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Abstract
Purpose of Review Common genetic variants that associate with type 2 diabetes risk are markedly enriched in pancreatic islet
transcriptional enhancers. This review discusses current advances in the annotation of islet enhancer variants and their target
genes.
Recent Findings Recent methodological advances now allow genetic and functional mapping of diabetes causal variants at
unprecedented resolution. Mapping of enhancer-promoter interactions in human islets has provided a unique appreciation of
the complexity of islet gene regulatory processes and enabled direct association of noncoding diabetes risk variants to their target
genes.
Summary The recently improved human islet enhancer annotations constitute a framework for the interpretation of diabetes
genetic signals in the context of pancreatic islet gene regulation. In the future, integration of existing and yet to come regulatory
maps with genetic fine-mapping efforts and in-depth functional characterization will foster the discovery of novel diabetes
molecular risk mechanisms.

Keywords Transcriptional enhancers . Human genetics . Type 2 diabetes . Gene regulation . Epigenomics . Noncoding genome
function

Introduction

In recent years, clinical genomics and the investigation of
noncoding genome functions, including microRNAs
(miRNAs), long noncoding RNAs (lncRNAs) and tran-
scriptional enhancers, have proved to be fertile ground
to the discovery of genetic disease mechanisms [1].
Sequence variation leading to altered enhancer function
is now appreciated as a driving mechanism in cancer
[2–4] and a number of Mendelian disorders are caused
by mutations affecting tissue-specific cis-regulatory ele-
ments [5], including non-syndromic pancreas agenesis
[6]. The overwhelming majority of genetic variants asso-
ciated with common human diseases and disease-

associated traits are noncoding and concentrate within ac-
cessible chromatin regions of disease-relevant tissues [7].
This observation is also true for type 2 diabetes (T2D), for
which common noncoding variants predominantly influ-
ence risk [8•], residing in pancreatic islet transcriptional
enhancers [9–12, 13••, 14, 15], particularly within clus-
tered enhancers [9–13]. Thus, most of the genetic suscep-
tibility to T2D seems to arise from islet regulatory defects,
which aligns well with the observation that many T2D-
associated variants also affect measures of pancreatic β
cell function [14–16]. Moreover, recent reports indicate
that islet enhancers also harbour genetic variants that con-
fer susceptibility to type 1 diabetes [17], even if not to the
same extent as for T2D [18]. These observations com-
bined with recent technological advances have prompted
the production of evermore refined maps of human islet
cis-regulatory elements in recent years, including whole
islet, cell type-specific and disease state-specific maps,
improving the functional annotation of diabetes risk vari-
ants. In this review, I cover the progress that has been
made in the mapping of active islet enhancers and its
implications for the identification of causal diabetes risk
variants.
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A Decade of Islet Regulomes: Restricting
the Search Space for Diabetes Causal Variants

Since T2D risk variants are mostly noncoding [8•] and pre-
dominantly enriched in islet enhancers [9–12, 13••, 14, 15],
defining the regulatory regions that are active in pancreatic
islets is key to identifying truly causal variants. Several itera-
tions of human islet cis-regulatory maps or regulomes have
been built to date and a number of publicly accessible genome
browsers now host human islet regulomes, including the
Roadmap Epigenomics Project (https://egg2.wustl.edu/
roadmap/web_portal/), the Islet Regulome Browser (www.
isletregulome.org/) and the Diabetes Epigenome Atlas
(https://www.t2depigenome.org/).

Although providing an exhaustive overview of the evolu-
tion of islet enhancer maps is not the aim of this review, a few
general points are still worth mentioning. In earlier maps, islet
enhancers were defined as broad domains enriched in typical
active chromatin marks (H3K4me1 and H3K27ac), often
spanning several kilobases, whereas currently enhancers are
more commonly defined as accessible chromatin sites typical-
ly spanning 300–500 bp that overlap chromatin regions
enriched in active chromatin features. Moreover, due to lower
starting material requirements, ATAC-seq [19] was adopted in
recent years as the standard method to map regulatory chro-
matin sites in human islets [12, 13••, 20, 21•, 22].

Improved understanding of the biochemical properties that
distinguish active from inactive chromatin has enabled a pro-
gressive subcategorization of islet accessible chromatin regions
and identification of specific enhancer subsets that are more
relevant for diabetes risk. For example, Miguel-Escalada et al.
have recently sub-classified active human islet enhancers into
three classes according to their enrichment in active chromatin
features (H3K27ac and the coactivator complex Mediator)
[13••]. This subclassification revealed a subset of 13,635 strong
islet enhancers that tended to regulate islet-specific genes and
contribute more to diabetes and β cell-related trait heritability
than other enhancer subsets [13••]. In another study, profiling of
DNAmethylation in human islets from 10 donors using whole-
genome bisulphite sequencing revealed that T2D risk variants
concentrate within open and hypomethylated regions [21•].
Future studies profiling additional enhancer features, including
eRNA production [23] and enrichment in additional enhancer-
associated histone modifications [24], have the potential to help
obtain further granularity to recognize additional diabetes-
relevant islet enhancer categories.

Strategies to Improve Causal Variant
Mapping

A big challenge to transpose the knowledge arising from ge-
netic association studies to disease mechanisms is the fact that

the most significant variants identified in genome-wide asso-
ciation studies (GWAS) may not be the true causal ones, but
simply be in high linkage disequilibrium with the causal var-
iant. Several approaches may be taken to improve the resolu-
tion of causal variant mapping, including the analysis of larger
numbers of individuals [25••] in diverse populations [26–29],
and by applying genetic fine-mapping [18, 25••, 30–32]
(reviewed in [33]). Remarkably, a recent meta-analysis of ~
900,000 European descent individuals using genetic fine-
mapping has expanded the repertoire of T2D risk loci to >
240 and i so l a t ed s i ng l e causa l va r i an t s a t 18
association signals [25••]. Parallel efforts with > 400,000
East-Asian individuals implicated 56 additional loci,
highlighting that the quest to identify T2D-associated loci is
probably not over yet [34••].

It is reasonable to assume that for a given T2D locus where
coding variants are not likely to be causal, variants residing
within cis-regulatory elements are more likely to be driving
the genetic risk (Fig. 1). This principle is the basis of FGWAS
[35], in which the likelihood of a given GWAS variant being
causal is weighted by functional annotations such as histone
modification enrichment, chromatin accessibility or DNA
methylation status [21•]. FGWAS has already been applied
by a number of studies to fine-map T2D risk loci [8•, 21•,
25••, 36], with reported reductions in the order of 35% of
the number of T2D-associated variants at specific loci [8•].

In order to correctly refine the sets of T2D variants
using functional genomic data, not only sample purity
and data quality are important, but also the type of
functional data that is used to prioritize variants. For
example, it has been observed that islet chromatin ac-
cessibility is more predictive of regulatory impact than
DNA methylation [21•]. Moreover, clustered enhancers
are more enriched in T2D variants than “orphan” en-
hancers [9, 10]. More recent analyses have also demon-
strated that refining islet enhancer maps can help iden-
tify a restricted segment of the genome that is more
relevant for islet gene regulation and, consequently, to
T2D risk via β cell function impairment [13••]. In this
study, an enhancer subset defined by strong enhancers
that cluster in 3D (see the section “Enhancer Clusters in
3D” for details) was found to contribute more to the
heritability of T2D and traits related of β cell function
(HOMA-B and insulinogenic index from oral glucose
tolerance test) compared to other classes of enhancers.
Notably, this result was achieved not by covering a
larger proportion of the genome with this annotation
but, on the contrary, by restricting the annotation to
open chromatin sites (marked by ATAC-seq) within re-
gions that presented multiple features associated with
tissue-specific regulation, such as stronger ChIP-seq en-
richment in H3K27ac/Mediator, and being promoter-
interacting.
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Demonstrating Variant Causality

It is assumed that genetic variation in islet enhancers leads to
changes in transcription factor binding and, consequently, en-
hancer activity and gene regulation. One way to measure this
is by computing changes in transcription factor (TF) binding
affinity using TF motif analysis, but this strategy is limited to
known TF recognition sequences, which have only been iden-
tified for two thirds of human TFs [37]. Moreover, the pres-
ence of a particular TF motif in an enhancer does not neces-
sarily reflect that it is a genuine binding site for that TF. In
reality, in vivo TF binding is influenced by multiple factors,
including cofactors, cooperativity, concentration and even
chromatin shape [38]. A less biased approach is to directly
interrogate sequence-dependent enhancer activity (Fig. 1).
This strategy was successfully applied for a number of T2D-
associated enhancer variants (see Table 1 for examples).
Nonetheless, enhancer reporter assays also have limitations,
as they interrogate candidate enhancer sequences outside of
their native context. An alternative to address this question is
to directly probe the epigenomic profiles from multiple indi-
viduals to identify genetic variants that confer allele-
dependent chromatin activity (chromatin activity quantitative
trait loci, QTLs) (Fig. 1). Three studies have already yielded
encouraging results by performing chromatin accessibility
QTL (caQTL) analysis on human islet ATAC-seq profiles
from 17 [21•], 19 [20] and 23 individuals [22]. In one of these
studies, Thurner et al. confidently reduced T2D GWAS sig-
nals at CAMK1D, KLHDC5 and ADCY5 to single regulatory
variants by combining genetic fine-mapping, FGWAS and
caQTL analysis [21•]. In another study, Khetan et al. identified
nearly three thousand SNPs that yielded allele-dependent
changes in islet chromatin accessibility, including 13 T2D-
associated variants [20]. This number was later increased to
24 T2D variants by addition of four new islet samples [22].
Thus, future analyses with larger sample sizes and meta-
analysis of existing human islet ATAC-seq datasets [12, 13,
20, 21•, 22, 39] hold promise for uncovering additional T2D
risk variants that influence islet enhancer function. Similarly,
allelic imbalance analysis of active chromatin histone modifi-
cations, such as H3K27ac, and islet TF occupancy may assist
the identification of T2D regulatory variants, as it has been
demonstrated at individual T2D loci [17, 40].

Enhancer Clusters in 3D

Three-dimensional (3D) chromatin studies with techniques
such as Hi-C [41] and genome architecture mapping (GAM)
[42], which allow identification of pairwise chromatin inter-
actions in the entire genome, have put back in the spotlight 3D
genome organization in the context of gene regulation and

disease, and a number of recent reviews cover this topic ex-
tensively [43–45, 46•].

In one of the earlier maps of islet enhancers, the authors
noted that islet-specific genes tended to be regulated not by
one, but by multiple enhancer clusters [10]. In the same study,
the authors detected long-range interactions between single
promoters and multiple enhancers by performing circular
chromosome conformation capture coupled with high-
throughput sequencing (4C-seq) in nine loci [10]. These ob-
servations lend plausibility to the hypothesis that clustered
enhancers form higher-order 3D regulatory structures to con-
trol cell-specific expression, and agree with well-characterized
higher-order 3D regulatory structures detected in specific loci,
including the HoxD cluster [47], and the α- and β-globin loci
[48, 49]. However, the extent to which the formation of
higher-order 3D regulatory structures is a general property of
enhancers and enhancer clusters, and its contribution to the
establishment of tissue-specific cis-regulatory programs could
not be fully appreciated in these studies.

Recently, Ferrer and colleagues have addressed this ques-
tion by generating a high-resolution map of promoter-
mediated interactions in human pancreatic islets from four
different donors using promoter capture Hi-C (pcHi-C)
[13••]. In agreement with earlier observations [10], the authors
observed that (1) islet genes often interact with multiple en-
hancers and clusters of enhancers and that (2) islet enhancers
often interact with multiple target genes. Similar observations
were made in a lower resolution map of 3D chromatin con-
tacts obtained by performing Hi-C in three human islet sam-
ples [22]. Overall, this demonstrates that islet enhancers and
their target promoters reside in restricted 3D chromatin do-
mains, named enhancer hubs for their highly connected nature
[13••]. Using a systematic approach, the authors defined >
1300 islet enhancer hubs, defining the portion of the genome
that is particularly enriched in islet enhancers and islet
enhancer-promoter interactions. Enhancer hubs include genes
that tend to bemore islet enriched and predominantly involved
in islet cell function and diabetes risk [13••]. These results
agree with work performed in other human cell lineages,
where super-enhancers were found to regulate tissue-specific
genes within frequently interacting regions (FIREs) [50].
Although the methods applied in these studies could not dis-
cern whether the detected pairwise chromatin interactions oc-
cur simultaneously or alternate, multi-way contacts between
enhancers and promoters have been detected in other settings
using techniques such as GAM [42], Tri-C [48] and multi-
contact 4C [51]. It is thus likely that similar multi-way enhanc-
er-promoter contacts exist in human pancreatic islet
chromatin.

Beyond their role as genomic regions that passively har-
bour regulatory elements and genes important for tissue-
specific regulation, there is evidence indicating that enhancer
hubs also represent functional units that are important for islet
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Fig. 1 Overview of the workflow
to prioritize noncoding variants
and target gene investigation in
T2D. Enhancer loss-of-function
(LOF)1: enhancer LOF can be
achieved by either indels at the
core region (transcription factor
binding sites), full deletion, or
CRISPR-mediated inhibition
(CRISPRi). Enhancer gain-of-
function (GOF)2: CRISPR-
mediated activation. Please note
that the schematic does not
provide an exhaustive list of all
possible methods to prioritize
genome-wide association study
(GWAS) variants due to space
limitations, providing instead the
most frequently applied
approaches
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gene regulation. Multiple lines of evidence support this no-
tion, both in steady-state and in dynamic settings. First, the
activity of enhancers and genes contained in the same hub
tends to correlate more than for those located outside hubs
[13••], an observation analogous to cis-regulatory domains
recently defined in a large series of lymphoblastoid cell lines
and primary fibroblasts [52]. Second, when comparing en-
hancer activity in two different glucose concentrations (4
and 11 mM), hub enhancers frequently showed coordinated
changes in their activity, not only in terms of direction of
effect, but also in effect size [13••]. Third, perturbations of
single hub enhancers or promoters with CRISPR in the
glucose-responsive pancreatic β cell line EndoC βH3 [53]
frequently yielded changes in the expression of multiple genes
in the same hub, demonstrating connectivity of hub cis-regu-
latory elements [13••]. There is therefore cumulative evidence
indicating that 3D regulatory domains such as enhancer hubs
are key for the establishment and maintenance of cell identity
and function. Given the presence of many T2D risk variants in
islet enhancers, particularly in strong hub enhancers [13••],
these observations raise the question of whether individual
T2D variants could be involved in dysregulation of multiple
genes and gene pathways.

Harnessing 3D Genome Maps to Identify
Diabetes Effector Transcripts

On its own, the observation that T2D risk variants predomi-
nantly locate to islet enhancers, will not bring us closer to
identifying disease effector transcripts, as genome folding en-
ables transcriptional enhancers to act over genes at varying
distances in the linear genome, sometimes even over non-
adjacent genes located hundreds of kilobases away (reviewed
in [44]). The top obesity-associated locus illustrates well this
model, in which the risk variant resides in an intronic enhancer
at FTO and regulates the expression of two distal genes (IRX3
and IRX5), but not the FTO gene [54, 55•]. Thus, enhancer-
promoter functional relationships cannot be by simply in-
ferred by examining linear representations of the genome.

A few studies have aimed to link noncoding T2D
risk variants to target genes using human islet expres-
sion quantitative trait loci (eQTL) analysis [13••, 56–58,
59•], the latest of which included pancreatic islet RNA-
seq from 420 donors [59•] and identified candidate ef-
fector transcripts for 23 loci. While the results are en-
couraging, they still fall short from delivering a compre-
hensive assignment of regulatory variants to effector
transcripts. Approaches such as chromosome conforma-
tion capture (3C) techniques, including Hi-C [41],
ChIA-PET [60] and HiChIP [61], yield genome-scale
maps of long-range functional chromatin interactions,
but it should be noted that 3C methods are usually

biased for detection of long-range interactions. Thus,
eQTL and chromatin interaction studies should be taken
as complementary, rather than alternative, approaches to
identity disease effector transcripts (Fig. 1).

Islet 3D promoter-enhancer contacts were first used to de-
fine the regulatory landscapes for a select number of loci [10,
40, 62]. More recently, two studies aimed to associate islet
enhancers with target genes using genome-scale 3D chromatin
contact mapping in human pancreatic islets [13••, 22] and one
in the pancreaticβ cell line EndoCβH1 [63]. Greenwald et al.
generated Hi-Cmaps in three human islet samples, identifying
3022 islet enhancers (6.7% of all enhancers mapped in the
study) looping to at least one promoter [22]. As in other re-
ports of enhancer-promoter 3D interactions, islet chromatin
maps have revealed substantial number of very long-range
interactions, sometimes spanning over 1 Mb [13••, 22]. Hi-C
and ChIA-PET in EndoC βH1 cells demonstrated the overall
suitability of this cell line to study islet cis-regulatory func-
tions, with high correlation of interaction profiles across most
loci [63]. Hi-C maps, however, offer limited resolution to
identify specific functional interactions [64], and targeted
methods that enrich Hi-C libraries for genomic regions of
interest have the potential to uncover a larger number of func-
tional 3D chromatin interactions, being therefore more infor-
mative on the target genes of disease-associated distal regula-
tory elements [65]. Following this logic, Miguel-Escalada
et al. applied a variant of Hi-C, promoter capture Hi-C
(pcHi-C), to enrich the maps of islet 3D chromatin interactions
in promoter-mediated interactions [13••]. Using this approach,
the authors substantially improved the mapping of enhancer-
promoter interactions, detecting one ormore interactions for ~
40% of all annotated enhancers (18,031 enhancers). The high-
ly connected nature of particular loci and the definition of
enhancer hubs (see the section “Enhancer Clusters in 3D”
for details) allowed the authors to infer target genes for a
further 40% of the mapped islet enhancers, assigning in total
53 T2D- or fasting glycaemia-associated enhancers to at least
one target gene. Surprisingly though, in 75% of the loci where
at least one risk SNP falls in an islet enhancer, the authors
linked it to one or more distal genes [13••]. This observation
has been partially supported by human islet eQTL studies,
where a few T2D-associated SNPs have been linked to genes
other than their closest, including variants at CDC123 (linked
to CAMK1D), ARAP1 (STARD10) and ZBED3 (PDE8B)
[13••, 57, 58, 59•], and by CRISPR-mediated perturbations
of diabetes-associated enhancers [13••].

At the ZBED3 locus, for example, CRISPR-mediated acti-
vation or repression of an islet enhancer carrying a regulatory
T2D risk variant [22, 25••] in EndoC βH3 cells resulted in
changes in the expression of multiple genes [13••]. Of the
affected transcripts, PDE8B showed the strongest response
to the enhancer perturbations. This result is quite interesting
in light of the most recent human islet eQTL study, where
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PDE8B was identified as the effector transcript of this associ-
ation signal [59•]. In this case, PDE8B seems like a good
candidate to pursue with functional studies, as it encodes for
a high-affinity cAMP-specific phosphodiesterase and its re-
duction has been proposed as an approach to enhance insulin
response to glucose [66]. It must be noted however that chang-
es in PDE8B levels may not make up the full story in this T2D
locus, as the CRISPR enhancer perturbations in humanβ cells
affected additional genes, including the lncRNA ZBED3-AS1
and ZBED3 itself [13••]. Long noncoding RNAs can have
diverse functions and have been proposed as targets for mod-
ulation of diabetes-relevant genes in islets [67]. ZBED3 is a
secreted protein, whose higher circulating levels have been
associated with insulin resistance [68] and metabolic syn-
drome [69]. Furthermore, this T2D-associated enhancer is al-
so active in adipose tissue [70]. Thus, genetic variation at
ZBED3 could in theory contribute to diabetes risk via multiple
cell-specific processes. Overall, these results illustrate how
complex the genetic factors that contribute to T2D may be
from a molecular standpoint, and exemplify the complemen-
tarity of islet 3D genome maps, eQTL and (epi)genome
editing approaches to better define disease effector transcripts
and gain insights into the molecular underpinnings of specific
GWAS signals. More generally, these studies have important
implications for the general interpretation of GWAS signals,
which traditionally assign association signals to their nearest
gene.

Islet Enhancer Landscapes Are Dynamic

The interaction between chromatin landscapes and T2D goes
beyond the co-localization of risk variants with islet en-
hancers. In reality, islet enhancers are dynamically regulated,
responding to external stimuli such as elevated glucose con-
centrations [13••] or exposure to pro-inflammatory cytokines
[71••]. Thus, mapping of islet enhancers under different con-
ditions may uncover new diabetes-related molecular mecha-
nisms, as it has been recently shown in the context of type 1
diabetes [71••].

Studies comparing islets from donors with diabetes versus
those from donors without the disease have demonstrated that
T2D associates with changes at both transcriptional [56, 72]
(single-cell studies addressing this question have been
reviewed in [73•]) and chromatin levels [20, 21•, 39, 74,
75]. Significant changes were already detected when compar-
ing the ATAC-seq profiles of islets from five donors with
diabetes versus five donors without diabetes [20]. It must be
noted however that the majority of T2D-associated changes
were quantitative, not qualitative. In other words, the authors
did not find evidence that T2D islets have a different set of
active enhancers. Instead, the activity level of existing en-
hancers was found altered [20]. This observation seems sen-
sible considering that T2D is progressive in nature and does
not constitute a severe disease with strong transcriptional phe-
notypes, as observed in developmental disorders or cancer.

Table 1 Functional T2D-associated variants in islet enhancers

T2D locus Variant Risk
allele
effect
direction1

Likely
effector
transcript(s)
in islets2

Experimental evidence of variant/enhancer function in islet cells TF

Luciferase EMSA eQTL caQTL hQTL mQTL CRISPR

ADCY5 rs11708067 Down ADCY5 [40] [40] [40, 57] [20,
21•]

[40] [21•] [40]

ARAP1/STARD10 rs140130268 Down STARD103 [36] [13••, 36, 57]
C2CD4A/B rs7163757 Up C2CD4A/B3 [98] [98] [13••] NFAT
CDC123/CAMK1D rs11257655 Up CAMK1D

andOPTN
[13••, 99] [99] [13••, 57] [21•] [13••] FOXA1/FOXA2

GLIS3 rs42371504 Up GLIS3 [13••] [17] [17] [17] [13••]
IL20RA rs6937795 Up IL20RA [20] [20]
DGKB rs102287964 Up DGKB [59•] [59•] [59•]
JAZF1 rs1635852 Down JAZF1 [100] [100] PDX1
KLHDC5 rs10842991 Up KLHDC53 [12] [21•] PAX6
MTNR1B rs10830963 Up MTNR1B [30] [30] [57, 101] [20] NEUROD1
TCF7L2 rs7903146 Up TCF7L2 [102] [59•] [102] [13••]
ZBED3 rs4457054 Up PDE8B and

ZBED33
[22] [59•] [13••]

ZFAND3 rs58692659 Down ZFAND3 and
MDGA13

[10] [10] [13••] NEUROD1

ZMIZ1 rs12571751 Up ZMIZ13 [57] [20]

1 Down: risk allele associates with less enhancer activity/target gene mRNA expression in islets; Up: risk allele associates with more enhancer activity/
target gene mRNA expression in islets
2 Only transcripts with the strongest evidence are listed
3Additional putative effector transcripts for this locus have been identified by promoter capture Hi-C analysis in [13••]
4 Other T2D risk variants in the same islet enhancer also alter enhancer activity in episomal reporter assays
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Further supporting the dynamic nature of islet chromatin
landscapes, global loss of polycomb repression has been as-
sociated with β cell dedifferentiation, diabetes and age [74,
76], while other studies identified differentially methylated
regions in T2D islets [21•, 75]. Altogether, these observations
render several questions that should be addressed in future
studies: do T2D risk variants affect islet enhancer dynamics,
and do factors such as age and metabolic state change the
regulatory impact of T2D variants?

Islet Cell-Specific Enhancers

As shown in the sections above, the study of whole human
islets has provided important insights into the genetic archi-
tecture of T2D, fine-mapping noncoding sequences that are
important for islet gene regulation. However, these studies
were not designed to address the cellular heterogeneity of
pancreatic islets [77], in which distinct endocrine cell lineages
contribute to glucose homeostasis, including the glucagon-
producing α, insulin-producing β and somatostatin-
producing δ cells. Islet morphological and functional hetero-
geneity goes beyond the known endocrine cell lineages, as
different β cell subpopulations have also been detected
[78–80]. Furthermore, analysis of whole islets may not detect
features restricted to rare, but nonetheless important, endo-
crine cell types. Reflecting the functional heterogeneity of islet
cells, their transcriptomes differ substantially, as it has been
observed in sorted cell populations [81], by deploying single-
cell RNA-seq [73•] and, more recently, using single-molecule
RNA FISH [82]. Transcriptional-level differences often re-
flect different chromatin landscapes. Indeed, even closely re-
lated cell lineages, such as pancreatic islet α and β cells, show
differences at chromatin level, with differential methylation of
cell-specific enhancer sites [83]. In an elegant study by Seung
Kim and colleagues, the authors combined purification of
specific pancreatic cell populations with ATAC-seq and
ChIP-seq analysis to generate regulomes for human α, β,
acinar and ductal cells [84••], identifying thousands of en-
hancers and promoters that are lineage-specific, including
3999 β and 5316 α cell-specific regulatory regions. In these
cell-specific regulatory maps, endocrine lineage-specific re-
gions tended to locate near genes generally involved in glu-
cose homeostasis (e.g. INS, GCG, GLP1R, IRS1/2) and were
enriched in T2D-associated variants, in contrast with non-
endocrine lineages [84••].

More recently, single nuclei ATAC-seq (snATAC-seq) was
deployed on human islets from three donors, revealing 13 cell
clusters with different regulatory landscapes, which included
the classic hormone expressing α, β and δ cells, but also
usually less appreciated islet cell populations such as immune
and endothelial cells [85••]. Reflecting the different regulatory
landscapes that co-occur in islets, this study revealed that

regulatory elements of different lineages are enriched in dif-
ferent sets of TF recognition sequences. Moreover, in agree-
ment with reports of heterogeneity among β cells [78–80], the
authors detected two β cell clusters characterized by different
accessibility of the insulin promoter (INShigh and INSlow).
Interestingly, although both INShigh and INSlow accessible
sites were enriched in T2D- and fasting glycemia-associated
variants, INShigh sites revealed a stronger enrichment [85••].
The value of these cell-specific regulatorymaps is exemplified
at DGKB, where a fine-mapped T2D risk variant that modu-
lates regulatory activity [59•] was found in an INShigh-specific
accessible region [85••]. Strikingly, this regulatory region was
not previously annotated as active in bulk islet enhancer maps
[59•]. Altogether, these studies provide a new layer of detail
for the interpretation of T2D-associated variants and will aid
the identification of affected cell-specific processes.

Perspectives and Future Directions

Great progress has been made in recent years to define the
epigenomic landscape of human pancreatic islets, but the stud-
ies discussed in this review also highlight that the picture we
currently have of the genetic architecture of polygenic diabe-
tes is probably a lot more complex than previously anticipat-
ed. Future studies are likely to uncover even more common
variants that confer diabetes risk. In particular, the greater
investigation of non-European populations is likely to point
to novel implicated loci [34••].

On the other hand, the advent of technologies that enable
epigenomic profiling at single-cell resolution is expected to
further advance the identification of cell-specific, as well as
developmental-, metabolic- and disease stage-specific regula-
tory elements. A recently developed strategy proposed by the
Buenrostro lab is particularly promising, having taken the
throughput of single-cell ATAC-seq to the hundreds of thou-
sands of cells with deeper genome coverage than previous
methods [86]. Similar progress is being made to profile chro-
matin histone modifications at single-cell level, with single-
cell ChIP-seq [87] and CUT&Tag [88]. It is therefore expected
that in the near future more studies will address the regulatory
landscapes of human pancreatic islets at single-cell level,
hopefully obtaining important insights into the cis-regulatory
networks that drive islet dysfunction in diabetes, as demon-
strated by the first islet epigenomic maps with single-cell res-
olution [85••]. Greater attention is also expected to be given to
the regulatory mechanisms that associate with β cell dysfunc-
tion during different diabetes disease trajectories [89•, 90].

In order to draw clinically relevant conclusions, genomic
evidence of causality, including genetic association,
epigenomic annotation, eQTL and caQTL, will have to pass
through detailed functional validation in appropriate cellular
and animal models (Fig. 1). Mechanistic studies of T2D-
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associated enhancers and putative effector transcripts should
be designed taking into account the direction of effect of T2D
variants, as not all T2D risk variants lead to loss-of-function
(Table 1). Furthermore, future examination of risk variants
should aim to go beyond regulatory and transcriptional out-
puts and also assess relevant cellular functions, as previously
shown at ZMIZ1 [57], ADCY5 [40], ARAP1/STARD10 [36],
and SLC30A8 [91] and at genome-scale [92]. β cell genome
and epigenome editing at individual loci [13••, 40] and in the
shape of large-scale screens [93] have already started to pro-
vide a better understanding of the regulatory mechanisms that
operate at T2D-associated loci. It is thus expected that addi-
tional application of these methodologies to investigate puta-
tive causal variants in their genomic and cellular contexts will
advance our understanding of diabetes genetic risk processes.
Balboa et al. have recently provided a thorough overview of
the applications of genome editing in human pancreatic β cell
models [94••].

Despite the strong enrichment of T2D variants in islet en-
hancers, it is clear that not all risk variants act via islet dys-
function, as some correlate with insulin resistance [16, 95].
What is more, a subset of T2D-associated islet enhancers are
also active in other diabetes-relevant tissues, such as adipose
tissue and the liver [25••]. Thus, combining islet epigenomic
maps with those of other relevant tissues will enable a more
comprehensive characterization of risk variants.

Altogether, these studies have the potential to enable
stratification of individuals by genetic risk of undergoing
a specific disease trajectory [89•, 96]. At least five dis-
tinct pathways have been reported to drive T2D risk,
including two related to β cell function [97•]. This con-
cept has been recently tested by deploying islet enhancer
maps to identify individuals at higher risk of developing
T2D due to islet dysfunction [13••]. Individuals in this
group tended to develop T2D at a younger age and with
lower BMI, resembling to some extent individuals who
present monogenic forms of diabetes, which is predomi-
nantly caused by mutations in islet TFs. Future studies
with inclusion of even more refined enhancer maps for
islets and other T2D-relevant tissues may therefore help
deliver personalized medicine to at least a subset of pa-
tients with T2D.

Conclusions

Great progress has been made in recent years to assist
efforts to define islet cell-specific diabetes risk mecha-
nisms using enhancer maps. Nevertheless, the studies
discussed in this review also highlight that the picture
we currently have of the genetic architecture of polygenic
diabetes is probably still incomplete. Future studies
leveraging on lower sequencing costs, technological

advances such as application of machine learning for non-
coding variant prioritization, ATAC-seq on clinical speci-
mens, single-cell genomics and genome-scale genetic
screens, as well as on the wealth of epigenomic datasets
that are already available, will further the discovery of
diabetes risk mechanisms and aid patient stratification
by molecular aetiology.

Acknowledgements I would like to thank Goutham Atla (Centre for
Genomic Regulation), Anthony Beucher and Vahid Elyasigomari
(Imperial College London) for the valuable input on the original manu-
script and all the human islet researchers who have deposited their re-
search articles in bioRxiv ahead of publication, enabling this review to be
as up-to-date as possible.

Compliance with Ethical Standards

Conflict of Interest Inês Cebola declares that she has no conflict of
interest.

Human and Animal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by the
author.

References

Papers of particular interest, published recently, have been
highlighted as:
• Of importance
•• Of major importance

1. Gloss BS, Dinger ME. Realizing the significance of noncoding
functionality in clinical genomics. Exp Mol Med. 2018;50:97.
https://doi.org/10.1038/s12276-018-0087-0.

2. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA,
et al. Super-enhancers in the control of cell identity and disease.
Cell. 2013;155:934–47. https://doi.org/10.1016/j.cell.2013.09.
053.

3. Ongen H, Andersen CL, Bramsen JB, Oster B, Rasmussen MH,
Ferreira PG, et al. Putative cis-regulatory drivers in colorectal
cancer. Nature. 2014;512:87–90. https://doi.org/10.1038/
nature13602.

4. Cohen AJ, Saiakhova A, Corradin O, Luppino JM, Lovrenert K,
Bartels CF, et al. Hotspots of aberrant enhancer activity punctuate
the colorectal cancer epigenome. Nat Commun. 2017;8:14400.
https://doi.org/10.1038/ncomms14400.

5. Miguel-Escalada I, Pasquali L, Ferrer J. Transcriptional en-
hancers: functional insights and role in human disease. Curr
Opin Genet Dev. 2015;33:71–6. https://doi.org/10.1016/j.gde.
2015.08.009.

145 Page 8 of 12 Curr Diab Rep (2019) 19: 145

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

https://doi.org/10.1038/s12276-018-0087-0
https://doi.org/10.1016/j.cell.2013.09.053
https://doi.org/10.1016/j.cell.2013.09.053
https://doi.org/10.1038/nature13602
https://doi.org/10.1038/nature13602
https://doi.org/10.1038/ncomms14400
https://doi.org/10.1016/j.gde.2015.08.009
https://doi.org/10.1016/j.gde.2015.08.009


6. WeedonMN, Cebola I, Flanagan SE, et al. Recessive mutations in
a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat
Genet. 2014;46:61–4. https://doi.org/10.1038/ng.2826.

7. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E,
Wang H, et al. Systematic localization of common disease-
associated variation in regulatory DNA. Science. 2012;337:
1190–5. https://doi.org/10.1126/science.1222794.

8.• Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala
V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes.
Nature. 2016;536:41–7. https://doi.org/10.1038/nature18642
This study demonstrates that the genetic basis of T2D arises
predominantly from common noncoding variants of small
effect size.

9. Parker SCJ, Stitzel ML, Taylor DL, Orozco JM, Erdos MR,
Akiyama JA, et al. Chromatin stretch enhancer states drive cell-
specific gene regulation and harbor human disease risk variants.
Proc Natl Acad Sci U S A. 2013;110:17921–6. https://doi.org/10.
1073/pnas.1317023110.

10. Pasquali L, Gaulton KJ, Rodríguez-Seguí SA, Mularoni L,
Miguel-Escalada I, Akerman İ, et al. Pancreatic islet enhancer
clusters enriched in type 2 diabetes risk-associated variants. Nat
Genet. 2014;46:136–43. https://doi.org/10.1038/ng.2870.

11. Cebola I, Pasquali L. Non-coding genome functions in diabetes. J
Mol Endocrinol. 2016;56:R1–R20. https://doi.org/10.1530/JME-
15-0197.

12. Varshney A, Scott LJ,Welch RP, ErdosMR, Chines PS, Narisu N,
et al. Genetic regulatory signatures underlying islet gene expres-
sion and type 2 diabetes. Proc Natl Acad Sci U S A. 2017;114:
2301–6. https://doi.org/10.1073/pnas.1621192114.

13.•• Miguel-Escalada I, Bonàs-Guarch S, Cebola I, et al. Human pan-
creatic islet three-dimensional chromatin architecture provides in-
sights into the genetics of type 2 diabetes. Nat Genet. 2019;51:
1137–48. https://doi.org/10.1038/s41588-019-0457-0 This study
provides a genome-wide map of human islet 3D chromatin
interactions, linking diabetes-associated enhancers to target
genes, and exemplifies the integration of islet epigenomic an-
notations with 3D interaction maps, eQTLs and CRISPR
validations.

14. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N,
Jackson AU, et al. New genetic loci implicated in fasting glucose
homeostasis and their impact on type 2 diabetes risk. Nat Genet.
2010;42:105–16. https://doi.org/10.1038/ng.520.

15. Scott RA, Lagou V, Welch RP, et al. Large-scale association anal-
yses identify new loci influencing glycemic traits and provide
insight into the underlying biological pathways. Nat Genet.
2012;44:991–1005. https://doi.org/10.1038/ng.2385.

16. Scott RA, Scott LJ, Magi R, et al. An expanded genome-wide
association study of type 2 diabetes in Europeans. Diabetes.
2017;66:2888–902. https://doi.org/10.2337/db16-1253.

17. Aylward A, Chiou J, Okino M-L, Kadakia N, Gaulton KJ. Shared
genetic risk contributes to type 1 and type 2 diabetes etiology.
Hum Mol Genet. 2018. https://doi.org/10.1093/hmg/ddy314.

18. Onengut-Gumuscu S, Chen W-M, Burren O, et al. Fine mapping
of type 1 diabetes susceptibility loci and evidence for
colocalization of causal variants with lymphoid gene enhancers.
Nat Genet. 2015;47:381–6. https://doi.org/10.1038/ng.3245.

19. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ.
Transposition of native chromatin for fast and sensitive
epigenomic profiling of open chromatin, DNA-binding proteins
and nucleosome position. Nat Methods. 2013;10:1213–8. https://
doi.org/10.1038/nmeth.2688.

20. Khetan S, Kursawe R, Youn A, Lawlor N, Jillette A, Marquez EJ,
et al. Type 2 diabetes-associated genetic variants regulate chroma-
tin accessibility in human islets. Diabetes. 2018;67:2466–77.
https://doi.org/10.2337/db18-0393.

21.• Thurner M, van de Bunt M, Torres JM, Mahajan A, Nylander V,
Bennett AJ, et al. Integration of human pancreatic islet genomic
data refines regulatory mechanisms at type 2 diabetes susceptibil-
ity loci. Elife. 2018;7:1363. https://doi.org/10.7554/eLife.31977
This study showcases how integration of multiple
epigenomic datasets, including DNA methylation, can be
used to functionally fine-map T2D risk variants.

22. Greenwald WW, Chiou J, Yan J, Qiu Y, Dai N, Wang A, et al.
Pancreatic islet chromatin accessibility and conformation reveals
distal enhancer networks of type 2 diabetes risk. Nat Commun.
2019;10:2078. https://doi.org/10.1038/s41467-019-09975-4.

23. Andersson R, Gebhard C, Miguel-Escalada I, et al. An atlas of
active enhancers across human cell types and tissues. Nature.
2014;507:455–61. https://doi.org/10.1038/nature12787.

24. Pradeepa MM. Causal role of histone acetylations in enhancer
function. Transcription. 2017;8:40–7. https://doi.org/10.1080/
21541264.2016.1253529.

25.•• Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2
diabetes loci to single-variant resolution using high-density impu-
tation and islet-specific epigenome maps. Nat Genet. 2018;50:
1505–13. https://doi.org/10.1038/s41588-018-0241-6 This study
provides the most comprehensive picture of the genetic
architecture of T2D to date, uncovering 403 independent
association signals.

26. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM)
Consortium, Asian Genetic Epidemiology Network Type 2
Diabetes (AGEN-T2D) Consortium, South Asian Type 2
Diabetes (SAT2D) Consortium, et al. Genome-wide trans-ancestry
meta-analysis provides insight into the genetic architecture of type
2 diabetes susceptibility. Nat Genet. 2014;46:234–44. https://doi.
org/10.1038/ng.2897.

27. Liu C-T, Raghavan S, Maruthur N, Kabagambe EK, Hong J, Ng
MC, et al. Trans-ethnic meta-analysis and functional annotation
illuminates the genetic architecture of fasting glucose and insulin.
Am J Hum Genet. 2016;99:56–75. https://doi.org/10.1016/j.ajhg.
2016.05.006.

28. Magi R, Horikoshi M, Sofer T, et al. Trans-ethnic meta-regression
of genome-wide association studies accounting for ancestry in-
creases power for discovery and improves fine-mapping resolu-
tion. Hum Mol Genet. 2017;26:3639–50. https://doi.org/10.1093/
hmg/ddx280.

29. Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux
CR, et al. Genetic analyses of diverse populations improves dis-
covery for complex traits. Nature. 2019;570:514–8. https://doi.
org/10.1038/s41586-019-1310-4.

30. Gaulton KJ, Ferreira T, Lee Y, et al. Genetic fine mapping and
genomic annotation defines causal mechanisms at type 2 diabetes
susceptibility loci. Nat Genet. 2015;47:1415–25. https://doi.org/
10.1038/ng.3437.

31. Horikoshi M, M gi R, van de Bunt M, Surakka I, Sarin AP,
Mahajan A, et al. Discovery and fine-mapping of glycaemic and
obesity-related trait loci using high-density imputation. PLoS
Genet. 2015;11:e1005230. https://doi.org/10.1371/journal.pgen.
1005230.

32. Bonàs-Guarch S, Guindo-Martínez M, Miguel-Escalada I, Grarup
N, Sebastian D, Rodriguez-Fos E, et al. Re-analysis of public
genetic data reveals a rare X-chromosomal variant associated with
type 2 diabetes. Nat Commun. 2018;9:321. https://doi.org/10.
1038/s41467-017-02380-9.

33. Schaid DJ, Chen W, Larson NB. From genome-wide associations
to candidate causal variants by statistical fine-mapping. Nat Rev
Genet. 2018;19:491–504. https://doi.org/10.1038/s41576-018-
0016-z.

34.•• Spracklen CN, HorikoshiM, KimYJ, et al. Identification of type 2
diabetes loci in 433,540 East Asian individuals. bioRxiv. 2019.
https://doi.org/10.1101/685172 This study exemplifies the

Curr Diab Rep (2019) 19: 145 Page 9 of 12 145

https://doi.org/10.1038/ng.2826
https://doi.org/10.1126/science.1222794
https://doi.org/10.1038/nature18642
https://doi.org/10.1073/pnas.1317023110
https://doi.org/10.1073/pnas.1317023110
https://doi.org/10.1038/ng.2870
https://doi.org/10.1530/JME-15-0197
https://doi.org/10.1530/JME-15-0197
https://doi.org/10.1073/pnas.1621192114
https://doi.org/10.1038/s41588-019-0457-0
https://doi.org/10.1038/ng.520
https://doi.org/10.1038/ng.2385
https://doi.org/10.2337/db16-1253
https://doi.org/10.1093/hmg/ddy314
https://doi.org/10.1038/ng.3245
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.2337/db18-0393
https://doi.org/10.7554/eLife.31977
https://doi.org/10.1038/s41467-019-09975-4
https://doi.org/10.1038/nature12787
https://doi.org/10.1080/21541264.2016.1253529
https://doi.org/10.1080/21541264.2016.1253529
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.1038/ng.2897
https://doi.org/10.1038/ng.2897
https://doi.org/10.1016/j.ajhg.2016.05.006
https://doi.org/10.1016/j.ajhg.2016.05.006
https://doi.org/10.1093/hmg/ddx280
https://doi.org/10.1093/hmg/ddx280
https://doi.org/10.1038/s41586-019-1310-4
https://doi.org/10.1038/s41586-019-1310-4
https://doi.org/10.1038/ng.3437
https://doi.org/10.1038/ng.3437
https://doi.org/10.1371/journal.pgen.1005230
https://doi.org/10.1371/journal.pgen.1005230
https://doi.org/10.1038/s41467-017-02380-9
https://doi.org/10.1038/s41467-017-02380-9
https://doi.org/10.1038/s41576-018-0016-z
https://doi.org/10.1038/s41576-018-0016-z
https://doi.org/10.1101/685172


potential of studying individuals of non-European ancestry to
discover new genetic loci carrying T2D risk variants.

35. Pickrell JK. Joint analysis of functional genomic data and
genome-wide association studies of 18 human traits. Am J Hum
Genet. 2014;94:559–73. https://doi.org/10.1016/j.ajhg.2014.03.
004.

36. Carrat GR, Hu M, Nguyen-Tu M-S, Chabosseau P, Gaulton KJ,
van de Bunt M, et al. Decreased STARD10 expression is associ-
ated with defective insulin secretion in humans and mice. Am J
Hum Genet. 2017;100:238–56. https://doi.org/10.1016/j.ajhg.
2017.01.011.

37. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M,
et al. The human transcription factors. Cell. 2018;172:650–65.
https://doi.org/10.1016/j.cell.2018.01.029.

38. Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R,
Rohs R. Absence of a simple code: how transcription factors read
the genome. Trends Biochem Sci. 2014;39:381–99. https://doi.
org/10.1016/j.tibs.2014.07.002.

39. BysaniM, Agren R, Davegårdh C, Volkov P, Rönn T, Unneberg P,
et al. ATAC-seq reveals alterations in open chromatin in pancreatic
islets from subjects with type 2 diabetes. Sci Rep. 2019;9:7785.
https://doi.org/10.1038/s41598-019-44076-8.

40. Roman TS, CannonME, Vadlamudi S, Buchkovich ML, Wolford
BN, Welch RP, et al. A type 2 diabetes-associated functional reg-
ulatory variant in a pancreatic islet enhancer at the ADCY5 locus.
Diabetes. 2017;66:2521–30. https://doi.org/10.2337/db17-0464.

41. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M,
Ragoczy T, Telling A, et al. Comprehensive mapping of long-
range interactions reveals folding principles of the human genome.
Science. 2009;326:289–93. https://doi.org/10.1126/science.
1181369.

42. Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia
M, Xie SQ, et al. Complex multi-enhancer contacts captured by
genome architecture mapping. Nature. 2017;543:519–24. https://
doi.org/10.1038/nature21411.

43. Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis
of chromosome architecture. Nat Rev Mol Cell Biol. 2016;17:
743–55. https://doi.org/10.1038/nrm.2016.104.

44. Yu M, Ren B. The three-dimensional organization of mammalian
genomes. Annu Rev Cell Dev Biol. 2017;33:265–89. https://doi.
org/10.1146/annurev-cellbio-100616-060531.

45. Marti-Renom MA, Almouzni G, Bickmore WA, Bystricky K,
Cavalli G, Fraser P, et al. Challenges and guidelines toward 4D
nucleome data and model standards. Nat Genet. 2018;50:1352–8.
https://doi.org/10.1038/s41588-018-0236-3.

46.• Stadhouders R, Filion GJ, Graf T. Transcription factors and 3D
genome conformation in cell-fate decisions. Nature. 2019;569:
345–54. https://doi.org/10.1038/s41586-019-1182-7 This review
provides a comprehensive overview of the current state of the
epigenomics field in the context of 3D genome architecture.

47. Montavon T, Soshnikova N, Mascrez B, Joye E, Thevenet L,
Splinter E, et al. A regulatory archipelago controls Hox genes
transcription in digits. Cell. 2011;147:1132–45. https://doi.org/
10.1016/j.cell.2011.10.023.

48. Oudelaar AM, Davies JOJ, Hanssen LLP, Telenius JM,
Schwessinger R, Liu Y, et al. Single-allele chromatin interactions
identify regulatory hubs in dynamic compartmentalized domains.
Nat Genet. 2018;50:1744–51. https://doi.org/10.1038/s41588-
018-0253-2.

49. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W. Looping
and interaction between hypersensitive sites in the active beta-
globin locus. Mol Cell. 2002;10:1453–65.

50. Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. A com-
pendium of chromatin contact maps reveals spatially active re-
gions in the human genome. Cell Rep. 2016;17:2042–59. https://
doi.org/10.1016/j.celrep.2016.10.061.

51. Allahyar A, Vermeulen C, Bouwman BAM, Krijger PHL,
Verstegen MJAM, Geeven G, et al. Enhancer hubs and loop col-
lisions identified from single-allele topologies. Nat Genet.
2018;50:1151–60. https://doi.org/10.1038/s41588-018-0161-5.

52. Delaneau O, ZazhytskaM, Borel C, Giannuzzi G, Rey G, Howald
C, et al. Chromatin three-dimensional interactions mediate genetic
effects on gene expression. Science. 2019;364:eaat8266–12.
https://doi.org/10.1126/science.aat8266.

53. Benazra M, Lecomte M-J, Colace C, Müller A, Machado C,
Pechberty S, et al. A human beta cell line with drug inducible
excision of immortalizing transgenes. Mol Metab. 2015;4:916–
25. https://doi.org/10.1016/j.molmet.2015.09.008.

54. Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ, Gómez-
Marín C, et al. Obesity-associated variants within FTO form long-
range functional connections with IRX3. Nature. 2014;507:371–
5. https://doi.org/10.1038/nature13138.

55.• Claussnitzer M, Dankel SN, Kim K-H, et al. FTO obesity variant
circuitry and adipocyte browning in humans. N Engl J Med.
2015;373:895–907. https://doi.org/10.1056/NEJMoa1502214
This study combines detailed epigenomic and functional
characterization of a GWAS locus.

56. Fadista J, Vikman P, Laakso EO, Mollet IG, Esguerra JL, Taneera
J, et al. Global genomic and transcriptomic analysis of human
pancreatic islets reveals novel genes influencing glucose metabo-
lism. Proc Natl Acad Sci U S A. 2014;111:13924–9. https://doi.
org/10.1073/pnas.1402665111.

57. van de Bunt M, Manning Fox JE, Dai X, Barrett A, Grey C, Li L,
et al. Transcript expression data from human islets links regulatory
signals from genome-wide association studies for type 2 diabetes
and glycemic traits to their downstream effectors. PLoS Genet.
2015;11:e1005694. https://doi.org/10.1371/journal.pgen.
1005694.

58. Khamis A, Canouil M, Siddiq A, Crouch H, Falchi M, Bulow M,
et al. Laser capture microdissection of human pancreatic islets
reveals novel eQTLs associated with type 2 diabetes. Mol
Metab. 2019;24:98–107. https://doi.org/10.1016/j.molmet.2019.
03.004.

59.• Viñuela A, Varshney A, van de Bunt M, et al. Influence of genetic
variants on gene expression in human pancreatic islets – implica-
tions for type 2 diabetes. bioRxiv. 2019;50:1505. https://doi.org/
10.1101/655670 This study provides the largest human islet
eQTL dataset released to date.

60. Li G, Fullwood MJ, Xu H, Mulawadi FH, Velkov S, Vega V, et al.
ChIA-PET tool for comprehensive chromatin interaction analysis
with paired-end tag sequencing. Genome Biol. 2010;11:R22.
https://doi.org/10.1186/gb-2010-11-2-r22.

61. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA,
Greenleaf WJ, et al. HiChIP: efficient and sensitive analysis of
protein-directed genome architecture. Nat Methods. 2016;13:
919–22. https://doi.org/10.1038/nmeth.3999.

62. Jian X, Felsenfeld G. Insulin promoter in human pancreaticβ cells
contacts diabetes susceptibility loci and regulates genes affecting
insulin metabolism. Proc Natl Acad Sci U S A. 2018;115:E4633–
41. https://doi.org/10.1073/pnas.1803146115.

63. Lawlor N, Márquez EJ, Orchard P, Narisu N, Shamim MS,
Thibodeau A, et al. Multiomic profiling identifies cis-regulatory
networks underlying human pancreatic β cell identity and func-
tion. Cell Rep. 2019;26:788–801.e6. https://doi.org/10.1016/j.
celrep.2018.12.083.

64. Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F,
Sugar R, Javierre BM, et al. The pluripotent regulatory circuitry
connecting promoters to their long-range interacting elements.
Genome Res. 2015;25:582–97. https://doi.org/10.1101/gr.
185272.114.

65. Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM,
Sewitz S, et al. Lineage-specific genome architecture links

145 Page 10 of 12 Curr Diab Rep (2019) 19: 145

https://doi.org/10.1016/j.ajhg.2014.03.004
https://doi.org/10.1016/j.ajhg.2014.03.004
https://doi.org/10.1016/j.ajhg.2017.01.011
https://doi.org/10.1016/j.ajhg.2017.01.011
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.1016/j.tibs.2014.07.002
https://doi.org/10.1016/j.tibs.2014.07.002
https://doi.org/10.1038/s41598-019-44076-8
https://doi.org/10.2337/db17-0464
https://doi.org/10.1126/science.1181369
https://doi.org/10.1126/science.1181369
https://doi.org/10.1038/nature21411
https://doi.org/10.1038/nature21411
https://doi.org/10.1038/nrm.2016.104
https://doi.org/10.1146/annurev-cellbio-100616-060531
https://doi.org/10.1146/annurev-cellbio-100616-060531
https://doi.org/10.1038/s41588-018-0236-3
https://doi.org/10.1038/s41586-019-1182-7
https://doi.org/10.1016/j.cell.2011.10.023
https://doi.org/10.1016/j.cell.2011.10.023
https://doi.org/10.1038/s41588-018-0253-2
https://doi.org/10.1038/s41588-018-0253-2
https://doi.org/10.1016/j.celrep.2016.10.061
https://doi.org/10.1016/j.celrep.2016.10.061
https://doi.org/10.1038/s41588-018-0161-5
https://doi.org/10.1126/science.aat8266
https://doi.org/10.1016/j.molmet.2015.09.008
https://doi.org/10.1038/nature13138
https://doi.org/10.1056/NEJMoa1502214
https://doi.org/10.1073/pnas.1402665111
https://doi.org/10.1073/pnas.1402665111
https://doi.org/10.1371/journal.pgen.1005694
https://doi.org/10.1371/journal.pgen.1005694
https://doi.org/10.1016/j.molmet.2019.03.004
https://doi.org/10.1016/j.molmet.2019.03.004
https://doi.org/10.1101/655670
https://doi.org/10.1101/655670
https://doi.org/10.1186/gb-2010-11-2-r22
https://doi.org/10.1038/nmeth.3999
https://doi.org/10.1073/pnas.1803146115
https://doi.org/10.1016/j.celrep.2018.12.083
https://doi.org/10.1016/j.celrep.2018.12.083
https://doi.org/10.1101/gr.185272.114
https://doi.org/10.1101/gr.185272.114


enhancers and non-coding disease variants to target gene pro-
moters. Cell. 2016;167:1369–1384.e19. https://doi.org/10.1016/j.
cell.2016.09.037.

66. Dov A, Abramovitch E, Warwar N, Nesher R. Diminished
phosphodiesterase-8B potentiates biphasic insulin response to
glucose. Endocrinology. 2008;149:741–8. https://doi.org/10.
1210/en.2007-0968.

67. Font-Cunill B, Arnes L, Ferrer J, Sussel L, Beucher A. Long non-
coding RNAs as local regulators of pancreatic islet transcription
factor genes. Front Genet. 2018;9:524. https://doi.org/10.3389/
fgene.2018.00524.

68. Jia Y, Yuan L, Hu W, Luo Y, Suo L, Yang M, et al. Zinc-finger
BED domain-containing 3 (Zbed3) is a novel secreted protein
associated with insulin resistance in humans. J Intern Med.
2014;275:522–33. https://doi.org/10.1111/joim.12170.

69. HuW, Tian B, Li X, Li L, Zhang L, Liu H, et al. Circulating Zbed3
levels in subjects with and without metabolic syndrome. Metab
Syndr Relat Disord. 2017;15:207–12. https://doi.org/10.1089/
met.2016.0122.

70. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W,
et al. Integrative analysis of 111 reference human epigenomes.
Nature. 2015;518:317–30. https://doi.org/10.1038/nature14248.

71.•• Ramos-Rodríguez M, Raurell-Villa H, Colli ML, et al The impact
of pro-inflammatory cytokines on the β-cell regulatory landscape
provides new insights into the genetics of type 1 diabetes. Nat
Genet. 2019;51:1588–1595. doi: https://doi.org/10.1038/s41588-
019-0524-6. This study demonstrates that islet regulatory
landscapes are largely dynamic and responsive to stimuli.

72. Morán I, Akerman I, van de Bunt M, Xie R, Benazra M, Nammo
T, et al. Human β cell transcriptome analysis uncovers lncRNAs
that are tissue-specific, dynamically regulated, and abnormally
expressed in type 2 diabetes. Cell Metab. 2012;16:435–48.
https://doi.org/10.1016/j.cmet.2012.08.010.

73.• Wang YJ, Kaestner KH. Single-cell RNA-Seq of the pancreatic
islets–a promise not yet fulfilled? Cell Metab. 2019;29:539–44.
https://doi.org/10.1016/j.cmet.2018.11.016 This review covers
the currently available human islet single-cell RNA-seq
datasets and sets the tone for future single-cell islet studies.

74. TT-H L, Heyne S, Dror E, et al. The polycomb-dependent epige-
nome controls β cell dysfunction, dedifferentiation, and diabetes.
Cell Metab. 2018;27:1294–1308.e7. https://doi.org/10.1016/j.
cmet.2018.04.013.

75. Volkov P, Bacos K, Ofori JK, Esguerra JLS, Eliasson L, Rönn T,
et al. Whole-genome bisulfite sequencing of human pancreatic
islets reveals novel differentially methylated regions in type 2
diabetes pathogenesis. Diabetes. 2017;66:1074–85. https://doi.
org/10.2337/db16-0996.

76. Arda HE, Li L, Tsai J, Torre EA, Rosli Y, Peiris H, et al. Age-
dependent pancreatic gene regulation reveals mechanisms
governing human β cell function. Cell Metab. 2016;23:909–20.
https://doi.org/10.1016/j.cmet.2016.04.002.

77. Grapin-Botton A, Serup P. Parsing the pancreas. N Engl J Med.
2017;376:886–8. https://doi.org/10.1056/NEJMcibr1616217.

78. Dorrell C, Schug J, Canaday PS, Russ HA, Tarlow BD, Grompe
MT, et al. Human islets contain four distinct subtypes of β cells.
Nat Commun. 2016;7:11756. https://doi.org/10.1038/
ncomms11756.

79. Johnston NR, Mitchell RK, Haythorne E, Pessoa MP, Semplici F,
Ferrer J, et al. Beta cell hubs dictate pancreatic islet responses to
glucose. Cell Metab. 2016;24:389–401. https://doi.org/10.1016/j.
cmet.2016.06.020.

80. Gutierrez GD, Gromada J, Sussel L. Heterogeneity of the pancre-
atic beta cell. Front Genet. 2017;8:3853. https://doi.org/10.3389/
fgene.2017.00022.

81. Ackermann AM, Wang Z, Schug J, Naji A, Kaestner KH.
Integration of ATAC-seq and RNA-seq identifies human alpha

cell and beta cell signature genes. Mol Metab. 2016;5:233–44.
https://doi.org/10.1016/j.molmet.2016.01.002.

82. Farack L, Golan M, Egozi A, Dezorella N, Bahar Halpern K, Ben-
Moshe S, et al. Transcriptional heterogeneity of beta cells in the
intact pancreas. Dev Cell. 2019;48:115–125.e4. https://doi.org/10.
1016/j.devcel.2018.11.001.

83. Neiman D, Moss J, Hecht M, Magenheim J, Piyanzin S, Shapiro
AMJ, et al. Islet cells share promoter hypomethylation indepen-
dently of expression, but exhibit cell-type-specific methylation in
enhancers. Proc Natl Acad Sci U S A. 2017;114:13525–30.
https://doi.org/10.1073/pnas.1713736114.

84.•• Arda HE, Tsai J, Rosli YR, et al. A chromatin basis for cell lineage
and disease risk in the human pancreas. Cell Syst. 2018;7:310–
322.e4. https://doi.org/10.1016/j.cels.2018.07.007 This study
provides an in-depth characterization of the regulatory land-
scapes of specific pancreatic cell types.

85.•• Chiou J, Zeng C, Cheng Z, et al. Single cell chromatin accessibil-
ity reveals pancreatic islet cell type- and state-specific regulatory
programs of diabetes risk. bioRxiv. 2019;71:858. https://doi.org/
10.1101/693671 This study provides the first human islet
regulatory maps at single-cell resolution and demonstrates
that specific T2D variants reside in cell-specific regulatory
elements.

86. Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD,
Kohlway AS, et al. Droplet-based combinatorial indexing for
massive-scale single-cell chromatin accessibility. Nat
Biotechnol. 2019;37:916–24. https://doi.org/10.1038/s41587-
019-0147-6.

87. Grosselin K, Durand A, Marsolier J, Poitou A, Marangoni E,
Nemati F, et al. High-throughput single-cell ChIP-seq identifies
heterogeneity of chromatin states in breast cancer. Nat Genet.
2019;51:1060–6. https://doi.org/10.1038/s41588-019-0424-9.

88. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD,
Henikoff JG, et al. CUT&Tag for efficient epigenomic profiling
of small samples and single cells. Nat Commun. 2019;10:1930.
https://doi.org/10.1038/s41467-019-09982-5.

89.• McCarthyMI. Painting a new picture of personalised medicine for
diabetes. Diabetologia. 2017;60:793–9. https://doi.org/10.1007/
s00125-017-4210-x This review proposes the ‘palette’ model
to describe the multitude of possible diabetes disease
trajectories.

90. Marchetti P, Schulte AM, Marselli L, Schoniger E, Bugliani M,
Kramer W, et al. Fostering improved human islet research: a
European perspective. Diabetologia. 2019;62:212–1516. https://
doi.org/10.1007/s00125-019-4911-4.

91. Dwivedi OP, LehtovirtaM, Hastoy B, et al. Loss of ZnT8 function
protects against diabetes by enhanced insulin secretion. Nat Genet.
2019;51:1596–1606. https://doi.org/10.1038/s41588-019-0513-9.

92. Thomsen SK, Ceroni A, van de Bunt M, Burrows C, Barrett A,
Scharfmann R, et al. Systematic functional characterization of
candidate causal genes for type 2 diabetes risk variants.
Diabetes. 2016;65:3805–11. https://doi.org/10.2337/db16-0361.

93. Fang Z, Weng C, Li H, Tao R, Mai W, Liu X, et al. Single-cell
heterogeneity analysis and CRISPR screen identify key β-cell-
specific disease genes. Cell Rep. 2019;26:3132–3144.e7. https://
doi.org/10.1016/j.celrep.2019.02.043.

94.•• Balboa D, Prasad RB, Groop L, Otonkoski T. Genome editing of
human pancreatic beta cell models: problems, possibilities and
outlook. Diabetologia. 2019;50:1505. https://doi.org/10.1007/
s00125-019-4908-z This review provides a very up-to-date
and critical overview on applying genome editing in β cells
to model diabetes genetic risk variants, 1336.

95. Manning AK, Hivert M-F, Scott RA, et al. A genome-wide ap-
proach accounting for body mass index identifies genetic variants
influencing fasting glycemic traits and insulin resistance. Nat
Genet. 2012;44:659–69. https://doi.org/10.1038/ng.2274.

Curr Diab Rep (2019) 19: 145 Page 11 of 12 145

https://doi.org/10.1016/j.cell.2016.09.037
https://doi.org/10.1016/j.cell.2016.09.037
https://doi.org/10.1210/en.2007-0968
https://doi.org/10.1210/en.2007-0968
https://doi.org/10.3389/fgene.2018.00524
https://doi.org/10.3389/fgene.2018.00524
https://doi.org/10.1111/joim.12170
https://doi.org/10.1089/met.2016.0122
https://doi.org/10.1089/met.2016.0122
https://doi.org/10.1038/nature14248
https://doi.org/10.1038/s41588-019-0524-6
https://doi.org/10.1038/s41588-019-0524-6
https://doi.org/10.1016/j.cmet.2012.08.010
https://doi.org/10.1016/j.cmet.2018.11.016
https://doi.org/10.1016/j.cmet.2018.04.013
https://doi.org/10.1016/j.cmet.2018.04.013
https://doi.org/10.2337/db16-0996
https://doi.org/10.2337/db16-0996
https://doi.org/10.1016/j.cmet.2016.04.002
https://doi.org/10.1056/NEJMcibr1616217
https://doi.org/10.1038/ncomms11756
https://doi.org/10.1038/ncomms11756
https://doi.org/10.1016/j.cmet.2016.06.020
https://doi.org/10.1016/j.cmet.2016.06.020
https://doi.org/10.3389/fgene.2017.00022
https://doi.org/10.3389/fgene.2017.00022
https://doi.org/10.1016/j.molmet.2016.01.002
https://doi.org/10.1016/j.devcel.2018.11.001
https://doi.org/10.1016/j.devcel.2018.11.001
https://doi.org/10.1073/pnas.1713736114
https://doi.org/10.1016/j.cels.2018.07.007
https://doi.org/10.1101/693671
https://doi.org/10.1101/693671
https://doi.org/10.1038/s41587-019-0147-6
https://doi.org/10.1038/s41587-019-0147-6
https://doi.org/10.1038/s41588-019-0424-9
https://doi.org/10.1038/s41467-019-09982-5
https://doi.org/10.1007/s00125-017-4210-x
https://doi.org/10.1007/s00125-017-4210-x
https://doi.org/10.1007/s00125-019-4911-4
https://doi.org/10.1007/s00125-019-4911-4
https://doi.org/10.1038/s41588-019-0513-9
https://doi.org/10.2337/db16-0361
https://doi.org/10.1016/j.celrep.2019.02.043
https://doi.org/10.1016/j.celrep.2019.02.043
https://doi.org/10.1007/s00125-019-4908-z
https://doi.org/10.1007/s00125-019-4908-z
https://doi.org/10.1038/ng.2274


96. Gloyn AL, Drucker DJ. Precision medicine in the management of
type 2 diabetes. Lancet Diabetes Endocrinol. 2018;6:891–900.
https://doi.org/10.1016/S2213-8587(18)30052-4.

97.• Udler MS, Kim J, Grotthuss v M, et al. Type 2 diabetes genetic
loci informed by multi-trait associations point to disease mecha-
nisms and subtypes: a soft clustering analysis. PLoS Med.
2018;15:e1002654. https://doi.org/10.1371/journal.pmed.
1002654 This study reveals that T2D patients can be
clustered into different disease mechanisms.

98. Kycia I, Wolford BN, Huyghe JR, Fuchsberger C, Vadlamudi S,
Kursawe R, et al. A common type 2 diabetes risk variant potenti-
ates activity of an evolutionarily conserved islet stretch enhancer
and increases C2CD4A and C2CD4B expression. Am J Hum
Genet. 2018;102:620–35. https://doi.org/10.1016/j.ajhg.2018.02.
020.

99. Fogarty MP, Cannon ME, Vadlamudi S, Gaulton KJ, Mohlke KL.
Identification of a regulatory variant that binds FOXA1 and
FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus.

PLoS Genet. 2014;10:e1004633. https://doi.org/10.1371/journal.
pgen.1004633.

100. Fogarty MP, Panhuis TM, Vadlamudi S, BuchkovichML,Mohlke
KL. Allele-specific transcriptional activity at type 2 diabetes-
associated single nucleotide polymorphisms in regions of pancre-
atic islet open chromatin at the JAZF1 locus. Diabetes. 2013;62:
1756–62. https://doi.org/10.2337/db12-0972.

101. Tuomi T, Nagorny CLF, Singh P, Bennet H, Yu Q, Alenkvist I,
et al. Increased melatonin signaling is a risk factor for type 2
diabetes. Cell Metab. 2016;23:1067–77. https://doi.org/10.1016/
j.cmet.2016.04.009.

102. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty
MP, et al. Amap of open chromatin in human pancreatic islets. Nat
Genet. 2010;42:255–9. https://doi.org/10.1038/ng.530.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

145 Page 12 of 12 Curr Diab Rep (2019) 19: 145

https://doi.org/10.1016/S2213-8587(18)30052-4
https://doi.org/10.1371/journal.pmed.1002654
https://doi.org/10.1371/journal.pmed.1002654
https://doi.org/10.1016/j.ajhg.2018.02.020
https://doi.org/10.1016/j.ajhg.2018.02.020
https://doi.org/10.1371/journal.pgen.1004633
https://doi.org/10.1371/journal.pgen.1004633
https://doi.org/10.2337/db12-0972
https://doi.org/10.1016/j.cmet.2016.04.009
https://doi.org/10.1016/j.cmet.2016.04.009
https://doi.org/10.1038/ng.530

	Pancreatic Islet Transcriptional Enhancers and Diabetes
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	A Decade of Islet Regulomes: Restricting the Search Space for Diabetes Causal Variants
	Strategies to Improve Causal Variant Mapping
	Demonstrating Variant Causality
	Enhancer Clusters in 3D
	Harnessing 3D Genome Maps to Identify Diabetes Effector Transcripts
	Islet Enhancer Landscapes Are Dynamic
	Islet Cell-Specific Enhancers
	Perspectives and Future Directions
	Conclusions
	References
	Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance



