg RJ,
401		Cohen GH, Wiley DC, Carfi A. 2005. Structure of unliganded HSV gD reveals a
402		mechanism for receptor-mediated activation of virus entry. EMBO J 24:4144-53.
403	26.	Lazear E, Carfi A, Whitbeck JC, Cairns TM, Krummenacher C, Cohen GH, Eisenberg
404		RJ. 2008. Engineered disulfide bonds in herpes simplex virus type 1 gD separate receptor
405		binding from fusion initiation and viral entry. J Virol 82:700-9.
406	27.	Nicola AV, Ponce de Leon M, Xu R, Hou W, Whitbeck JC, Krummenacher C,
407		Montgomery RI, Spear PG, Eisenberg RJ, Cohen GH. 1998. Monoclonal antibodies to
408		distinct sites on herpes simplex virus (HSV) glycoprotein D block HSV binding to
409		HVEM. J Virol 72:3595-601.
410	28.	Yoon M, Zago A, Shukla D, Spear PG. 2003. Mutations in the N termini of herpes
411		simplex virus type 1 and 2 gDs alter functional interactions with the entry/fusion
412		receptors HVEM, nectin-2, and 3-O-sulfated heparan sulfate but not with nectin-1. J Virol
413		77:9221-31.
414	29.	Yoon M, Spear PG. 2004. Random mutagenesis of the gene encoding a viral ligand for
415		multiple cell entry receptors to obtain viral mutants altered for receptor usage. Proc Natl
416		Acad Sci U S A 101:17252-7.
417	30.	Atanasiu D, Saw WT, Cohen GH, Eisenberg RJ. 2010. Cascade of events governing cell-
418		cell fusion induced by herpes simplex virus glycoproteins gD, gH/gL, and gB. J Virol
419		84:12292-9.

420 421	31.	Atanasiu D, Saw WT, Lazear E, Whitbeck JC, Cairns TM, Lou H, Eisenberg RJ, Cohen GH. 2018. Using Antibodies and Mutants To Localize the Presumptive gH/gL Binding
422		Site on Herpes Simplex Virus gD. J Virol 92.
423	32.	Atanasiu D, Saw WT, Cairns TM, Eisenberg RJ, Cohen GH. 2021. Using Split Luciferase
424		Assay and anti-HSV Glycoprotein Monoclonal Antibodies to Predict a Functional
425		Binding Site Between gD and gH/gL. J Virol 95.
426	33.	Atanasiu D, Saw WT, Cairns TM, Friedman HM, Eisenberg RJ, Cohen GH. 2023.
427		Receptor Binding-Induced Conformational Changes in Herpes Simplex Virus
428		Glycoprotein D Permit Interaction with the gH/gL Complex to Activate Fusion. Viruses
429		15.
430	34.	Cairns TM, Huang ZY, Whitbeck JC, Ponce de Leon M, Lou H, Wald A, Krummenacher
431		C, Eisenberg RJ, Cohen GH. 2014. Dissection of the antibody response against herpes
432		simplex virus glycoproteins in naturally infected humans. J Virol 88:12612-22.
433	35.	Cairns TM, Ditto NT, Atanasiu D, Lou H, Brooks BD, Saw WT, Eisenberg RJ, Cohen
434		GH. 2019. Surface Plasmon Resonance Reveals Direct Binding of Herpes Simplex Virus
435		Glycoproteins gH/gL to gD and Locates a gH/gL Binding Site on gD. J Virol 93.
436	36.	Cairns TM, Atanasiu D, Saw WT, Lou H, Whitbeck JC, Ditto NT, Bruun B, Browne H,
437		Bennett L, Wu C, Krummenacher C, Brooks BD, Eisenberg RJ, Cohen GH. 2020.
438		Localization of the Interaction Site of Herpes Simplex Virus Glycoprotein D (gD) on the
439		Membrane Fusion Regulator, gH/gL. J Virol 94.
440	37.	Cairns TM, Huang ZY, Gallagher JR, Lin Y, Lou H, Whitbeck JC, Wald A, Cohen GH,
441		Eisenberg RJ. 2015. Patient-Specific Neutralizing Antibody Responses to Herpes
442		Simplex Virus Are Attributed to Epitopes on gD, gB, or Both and Can Be Type Specific. J
443		Virol 89:9213-31.
444	38.	Para MF, Parish ML, Noble AG, Spear PG. 1985. Potent neutralizing activity associated
445		with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to
446		herpes simplex virions. J Virol 55:483-8.
447	39.	Skehel JJ, Stevens DJ, Daniels RS, Douglas AR, Knossow M, Wilson IA, Wiley DC.
448		1984. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses
449		inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A 81:1779-83.
450	40.	Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG,
451		Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM.
452		2003. Antibody neutralization and escape by HIV-1. Nature 422:307-12.
453	41.	Aguilar HC, Matreyek KA, Filone CM, Hashimi ST, Levroney EL, Negrete OA,
454		Bertolotti-Ciarlet A, Choi DY, McHardy I, Fulcher JA, Su SV, Wolf MC, Kohatsu L,
455		Baum LG, Lee B. 2006. N-glycans on Nipah virus fusion protein protect against
456		neutralization but reduce membrane fusion and viral entry. J Virol 80:4878-89.
457	42.	Vu HL, Kwon B, Yoon KJ, Laegreid WW, Pattnaik AK, Osorio FA. 2011. Immune
458		evasion of porcine reproductive and respiratory syndrome virus through glycan shielding
459		involves both glycoprotein 5 as well as glycoprotein 3. J Virol 85:5555-64.
460	43.	Miller CG, Krummenacher C, Eisenberg RJ, Cohen GH, Fraser NW. 2001. Development
461		of a syngenic murine B16 cell line-derived melanoma susceptible to destruction by
462		neuroattenuated HSV-1. Mol Ther 3:160-8.
463	44.	Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG. 1998. Entry of
464		alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus
465		receptor. Science 280:1618-20.

466 467 468 469	45.	Lazear E, Whitbeck JC, Ponce-de-Leon M, Cairns TM, Willis SH, Zuo Y, Krummenacher C, Cohen GH, Eisenberg RJ. 2012. Antibody-induced conformational changes in herpes simplex virus glycoprotein gD reveal new targets for virus neutralization. J Virol 86:1563-76.
470 471 472	46.	Dubin G, Socolof E, Frank I, Friedman HM. 1991. Herpes simplex virus type 1 Fc receptor protects infected cells from antibody-dependent cellular cytotoxicity. J Virol 65:7046-50.
473 474 475	47.	Frank I, Friedman HM. 1989. A novel function of the herpes simplex virus type 1 Fc receptor: participation in bipolar bridging of antiviral immunoglobulin G. J Virol 63:4479-88.
476 477 478 479	48.	Friedman HM, Glorioso JC, Cohen GH, Hastings JC, Harris SL, Eisenberg RJ. 1986. Binding of complement component C3b to glycoprotein gC of herpes simplex virus type 1: mapping of gC-binding sites and demonstration of conserved C3b binding in low- passage clinical isolates. J Virol 60:470-5.
480 481 482	49.	Watanabe Y, Raghwani J, Allen JD, Seabright GE, Li S, Moser F, Huiskonen JT, Strecker T, Bowden TA, Crispin M. 2018. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc Natl Acad Sci U S A 115:7320-7325.
483 484 485 486	50.	Fukui A, Maruzuru Y, Ohno S, Nobe M, Iwata S, Takeshima K, Koyanagi N, Kato A, Kitazume S, Yamaguchi Y, Kawaguchi Y. 2023. Dual impacts of a glycan shield on the envelope glycoprotein B of HSV-1: evasion from human antibodies and neurovirulence. Mbio 14.
487 488	51.	Handler CG, Cohen GH, Eisenberg RJ. 1996. Cross-linking of glycoprotein oligomers during herpes simplex virus type 1 entry. J Virol 70:6076-82.
489 490 491	52.	Atanasiu D, Whitbeck JC, Cairns TM, Reilly B, Cohen GH, Eisenberg RJ. 2007. Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci U S A 104:18718-23.
492 493 494 495	53.	Atanasiu D, Whitbeck JC, de Leon MP, Lou H, Hannah BP, Cohen GH, Eisenberg RJ. 2010. Bimolecular complementation defines functional regions of Herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J Virol 84:3825-34.
496 497 498	54.	Avitabile E, Forghieri C, Campadelli-Fiume G. 2007. Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein. J Virol 81:11532-7.
499 500 501	55.	Avitabile E, Forghieri C, Campadelli-Fiume G. 2009. Cross talk among the glycoproteins involved in herpes simplex virus entry and fusion: the interaction between gB and gH/gL does not necessarily require gD. J Virol 83:10752-60.
502 503 504	56.	Vanarsdall AL, Howard PW, Wisner TW, Johnson DC. 2016. Human Cytomegalovirus gH/gL Forms a Stable Complex with the Fusion Protein gB in Virions. PLoS Pathog 12:e1005564.
505 506	57.	Nicola AV, McEvoy AM, Straus SE. 2003. Roles for endocytosis and low pH in herpes
507 508 509	58.	Frampton AR, Jr., Stolz DB, Uchida H, Goins WF, Cohen JB, Glorioso JC. 2007. Equine herpesvirus 1 enters cells by two different pathways, and infection requires the activation of the cellular kinase ROCK1_LVirol 81:10879-89
510 511	59.	Miller JL, Weed DJ, Lee BH, Pritchard SM, Nicola AV. 2019. Low-pH Endocytic Entry of the Porcine Alphaherpesvirus Pseudorabies Virus. J Virol 93:e01849-18.

512	60.	Tebaldi G, Pritchard SM, Nicola AV. 2020. Herpes simplex virus entry by a
513		nonconventional endocytic pathway. J Virol 94:e01910-20.
514	61.	Pastenkos G, Lee B, Pritchard SM, Nicola AV. 2018. Bovine Herpesvirus 1 Entry by a
515		Low-pH Endosomal Pathway. J Virol 92:e00839-18.
516	62.	Synowiec A, Dabrowska A, Pachota M, Baouche M, Owczarek K, Nizanski W, Pyrc K.
517		2023. Feline herpesvirus 1 (FHV-1) enters the cell by receptor-mediated endocytosis. J
518		Virol 97:e0068123.
519	63.	Dollery SJ, Delboy MG, Nicola AV. 2010. Low pH-induced conformational change in
520		herpes simplex virus glycoprotein B. J Virol 84:3759-66.
521	64.	Dollery SJ, Lane KD, Delboy MG, Roller DG, Nicola AV. 2010. Role of the UL45
522		protein in herpes simplex virus entry via low pH-dependent endocytosis and its
523		relationship to the conformation and function of glycoprotein B. Virus Res 149:115-8.
524	65.	Nicola AV. 2016. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.
525		Traffic 17:965-75.
526	66.	Siekavizza-Robles CR, Dollery SJ, Nicola AV. 2010. Reversible conformational change
527		in herpes simplex virus glycoprotein B with fusion-from-without activity is triggered by
528		mildly acidic pH. Virol J 7:352.
529	67.	Weed DJ, Pritchard SM, Gonzalez F, Aguilar HC, Nicola AV. 2017. Mildly Acidic pH
530		Triggers an Irreversible Conformational Change in the Fusion Domain of Herpes Simplex
531		Virus 1 Glycoprotein B and Inactivation of Viral Entry. J Virol 91.
532	68.	Weed DJ, Dollery SJ, Komala Sari T, Nicola AV. 2018. Acidic pH Mediates Changes in
533		Antigenic and Oligomeric Conformation of Herpes Simplex Virus gB and Is a
534		Determinant of Cell-Specific Entry. J Virol 92.
535	69.	Frost TC, Salnikov M, Rice SA. 2024. Enhancement of HSV-1 cell-free virion release by
536		the envelope protein gC. Virology 596:110120.
537	70.	Herold BC, Visalli RJ, Susmarski N, Brandt CR, Spear PG. 1994. Glycoprotein C-
538		independent binding of herpes simplex virus to cells requires cell surface heparan
539		sulphate and glycoprotein B. J Gen Virol 75 (Pt 6):1211-22.
540	71.	Cohen GH, Isola VJ, Kuhns J, Berman PW, Eisenberg RJ. 1986. Localization of
541		discontinuous epitopes of herpes simplex virus glycoprotein D: use of a nondenaturing
542		("native" gel) system of polyacrylamide gel electrophoresis coupled with Western
543		blotting. J Virol 60:157-66.
544	72.	Muggeridge MI, Isola VJ, Byrn RA, Tucker TJ, Minson AC, Glorioso JC, Cohen GH,
545		Eisenberg RJ. 1988. Antigenic analysis of a major neutralization site of herpes simplex
546		virus glycoprotein D, using deletion mutants and monoclonal antibody-resistant mutants.
547		J Virol 62:3274-80.
548	73.	Eisenberg RJ, Long D, Ponce de Leon M, Matthews JT, Spear PG, Gibson MG, Lasky
549		LA, Berman P, Golub E, Cohen GH. 1985. Localization of epitopes of herpes simplex
550		virus type 1 glycoprotein D. J Virol 53:634-44.
551	74.	Isola VJ, Eisenberg RJ, Siebert GR, Heilman CJ, Wilcox WC, Cohen GH. 1989. Fine
552		mapping of antigenic site II of herpes simplex virus glycoprotein D. J Virol 63:2325-34.
553	75.	Eisenberg RJ, Long D, Pereira L, Hampar B, Zweig M, Cohen GH. 1982. Effect of
554		monoclonal antibodies on limited proteolysis of native glycoprotein gD of herpes simplex
555		virus type 1. J Virol 41:478-88.
556	76.	Pereira L, Dondero DV, Gallo D, Devlin V, Woodie JD. 1982. Serological analysis of
557		herpes simplex virus types 1 and 2 with monoclonal antibodies. Infect Immun 35:363-7.

- 558 77. Dietzschold B, Eisenberg RJ, Ponce de Leon M, Golub E, Hudecz F, Varrichio A, Cohen
 559 GH. 1984. Fine structure analysis of type-specific and type-common antigenic sites of
- 560 herpes simplex virus glycoprotein D. J Virol 52:431-5.
- 561 78. Komala Sari T. 2020. Conformational Change in Herpes Simplex Virus Entry
 562 Glycoproteins Detected by Dot Blot, p 319-326. *In* Diefenbach R, Fraefel C (ed), Herpes
 563 Simplex Virus: Methods and Protocols, 2nd Edition, 2nd ed, vol 2060. Humana Press.
 564
- 565 566
- 567 568
- 569
- 570
- 571
- 572
- 573