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Abstract

Hepatitis B virus (HBV) genotype D (HBV/D) is globally widespread, and ten subgenotypes

(D1 to D10) showing distinct geographic distributions have been described to date. The

evolutionary history of HBV/D and its subgenotypes, for which few complete genome

sequences are available, in the Americas is not well understood. The main objective of the

current study was to determine the full-length genomic sequences of HBV/D isolates from

Brazil and frequency, origin and spread of HBV/D subgenotypes in the Americas. Complete

HBV/D genomes isolated from 39 Brazilian patients infected with subgenotypes D1 (n = 1),

D2 (n = 10), D3 (n = 27), and D4 (n = 1) were sequenced and analyzed together with refer-

ence sequences using the Bayesian coalescent and phylogeographic framework. A search

for HBV/D sequences available in GenBank revealed 209 complete and 926 partial

genomes from American countries (Argentina, Brazil, Canada, Chile, Colombia, Cuba,

Haiti, Martinique, Mexico, USA and Venezuela), with the major circulating subgenotypes

identified as D1 (26%), D2 (17%), D3 (36%), D4 (21%), and D7 (1%) within the continent.

The detailed evolutionary history of HBV/D in the Americas was investigated by using differ-

ent evolutionary time scales. Spatiotemporal reconstruction analyses using short-term sub-

stitution rates suggested times of the most recent common ancestor for the American HBV/

D subgenotypes coincident with mass migratory movements to Americas during the 19th

and 20th centuries. In particular, significant linkages between Argentina and Syria (D1), Bra-

zil and Central/Eastern Europe (D2), USA and India (D2), and Brazil and Southern Europe

(D3) were estimated, consistent with historical and epidemiological data.
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Introduction

Despite the availability of an effective vaccine and potent antiviral treatment, hepatitis B virus

(HBV) infection remains a major public health issue, affecting 257 million people worldwide

[1, 2]. HBV contains a partially double-stranded DNA genome ~3,200 nucleotides (nt) in

length. Based on genomic sequence divergence of> 8%, HBV isolates have been classified into

eight genotypes (HBV/A to H) [3–7], further to which two putative genotypes, I and J, have

been proposed [8, 9]. The significant diversity within specific HBV genotypes has led to further

classification into numerous subgenotypes [10, 11]. HBV genotypes and subgenotypes have

distinct geographic distributions and are associated with differences in disease progression,

response to antiviral therapy, and clinical outcome [12–15]. In particular, HBV/D is distrib-

uted worldwide with predominance in Southeastern Europe, the Mediterranean Basin, the

Middle East, and the Indian sub-continent [16]. It has the shortest genome (3,182 nt) and is

characterized by a 33 nt deletion at the beginning of the pre-S1 region. Ten subgenotypes (D1

to D10) have been described to date [11, 17], with further corrections and novel classifications

of HBV/D subgenotypes reported elsewhere [11, 16, 18, 19]. Relative to HBV/A, HBV/D is

associated with poorer clinical outcomes for cirrhosis and hepatocellular carcinoma and lower

response to interferon alpha [14].

The origin and evolutionary history of HBV are still controversial and a wide range of HBV

substitution rates have been estimated depending on the calibration approach used for the calcula-

tion [20, 21]. Studies using external calibrations based on human migrations find slower substitu-

tion rates [22, 23], while rates estimated using tip-dating analyses of heterochronous HBV

sequences tend to be faster [24, 25]. Accordingly, previous reports on the times of origin and

divergence of HBV/D and its subgenotypes have suggested different estimates [23, 24, 26–29]. In

the Americas, HBV/D is found across the continent [16, 30–35], although the detailed evolution-

ary history and phylogeography of this genotype have not yet been examined. In addition, few

HBV/D complete genome sequences from Brazil are available in the databanks, limiting the con-

tribution of Brazilian isolates to phylogenetic and phylogeographic studies. The main objectives of

this study were to determine the full-length genomic sequences of HBV/D isolates from Brazil,

examine the proportion and distribution of HBV/D subgenotypes in American countries, and

reconstruct the spatial and temporal diversification of HBV/D in the Americas.

Materials and methods

Ethics statement

The study protocol was approved by the Brazilian Ethics Committee for Medical Research

(CONEP nº 9604/2004) and the Ethics Committee of Oswaldo Cruz Institute (nº 1.358.935),

and all patients signed informed consent before participation. All experiments were performed

in accordance with the relevant guidelines and regulations.

Serum samples

Thirty-nine retrospective HBsAg-positive serum samples (from 2003 to 2013) previously char-

acterized as HBV/D-containing strains, collected from different geographical regions of Brazil

(North East, n = 3; Central-West, n = 16; South East, n = 4; and South, n = 16), were selected

for HBV complete genome amplification.

Viral DNA extraction and PCR amplification

HBV DNA was extracted from 0.2 mL serum using a High Pure Viral Nucleic Acid kit (Roche

Diagnostics, Germany) according to the manufacturer’s instructions. The amplification of
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HBV complete genome sequences was attempted with a protocol modified from Günther

et al., 1995 [36] using 4 μL of the nucleic acid template, primers P1 (5’-CCGGAAAGCTTGA
GCTCTTCTTTTTCACCTCTGCCTAATCA-3’) and P2 (5’-CCGGAAAGCTTGAGCTCTTCA
AAAAGTTGCATGGTGCTGG-3’), and the following PCR profile: denaturation at 94˚C for 4

min followed by 10 cycles at 94˚C for 40 s, 55˚C for 1 min, and 72˚C for 3 min; 10 cycles of

94˚C for 40 s, 60˚C for 1 min, and 72˚C for 5 min; 10 cycles of 94˚C for 40 s, 62˚C for 1 min,

and 72˚C for 7 min; 10 cycles of 94˚C for 40 s, 62˚C for 1 min, and 72˚C for 9 min; and a final

extension step at 72˚C for 10 min. The PCR assay was performed using Platinum Taq DNA

polymerase and supplied reagents (Invitrogen, Carlsbad, CA) in accordance with product

instructions.

Nucleotide sequencing

PCR products were purified using the Wizard SV Gel and PCR Clean-Up System (Promega,

Madison, WI). HBV full-length genome sequences were determined via direct sequencing

using a BigDye Terminator Kit v3.1 (Applied Biosystems, Foster City, CA), and sequencing

reactions analyzed on an ABI3730xl automated sequencer (Applied Biosystems). Inter and

intragenotypic recombination were investigated using SimPlot v3.5.1 software [37], the jump-

ing profile hidden Markov model (jpHMM) [38], and RDP, BootScan, MaxChi, and 3Seq

methods embedded in the Recombination Detection Program version 4 (RDP4) [39]. The

HBV serological subtype was predicted based on the deduced HBsAg amino acid sequence

using the HBV Serotyper Tool available at http://hvdr.bioinf.wits.ac.za/serotyper/. Nucleotide

sequences obtained during this study were deposited in the GenBank database under accession

numbers MH724214–MH724252.

Phylogenetic analysis

Multiple sequence alignment was performed using the Muscle program with 66 HBV complete

genome sequences (39 sequences determined in this study and 27 reference sequences for

HBV genotypes A to J) and subsequently subjected to Maximum Likelihood (ML) phyloge-

netic analysis. The ML phylogenetic tree was inferred with the online version of the PhyML

program [40] under the GTR + I + G nucleotide substitution model selected with SMS (Smart

Model Selection in PhyML) [41]. A heuristic tree search was performed with the aid of the

SPR branch-swapping algorithm and the reliability of phylogenies estimated with the approxi-

mate likelihood-ratio test [42] based on a Shimodaira-Hasegawa-like procedure (SH-aLRT).

HBV/D sequence dataset from the Americas

To identify the HBV/D subgenotypes circulating in the Americas and determine their propor-

tions in individual countries, a search for HBV/D sequences from the continent available in

GenBank by December 2018 was performed using the following queries (for each American

country):

((Hepatitis B virus) AND genotype D) AND country = "country name"

((Hepatitis B virus) AND genotype D1) AND country = "country name"

((Hepatitis B virus) AND genotype D2) AND country = "country name"

((Hepatitis B virus) AND genotype D3) AND country = "country name"

((Hepatitis B virus) AND genotype D4) AND country = "country name"

((Hepatitis B virus) AND genotype D5) AND country = "country name"

Hepatitis B virus genotype D in the Americas

PLOS ONE | https://doi.org/10.1371/journal.pone.0220342 July 25, 2019 3 / 20

http://hvdr.bioinf.wits.ac.za/serotyper/
https://doi.org/10.1371/journal.pone.0220342


((Hepatitis B virus) AND genotype D6) AND country = "country name"

((Hepatitis B virus) AND genotype D7) AND country = "country name"

((Hepatitis B virus) AND genotype D8) AND country = "country name"

((Hepatitis B virus) AND genotype D9) AND country = "country name"

((Hepatitis B virus) AND genotype D10) AND country = "country name"

Sequences without a specified subgenotype but more than 600 nt in length were submitted

for HBV subgenotyping via phylogenetic analysis and added to the dataset.

Bayesian phylogeographic analyses

A total of 421 full-length genome sequences from HBV/D subgenotypes D1, D2, D3 and D4

available in GenBank in December 2018 with known country of origin and collection date

were grouped into four datasets for each subgenotype and selected for phylogeographic analy-

ses (GenBank accession numbers available in S1 Table). In addition, 29 complete genomes

sequenced in this study were included in the analyses. The number of sequences specified by

subgenotype and location is shown in Table 1. To avoid bias from overrepresented countries,

the online tool CD-HIT Suite (http://weizhongli-lab.org/cdhit_suite/cgi-bin/index.cgi?cmd=

cd-hit-est) was used to group sequences with high similarity, and only one representative

sequence of each group, prioritizing the one with the oldest collection date, maintained in the

dataset.

In order to investigate the phylogenetic signal of the datasets, we carried out a likelihood

mapping analysis of 10,000 random sets of four sequences (quartets) using IQ-tree v1.6.11 soft-

ware [43]. In addition, the temporal structure of the datasets was assessed by conducting a

regression of root-to-tip genetic distances against year of sampling using TempEst v1.5 [44].

The substitution rate (nucleotide substitutions per site per year, s/s/y), time of the most recent

common ancestor (tMRCA, years) and spatiotemporal dynamics of dissemination of each

HBV/D subgenotype were estimated using a Bayesian Markov Chain Monte Carlo (MCMC)

approach implemented in BEAST v1.8.0 [45] along with BEAGLE v2.1 to improve run time

[46]. Analyses were performed using the GTR + I + G nucleotide substitution model, the

uncorrelated lognormal relaxed molecular clock model [47] and the Bayesian Skyline coales-

cent tree prior [48]. The time-scale of the Bayesian tree was calibrated using: (i) the substitu-

tion rates directly estimated from the sampling datasets of HBV sequences; or (ii) using

informative priors based on two previously published substitution rates, 1.18 x 10−5 s/s/y (95%

HPD interval: 8.04 x 10−6–1.51 x 10−5 s/s/y) [49] and 3.7 x 10−6 s/s/y (95% HPD interval: 2.2 x

10−6–5.5 x 10−6) [22].

Spatial reconstruction was achieved by applying a reversible discrete Bayesian phylogeo-

graphic model [50]. The Bayesian Stochastic Search Variable Selection (BSSVS) model was

implemented, which allows a zero diffusion rate with a positive prior probability. Comparison

of the posterior and prior probabilities of individual rates being zero provided a formal Bayes

Factor (BF) to test the significance of the linkages between locations. Rates yielding BF> 3

were considered well supported and formed the migration pathway. MCMC was run for a suf-

ficient length to ensure convergence and Effective Sample Size (ESS) values> 100. Uncertainty

of parameter estimates was assessed after excluding the initial 10% of the run by calculating

the 95% Highest Probability Density (HPD) values using TRACER v1.6 program. Maximum

clade credibility (MCC) trees were summarized from the posterior distribution of trees with

TreeAnnotator and visualized with FigTree v1.4. Significant migration events were analyzed

using SPREAD v.1.0.6 [51].
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Table 1. Number of sequences specified by subgenotype and locations in phylogeographic analyses.

Subgenotype Location Number of sequencesa

D1 Argentina 9

Brazil 1

Central and Eastern Europe 4

Central Asia 5

Cuba 1

East Asia 21

Iran 16

Lebanon 14

New Zealand 8

South Asia 9

Southern Europe 8

Syria 18

Tunisia 13

Turkey 20

Western Europe 13

D2 Argentina 6

Belgium 4

Brazil 10

Central and Eastern Europe 20

Central Asia 3

Spain 6

India 10

Japan 16

Middle East 15

New Caledonia 5

Taiwan 4

USA 4

D3 Argentina 19

Belgium 8

Brazil 17

Canada 3

Cuba 1

East Asia 8

Estonia 2

Haiti 2

Indonesia 5

Martinique 1

Middle East 7

South Asia 12

Southern Europe 21

Sudan 2

Sweden 6

USA 10

D4 Australia 3

Brazil 15

Canada 3

Cuba 5

(Continued)
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Results

Complete genome sequencing and phylogeny

Thirty-nine full-length HBV/D sequences from different Brazilian regions were successfully

amplified and sequenced. All isolates had a genome size of 3,182 nt, with no evidence of in-

phase deletion, insertion or recombination. The basal core promoter A1762T/G1764A and

precore G1896A mutations were detected in 8/39 (20.5%) and 15/39 (38.5%) sequences,

respectively. Fig 1 shows the ML phylogenetic tree of the 39 HBV whole-genome sequences

obtained in this study together with 27 reference sequences for HBV genotypes A to J (the

bootstrap branch supports are shown in S1 Fig). Based on phylogenetic analysis, HBV

genomes were classified as D1 (n = 1), D2 (n = 10), D3 (n = 27), and D4 (n = 1) (Fig 1). Subge-

notype D3 sequences were predominantly identified in all the Brazilian geographic regions

analyzed (North East, 100%; Central-West, 81%; South East, 50%; South, 56%). The serological

subtypes were determined as follows: subgenotype D1 strain was classified as ayw2, D2 as 90%

ayw3 and 10% ayw4, D3 as 78% ayw2 and 22% ayw3, and the D4 strain as ayw2.

Circulating HBV/D subgenotypes in the Americas

Using the search queries reported in the Methods section, 1,135 HBV/D sequences isolated in

American countries were identified by December 2018 and downloaded from GenBank.

Among these, 209 were complete genome and 926 were partial genome sequences. The 39 full-

length sequenced genomes were additionally included in the dataset (n = 1,174). HBV/D

sequences were obtained from Argentina (n = 281), Brazil (n = 562), Canada (n = 49), Chile

(n = 4), Colombia (n = 1), Cuba (n = 94), Haiti (n = 38), Martinique (n = 6), Mexico (n = 1),

USA (n = 132) and Venezuela (n = 6). Subgenotypes D1 (26%, 303/1,174), D2 (17%, 196/

1,174), D3 (36%, 425/1,174), D4 (21%, 242/1,174) and D7 (1%, 8/1,174) were identified and

their distribution patterns throughout the continent presented in Fig 2. Notably, subgenotype

D1 was the most prevalent in Argentina (88%, 246/281) and Canada (57%, 28/49), D2 in USA

(63%, 83/132), D3 in Brazil, (59%, 331/562), and D4 in Cuba (76%, 71/94) and Haiti (84%, 32/

38). The number of HBV/D sequences from other countries was too limited to obtain accurate

estimates of subgenotype prevalence (Fig 2).

Bayesian reconstruction of time-scaled phylogeny and phylogeographic

analyses

To estimate the time and epicenter of diversification of the HBV subgenotypes circulating in

the Americas, Bayesian MCMC analyses were conducted on 450 (421 from GenBank and 29

from this study) complete genome sequences grouped into four datasets for subgenotypes D1,

D2, D3 and D4. Ten D3 genomes sequenced here were excluded from analyses after using the

online tool CD-HIT Suite to avoid bias from overrepresentation. Subgenotype D7 was not

Table 1. (Continued)

Subgenotype Location Number of sequencesa

Haiti 3

India 12

Martinique 4

Polynesia 18

aSequences generated in this study (n = 29) and from Genbank (n = 421) (accession numbers available in S1 Table).

https://doi.org/10.1371/journal.pone.0220342.t001

Hepatitis B virus genotype D in the Americas

PLOS ONE | https://doi.org/10.1371/journal.pone.0220342 July 25, 2019 6 / 20

https://doi.org/10.1371/journal.pone.0220342.t001
https://doi.org/10.1371/journal.pone.0220342


analyzed due to its recombinant nature (D/E intergenotypic genome) and the small number of

available sequences. The phylogenetic signal tested for each dataset showed that the portion of

randomly chosen quartets falling in the corners of the likelihood map was>90% (90.8% for

HBV/D1, 96.3% for HBV/D2, 95.2% for HBV/D3 and 95.9% for HBV/D4 dataset) (S2A, S2B,

S2C and S2D Fig), thus supporting sufficient signal for phylogenetic analysis in all datasets.

Moreover, all HBV datasets had a temporal structure as revealed by the positive correlation

coefficient between genetic divergence and time (S3 Fig), indicating that the time-scale of

HBV can be directly estimated from sampling dates of selected sequences. The estimated mean

Fig 1. Phylogenetic analysis of HBV complete genome sequences. ML phylogenetic tree of 39 Brazilian HBV/D complete genomes recovered in

this study plus 27 reference sequences. The sequences generated are denoted BR, followed by sample number and the geographic region of origin

(NE, North East; CW, Central West; SE, South East; S, South), and identified with the symbol ♦. Reference sequences are indicated by their

accession number, followed by genotype. The numbers in branches indicate the statistical support (aLRT value).

https://doi.org/10.1371/journal.pone.0220342.g001
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substitution rates using uninformative priors ranged from 7.17 × 10−5 to 3.27 × 10−4 s/s/y

(Table 2). The coefficient of rate variation for all subgenotypes was significantly higher than

zero, supporting the use of a relaxed molecular clock model.

Data from spatiotemporal reconstruction analyses using such substitution rates suggest that

subgenotype D1 possibly originated in Syria (posterior state probability (PSP) = 0.98). From

Syria, D1 migrated to Cuba (PSP = 0.58) and Brazil (PSP = 0.68), but it was not possible to

determine the time of introduction, since only one D1 sequence was available from these

countries. In Argentina, the most probable location for the origin of D1 was also Syria

(PSP = 0.86) and its tMRCA calculated as 1982 (95% HPD: 1920–2006) (Table 2; Fig 3A). Cal-

culation of the BF using SPREAD software revealed significant epidemiological relationships

(BF> 3) between Brazil/Lebanon and Argentina/Syria (Fig 4A).

The phylogeography of subgenotype D2 suggests that the most probable epicenter was Cen-

tral/Eastern Europe (Estonia, Russia, Poland and Serbia) (PSP = 0.56). The majority of the Bra-

zilian and Argentine sequences formed a single cluster (posterior probability (PP) = 0.99)

whose tMRCA was dated back to 1969 (95% HPD: 1941–1984), with Central/Eastern Europe

as the most probable source location (PSP = 0.81). On the other hand, sequences from USA

grouped with Indian sequences, and at least two different introductions of this subgenotype

seem to have occurred in USA. The main time of introduction was estimated between 1966

and 1978 from India (PSP = 0.99) (Table 2; Fig 3B). BF calculation revealed strong epidemio-

logical relationships between Brazil/Central/Eastern Europe, Brazil/Argentina, and USA/India

(Fig 4B).

Phylogeographic analysis showed Southern Europe (Italy and Spain) (PSP = 0.54) as the

putative origin of subgenotype D3. Viral sequences from Argentina, Brazil and USA segre-

gated into different clusters, suggesting multiple introductions in these countries, with

tMRCAs of the main clusters calculated as 1781 (95% HPD: 1589–1979), 1799 (95% HPD:

1615–1976) and 1965 (95% HPD: 1928–1997), respectively. In contrast, Canadian D3

sequences constituted a single monophyletic group whose tMRCA was dated back to 1855

(95% HPD: 1770–1980). Among the Caribbean D3 sequences, Martinique and Haiti clustered

together with most sequences from Brazil, while Cuba showed a distinct dispersal pathway,

grouping with viral sequences from South Asia (India and Pakistan) (Table 2; Fig 3C). Signifi-

cant migration events between Argentina/Belgium, Brazil/Argentina, Brazil/Martinique, Bra-

zil/Haiti, Brazil/Southern Europe, Brazil/Belgium, Brazil/Canada, USA/Belgium and Cuba/

South Asia were suggested (Fig 4C).

Unexpectedly, spatiotemporal reconstruction of subgenotype D4 highlighted Martinique

(PSP = 0.33) as the most probable place of origin. All D4 sequences branched in country-spe-

cific monophyletic groups that probably arose between the middle 1800s and middle 1900s

(Table 2; Fig 3D).

Additionally, we tested alternative evolutionary time scales inferred by using informative

priors based on two previously published substitution rates for HBV: (i) 1.18 x 10−5 s/s/y (95%

HPD interval: 8.04 x 10−6–1.51 x 10−5 s/s/y) calculated on the basis of heterochronous sam-

pling calibration using ancient sequences [49], and (ii) 3.7 x 10−6 s/s/y (95% HPD interval: 2.2

x 10−6–5.5 x 10−6) estimated by means of external calibrations based on human migrations

[22]. As shown in Table 3, time-scale reconstructions under both substitution rates informa-

tive priors suggested, in the vast majority of cases, tMRCA estimates for HBV/D subgenotypes

in the Americas dating back to the pre-Columbian era (before 1492).

Fig 2. Distribution of HBV/D subgenotypes in the Americas based on 1174 complete and partial genome sequences obtained from GenBank

(n = 1135) or generated in this study (n = 39). The map was reconstructed using Wikimedia Commons (https://commons.wikimedia.org/wiki/File:

BlankAmericas.png), this figure is similar but not identical to the original image and is therefore for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0220342.g002
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Discussion

To our knowledge, the present study is the first to reconstruct the spatial and temporal dynam-

ics of HBV/D in the Americas using a Bayesian framework. To this end, we conducted a survey

of HBV/D sequences and assessed the distribution of five among the 10 HBV/D subgenotypes

(D1, D2, D3, D4 and D7) throughout the continent (Argentina, Brazil, Canada, Chile, Colom-

bia, Cuba, Haiti, Martinique, Mexico, USA, and Venezuela). Interestingly, Cuba was the only

country in which all five subgenotypes were identified, which may be attributable to interac-

tions of the island with different countries over the years [34]. Brazil is the largest country in

the Southern Hemisphere corresponding to almost half of the area of South America. In Brazil,

HBV/D was identified countrywide [52–54], with the highest rates in the Southern region

where an intense flow of European immigrants had occurred [55, 56]. Here, we introduced 39

HBV/D full-length sequences corresponding to 19% (39/209) of the complete HBV genomes

from the Americas deposited in GenBank by December 2018. These new genomes represent

all HBV/D subgenotypes (D1, D2, D3 and D4) circulating in Brazil as well as the first

sequenced Brazilian D1 genome.

Recent findings from two studies using ancient samples pointed out that HBV has been

infecting humans for at least 7,000 years [49, 57]. Owing to the lack of agreement concerning

the HBV substitution rate, the times of origin and divergence of HBV genotypes and subgeno-

types are largely uncertain [21]. Accordingly, the results obtained from the phylodynamics and

phylogeography of HBV should always be carefully analyzed in combination with historical

and epidemiological knowledge.

Table 2. Bayesian estimates of evolutionary parameters of the HBV/D subgenotypes circulating in the Americas.

Subgenotype Coefficient of rate variation Substitution ratea Clade tMRCAa Location PSP
D1 0.58 (0.50–0.67) 8.41 × 10−5

(3.64 × 10−5–9.99 × 10−5)

root 1667 (1217–1774) Syria 0.98

Argentina 1982 (1920–2006) Syria 0.86

Brazil Not determinedb Syria 0.68

Cuba Not determinedb Syria 0.58

D2 0.69 (0.58–0.83) 3.27 × 10−4

(1.44 × 10−4–5.0 × 10−4)

root 1930 (1857–1967) Central/Eastern Europe 0.56

Argentina+Brazil 1969 (1941–1984) Central/Eastern Europe 0.81

USA 1978 (1935–1981) India 0.99

D3 0.72 (0.59–0.88) 2.84 × 10−4

(4.41 × 10−6–5.73 × 10−4)

root 1732 (1446–1970) Southern Europe 0.54

Argentina 1781 (1589–1979) Brazil 0.36

Brazil 1799 (1615–1976) Southern Europe 0.87

Canada 1855 (1770–1980) Brazil 0.87

Cuba Not determinedb South Asia 0.50

Haiti 2006 (1999–2006) Brazil 0.96

Martinique Not determinedb Brazil 0.99

USA 1965 (1928–1997) Belgium 0.57

D4 0.89 (0.66–1.14) 7.17 × 10−5

(1.17 × 10−5–9.99 × 10−5)

root 1614 (283 BCE–1852) Martinique 0.33

Brazil 1848 (1062–1946) Martinique 0.33

Canada 1890 (1390–1957) Martinique 0.70

Cuba 1901 (1402–1969) Martinique 0.74

Haiti 1938 (1614–1996) Martinique 0.71

Martinique 1912 (1482–1975) Martinique 0.74

BCE (Before the Current Era)
aThe 95% HPD interval is displayed in parentheses
bOnly one sequence available

https://doi.org/10.1371/journal.pone.0220342.t002
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In this study, we reconstructed the evolutionary history of HBV/D in the Americas by using

substitution rates estimated from the sampling dates of the sequences or by using rates previ-

ously estimated for HBV as informative priors for calibration of time-scale. The time-scale

reconstructions based on ancient heterochronous sequences [49] and external calibration [22]

(long-term substitution rates) recovered much older tMRCAs than those based on substitution

rates directly estimated from modern heterochronous sequences (short-term substitution

rates). Almost all tMRCAs obtained with long-term substitution rates precede the European

discovery of the Americas (~500 years ago), which is incompatible with epidemiological and

Fig 3. Bayesian maximum clade credibility tree of HBV/D full-length genome sequences. Branches are colored according to the potential locations of the

parental node (colored legend in the figure). The scale at the bottom of the tree represents years before the last sampling time. All nodes marked with an asterisk

show posterior probability> 0.90. The tree was automatically rooted under the assumption of a relaxed molecular clock. A) Subgenotype D1, last sampling time

2014; B) Subgenotype D2, last sampling time 2013; C) Subgenotype D3, last sampling time 2013; D) Subgenotype D4, last sampling time 2013.

https://doi.org/10.1371/journal.pone.0220342.g003
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Fig 4. Bayes factor (BF) test for significant non-zero HBV/D migration rates worldwide. Only rates supported by

BF greater than 3 are indicated. A) Subgenotype D1 (ARG: Argentina, BRA: Brazil, CASIA: Central Asia, CEE:

Central/Eastern Europe, EASIA: East Asia, IRN: Iran, LBN: Lebanon, NZL: New Zealand, SASIA: South Asia, SE:

Hepatitis B virus genotype D in the Americas
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historical data, since only HBV/F and HBV/H are thought to be genotypes originating in the

Americas [3, 23, 58–60]. On the other hand, spatiotemporal reconstruction using short-term

substitution rates provided an epidemiologically realistic scenario, suggesting tMRCAs for the

American HBV/D subgenotypes coincident with mass migratory movements to Americas dur-

ing the 19th and 20th centuries. Therefore, our results corroborate the concept that tip-dating

analyses of modern heterochronous HBV sequences are probably more appropriate in dating

recent dispersal events [21, 22]. Conversely, the use of deep calibrations is likely to be effective

to estimate events that are distant in time, such as the origin of viral genotypes/subgenotypes.

Our phylogeographic reconstruction showed that Syria is the most likely location for the

origin of subgenotype D1. Syrian D1 sequences were not available when previous studies sug-

gested that this subgenotype originated in Turkey [24, 26]. In fact, Syria and Turkey are geo-

graphically close and have historical links that tie the two neighboring countries together. The

Southern Europe, SYR: Syria, TUN: Tunisia, TUR: Turkey, WE: Western Europe); B) Subgenotype D2 (ARG:

Argentina, BEL: Belgium, BRA: Brazil, CASIA: Central Asia, CEE: Central/Eastern Europe, ESP: Spain, IND: India,

JPN: Japan, MEAST: Middle East, NCL: New Caledonia, TWN: Taiwan, USA: United States of America); C)

Subgenotype D3 (ARG: Argentina, BEL: Belgium, BRA: Brazil, CAN: Canada, CUB: Cuba, EASIA: East Asia, EST:

Estonia, HTI: Haiti, IDN: Indonesia, MEAST: Middle East, MTQ: Martinique, SASIA: South Asia, SE: Southern

Europe, SDN: Sudan, SWE: Sweden, USA: United States of America). The maps were reconstructed using Wikimedia

Commons (https://commons.wikimedia.org/wiki/Maps_of_the_world#/media/File:BlankMap-World.svg), this figure

is similar but not identical to the original image and is therefore for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0220342.g004

Table 3. Time to the most recent common ancestor (tMRCA) estimates for HBV/D subgenotypes by calibration with previously published substitution rates.

Subgenotype

Clade tMRCAa

Substitution rate [49]

1.18 x 10−5 (8.04 x 10−6–1.51 x 10−5)

Substitution rate [22]

3.7 x 10−6 (2.2 x 10−6–5.5 x 10−6)

D1 Root 424 BCE (1478 BCE–274) 5535 BCE (10532 BCE–2877 BCE)

Argentina 1781 (1523–1938) 1296 (361–1802)

Brazil Not determinedb Not determinedb

Cuba Not determinedb Not determinedb

D2 root 136 BCE (1416 BCE–674) 4614 BCE (9605 BCE–1732 BCE)

Argentina+Brazil 1001 (500–1324) 1066 BCE (3191 BCE–153)

USA 1305 (842–1717) 123 BCE (1974 BCE–1227)

D3 root 481 BCE (1710 BCE–346) 5764 BCE (27666 BCE–1870 BCE)

Argentina 202 (591 BCE–740) 3715 BCE (11408 BCE–962 BCE)

Brazil 165 (648 BCE–705) 3663 BCE (9718 BCE–1204 BCE)

Canada 954 (255–1526) 1231 BCE (7535 BCE–1180)

Cuba Not determinedb Not determinedb

Haiti 1993 (1979–2005) 1962 (699 BCE–2006)

Martinique Not determinedb Not determinedb

USA 1688 (1375–1889) 1040 (2624 BCE–1864)

D4 root 336 BCE (2010 BCE–736) 5285 BCE (11485 BCE–1616 BCE)

Brazil 1097 (507–1497) 840 BCE (3392 BCE–671)

Canada 1424 (981–1708) 192 (1321 BCE–1236)

Cuba 1399 (974–1656) 125 (1405 BCE–1114)

Haiti 1621 (1300–1878) 849 (306 BCE–1548)

BCE (Before the Current Era)
aThe 95% HPD interval is displayed in parentheses.
bOnly one sequence available

https://doi.org/10.1371/journal.pone.0220342.t003
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phylogeographic data suggest that the Cuban D1 originated from Syria. According to Paredes

(2000) [61], between the second half of the 19th century and the first half of the 20th century

several thousand of people, mainly from Syria, Lebanon, Palestine, Turkey, and Egypt had

migrated to Cuba. The introduction of D1 in Brazil was also suggested to have occurred from

Syria. This proposal is reinforced by the fact that Brazil has the largest Arab colony outside the

Middle East. It is estimated that about 7% of the Brazilian population is of Arab origin, the

majority from Syria and Lebanon, and the migratory movement from these countries to Brazil

was initially documented from the second half of the 19th century [62, 63]. Phylogeographic

analysis of D1 sequences from Argentina suggested a single introduction from Syria during

the early 1980s (95% HPD: 1920–2006). Similar to Brazil, Argentina received a large number

of Arab immigrants until the mid-20th century, mainly originating from Syria and Lebanon

[64].

Spatiotemporal reconstruction of subgenotype D2 suggested that this lineage originates in

Central/Eastern Europe (Estonia, Poland, Russia, and Serbia), in agreement with previous

reports [24], highlighting Russia as the most probable location of origin. The clade containing

most of the Brazilian and Argentine sequences had a tMRCA around the second half of the

20th century (95% HPD: 1941–1984), with Central/Eastern Europe as the most probable place

of origin. Although Latin America received the majority of immigrants from Southern Europe,

there was also a considerable flow of migrants from Central, East and Southeastern European

countries [65]. Between 1910 and 1929, more than 1.5 million immigrants from Central and

Eastern Europe (mainly Poland, Romania, Russia, Lithuania, and Latvia) entered Brazil for

employment in agriculture [66]. On the other hand, India was estimated to be the most likely

location for origin of subgenotype D2 in USA. Notably, HBV/D is very prevalent in India,

where at least five circulating subgenotypes have been identified (D1 to D5) [67–69] and the

second largest group of immigrants in USA is from India [70].

Dispersal pathways of subgenotype D3 in the Americas were complex including different

geographic regions and multiple introductions. Phylogeographic analysis suggested Southern

Europe (Italy and Spain) (PSP = 0.54) as the root location of D3, and Brazil as the origin place

of most dispersal pathways occurring from the late 18th century in the continent. Previous

studies based on epidemiological and historical data have suggested that subgenotype D3 was

transported to Brazil by European immigrants [55, 56]. Of note, mass European emigration to

the Americas took place from the early 19th to the mid-20th century, especially to the United

States, Argentina, Canada, Brazil, Cuba, and Uruguay. About 13 million Europeans went to

Latin America, most of them were Italians, Spaniards and Portuguese [65]. However, the lack

of complete genome sequences representing all variations of European D3 may have limited

our analysis, leading to indications of Brazil as the source location of most dispersal pathways

in the continent.

The spatiotemporal reconstruction of subgenotype D4 suggested that Martinique is the

most likely location of origin of this subgenotype. This result is incompatible with epidemio-

logical and historical data of HBV in the Americas. In the American countries, D4 has been

identified mainly in African descendant populations [31, 33, 34, 71, 72], with the exception of

D4 strains found in individuals living in the Southwestern region of the Canadian Arctic [73].

Brazil and the Caribbean received a large number of African slaves between the 16th and 19th

centuries [74, 75]. Some earlier studies suggest an African origin for subgenotype D4 [31, 71],

but none to date have performed Bayesian phylogeographic analysis. Notably, D4 has been

described in Rwanda [76], Somalia [77], Kenya [78] and Ghana [79]. However, only one com-

plete African D4 genome sequence is available (GenBank accession number KF922432), which

may have limited our analysis leading to estimates of Martinique as the place of origin of this

subgenotype. Based on the collective evidence, our hypothesis is that the D4 sequences from
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Martinique represent sequences from ancestral African populations that have introduced this

subgenotype in the Americas.

In conclusion, this study highlights the differential distribution patterns and evolutionary

dynamics of HBV/D in the Americas, supporting the utility of recently advanced phylogenetic

tools in reconstructing the evolutionary history of HBV, and provides novel full-length HBV/

D genomic sequences, increasing the contribution of Brazilian isolates to ongoing phyloge-

netic and phylogeographic studies.
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Formal analysis: Natália Spitz, Gonzalo Bello, Natalia M. Araujo.

Funding acquisition: Natalia M. Araujo.
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