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Abstract

A central focus in studies of microbial communities is the elucidation of the relationships between genotype, phenotype,
and dynamic community structure. Here, we present a new computational method called community flux balance analysis
(cFBA) to study the metabolic behavior of microbial communities. cFBA integrates the comprehensive metabolic capacities
of individual microorganisms in terms of (genome-scale) stoichiometric models of metabolism, and the metabolic
interactions between species in the community and abiotic processes. In addition, cFBA considers constraints deriving from
reaction stoichiometry, reaction thermodynamics, and the ecosystem. cFBA predicts for communities at balanced growth
the maximal community growth rate, the required rates of metabolic reactions within and between microbes and the
relative species abundances. In order to predict species abundances and metabolic activities at the optimal community
growth rate, a nonlinear optimization problem needs to be solved. We outline the methodology of cFBA and illustrate the
approach with two examples of microbial communities. These examples illustrate two useful applications of cFBA. Firstly,
cFBA can be used to study how specific biochemical limitations in reaction capacities cause different types of metabolic
limitations that microbial consortia can encounter. In silico variations of those maximal capacities allow for a global view of
the consortium responses to various metabolic and environmental constraints. Secondly, cFBA is very useful for comparing
the performance of different metabolic cross-feeding strategies to either find one that agrees with experimental data or one
that is most efficient for the community of microorganisms.
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Introduction

In nature, microbes generally occur in communities. These

microbial communities play important roles: they are essential for

global nitrogen, carbon and energy cycling [1] and contribute to a

healthy human physiology as part of our oral and gut flora [2]. In

such complex systems, the physiology, behavior, and fitness of the

species are interdependent. It is a major challenge to understand

how the interplay between microbes determines community

dynamics and robustness, and how the genotype of each of the

microorganisms ultimately influences ecosystem properties.

Today, advanced molecular methods (meta-omics) facilitate the

detailed characterization of microbial communities, providing

information at an unprecedented level of molecular detail. These

methods catalogue the active molecular processes, the ecotypes

present, and report the identity and abundances of specific

microbial species [3]. While such approaches are generally high-

throughput, comprehensive and broadly applicable, they give little

insight into the rationales behind the metabolic behaviors of

individual microbial species. Why do microbes choose a particular

physiological state out of their full range of metabolic capacities?

How do these decisions depend on the metabolic coupling

between species? Which metabolic interactions determine com-

munity structure and how do selective pressures influence this?

Answering these questions will require integrative computational

approaches that link genes to species metabolisms and community-

level structure and offer a consistent framework for describing

community level interactions [4,5]. The promise of these methods,

combined with in depth molecular characterization, is the rational

design, manipulation and control of microbial communities in

biotechnology and medicine.

Constraint-based stoichiometric modeling of genome-scale

metabolic networks is a set of computational methods developed

in systems biology for studying the comprehensive metabolic

capacities of organisms [6,7]. This collection of computational

methods considers the entire metabolic network of an organism as

reconstructed from genomic and physiological information [8].

Flux distributions in metabolic networks for optimal biomass or

product formation can be predicted from the resulting genome-

scale stoichiometric models with flux balance analysis (FBA), for

instance as function of the nutrient conditions and as a response to

enzyme knock-outs [6]. These models generally compute steady

states of metabolic networks and consider only reaction stoichi-

ometry and omit enzyme kinetic information [9]. Constraint-based

stoichiometric modeling of genome-scale metabolic networks is

widely used in biotechnology and medicine [7].

In microbial communities, a new level of complexity is added on

top of microbial metabolism that complicates the application of
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constraint-based stoichiometric modeling to microbial communi-

ties. Besides the presence of all metabolic reactions in each of the

microorganisms, the exchange of metabolites between species and

biomass abundances of each of the microbial species has to be

considered. In addition, each of these microorganisms has specific

nutrient requirements for growth, which it can meet through

metabolic cross-feeding, nutrient-competition or by uptake from

the environment. On top of that, selective pressures at the level of

single species change the metabolic interactions between species

through mutations, which leads to accumulation of genetic

variants and co-evolution of metabolic partnerships. These forces

together shape the structure of microbial communities. In such

systems, the actions of individual species are constrained by their

own biochemical processes and by their interactions with other

species. Computational methods are essential to address those

complex aspects of biological systems [10].

Considerable effort has been invested in recent years to develop

suitable computational approaches that, in principle, can consider

all the metabolic reactions occurring in a microbial community

[11,12,13,14,15,16,17,18,19,20]. These studies differ in the

computational and mathematical methods employed, some are

for instance limited to mutualistic metabolic interactions or

compartmentalized approaches. Compartmentalized approaches

[12,16,21,11,22] to microbial communities consider only metab-

olite exchanges without the explicit consideration of biomass

abundances of individual species, even though this aspect of

microbial community composition is a major research subject in

microbial ecology. More advanced methods can consider compe-

tition for resources and variable biomass abundance. They

typically make use of dynamic flux balance analysis [23,24]. The

recently introduced method ‘OptCom’ [20] is arguably the most

advanced method and uses sophisticated multi-objective optimi-

zation techniques to predict the biomass composition of the

community along with the growth rates of each species. OptCom

takes a multi-objective optimization (Pareto optimization) ap-

proach to interrelate the objectives of individual organisms.

The reason why constraint-based stoichiometric modeling of

microbial communities is much more complicated than for single

organisms originates from the interdependencies between the

metabolic objectives of microorganisms in the community.

Generally, in constraint-based stoichiometric modeling, a single

metabolic objective is postulated for the organism, such as

optimization of biomass yield, to give rise to a manageable

solution space of flux distributions [25]. In a microbial community,

the metabolic performance (fitness) of each organism is dependent

on all others, either directly or indirectly. As a consequence, the

community metabolic state in a constraint-based stoichiometric

model of the microbial community would have to emerge from the

multi-objective optimization of each of those performances, taking

into account trade-offs and possibly allowing for suboptimal

strategies. Hence, a nonlinear multi-objective optimization

perspective appears most appropriate and this is indeed the

approach taken by OptCom. In this paper, we show that the

multi-objective optimization task greatly simplifies when microbial

communities are considered that engage in balanced growth. This

leads to the formulation of a new approach for constraint-based

modeling of microbial communities, which we shall refer to as

community FBA (cFBA). It requires fewer assumptions than full-

blown multi-objective optimization approaches and is much easier

to interpret.

Balanced growth occurs when internal metabolism is at steady

state while the cells grow exponentially at a fixed growth rate.

Here, we extend this definition to microbial ecosystems and,

hence, require all metabolites (intra- and extracellular) to attain a

steady state level. Under those growth conditions, our computa-

tional method, community flux balance analysis (cFBA), predicts

the fractional biomass abundances of all the participating

microorganisms in the community as well as the intra- and

extracellular flux distributions and metabolic exchanges. cFBA

predicts the complete state of the microbial community engaging

in balanced growth and postulates only a single objective. cFBA

applies to microbial ecosystems that function in a fairly constant

environment, such as specific microbial communities involved in

bioremediation, waste water treatment or in laboratory settings,

e.g. chemostats.

The community flux balance analysis (cFBA) that we will

present in this paper is a direct translation of FBA for single

organisms to microbial communities and requires only a few

community-specific constraints. It is based on the concept of

balanced growth of microorganisms and the corresponding

metabolic network states. It is therefore a fundamental description

of the microbial community structure resulting from basic

concepts of microbiology. It directly applies to the study of stable

microbial communities under laboratory conditions in controlled

bioreactors, either resulting from laboratory evolutionary exper-

iments or from direct samples from the environment, or for

microbial communities in nature that are exposed to prolonged

stable environmental conditions. cFBA predicts the optimal flux

distribution, growth rate, and abundance of all species in the

consortium as well as the exchange fluxes between species and the

community environment. As a proof of concept, we first

investigate a simple microbial community in which species are

mutually dependent for their growth. Next, we study an evolved

syntrophic E. coli consortium with genome-scale models.

Results

A Methodology for Constraint-based Stoichiometric
Modeling of Metabolism of Microbial Consortia

Constraint-based stoichiometric modeling of a microbial

consortia requires the coupling of the metabolic networks of the

interacting species. To highlight the essential steps, we illustrate

our methodology first by considering interacting microorganisms

described by highly simplified stoichiometric models consisting of

lumped metabolic processes: anabolism, catabolism, respiration

and product formation. In all cases, the reaction networks are

balanced with respect to elemental composition, charge and

degree of reduction [26]. The application of our methods to

genome-scale stoichiometric models is exactly the same as to the

small stoichiometric models that will be used in this section.

In Figure 1, two microbial species are shown that engage in

metabolic cross feeding. Species i consumes glucose and ammo-

nium and produces succinate. Species j consumes succinate, fixes

nitrogen gas and excretes ammonium. When these organisms

grow together on glucose and nitrogen supplied by the environ-

ment, they engage in an obligatory mutualistic relationship where

species i supplies succinate to speciesj that gives ammonium in

return. A stoichiometric description of the metabolism of the entire

consortium considers the two species as metabolically coupled. To

allow for loose metabolic coupling of these two organisms,

overflow of cross-feeding metabolites into the environment is

allowed.

Besides the stoichiometric aspects of model merger, we also

consider the biomass abundances of each of the participating

microorganisms; a feature, which is not explicitly addressed in

many existing multi-species FBA approaches, except for OptCom

[20]. Several compartmentalized approaches to multi-organism

stoichiometric modeling do not explicitly take the biomass

Flux Balance Analysis of Microbial Consortia
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abundance into account. As a consequence, the reaction fluxes

that these methods predict are net fluxes, which equal the product

of the biomass abundance and the specific flux (expressed per unit

biomass). Because in many applications specific fluxes and biomass

abundances can be independently measured, we aim at consid-

ering biomass abundance and specific fluxes separately. Next, we

will show that the mass balances of all the variable metabolites in a

microbial community can be compactly expressed in terms of the

metabolic reaction rates, the microbial biomass abundances, and

the community growth rate.

We distinguish three types of reactions: an intracellular, enzyme

catalyzed reaction occurring at a specific rate qkj (in molNg21Nh21)

for reaction k in organism j, the biomass formation reaction

occurring at a specific growth rate mj (in h21) for organism j, and

exchange reactions with the environment denoted by Jl for

reaction l, with unit molNh21. The mass balances for the variable

metabolites in the community, occurring either intracellularly or

extracellularly, will then have the following structure (we omit

abiotic conversions between variable metabolites in the environ-

ment but those can be added straightforwardly):

d
dt

mi~
PnX

j~1

PnR

k~1

nikqkjXjz
PnX

j~1

gijmjXjz
PnE

l~1

nilJl ð1Þ

Here, mi denotes the amount of variable metabolite i. The

number of different microbial species, environmental exchange

reactions and metabolic reactions equals nX , nE and nR,

respectively. The stoichiometric coefficient of metabolite i in

reaction k equals nik; this reaction runs at specific rate qkj in

organism j that has a total biomass of Xj gram. The unit of the

stoichiometric coefficient is dimensionless. The resulting dimen-

sion of nikqkjXj is molNh21. Metabolite mi can also be consumed or

produced in the biomass formation reaction of an organism; this

flux equals gijmjXj . The coefficient gij is the stoichiometric

coefficient of mi in the biomass reaction of organism j and has

as unit molmið Þ gramofXj

� �{1
. This organism grows at a specific

rate mj (in h21). The resulting unit of gijmjXj is also molNh21.

Finally, metabolite mi can flow into or out of the environment with

rate nilJl in molNh21 with nil as a dimensionless stoichiometric

coefficient.

A Community at Metabolic Steady State
In our approach, the entire consortium is considered at steady

state such that all the mass balances for the metabolites equal zero

and the reaction rates remain constant. Equation (1) then indicates

that this condition can be maintained if the organism abundances

remain fixed and their net growth rate is zero or if the organisms

all grow at the same specific growth rate and the exchange rates

with the environment increase with the same factor as biomass.

The first condition implies that none of the organisms grow but do

exchange metabolites; this is a situation that cannot be ruled out in

realistic microbial ecosystems. Perhaps, they can persist in periods

of dormancy or stasis. We emphasize that in the second scenario,

which is the main focus of this paper, the specific growth rate of

the community does not have to equal the maximal growth rate of

any of its resident microorganisms. The growth rate considered is

the one leading to balanced (steady-state) growth.

In that condition, for microorganisms growing at the same

specific (exponential) growth rate mC (the community growth rate)

from time point t onwards, for any time tzt, equation (1) modifies

to:

Figure 1. Metabolic network overview of a microbial community of two microorganisms engaging in metabolic cross feeding.
Species i and j exchange ammonium (NH3) and succinate (Succ). These metabolites are allowed to overflow into the environment. Species i and j
respectively take up glucose (Glu) and dinitrogen gas (N2) supplied by the environment. Each organism operates at an intracellular metabolic steady
state and contains four coarse-grained metabolic processes: catabolism, anabolism, product formation and respiration. Detailed information about
the stoichiometric description of this community can be found in information S1. Three types of reaction rates occur: specific fluxes (q’s; in molN(gram
biomass) 21Nh21), environment fluxes (J’s; in molNh21), and specific growth rates (m; h21). Xi and Xj denote the biomass abundances of the two
microorganisms in gram biomass.
doi:10.1371/journal.pone.0064567.g001
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0~
XnX

j~1

XnR

k~1

nikqkjXj tð Þz
XnX

j~1

gijmCXj tð Þz
XnE

l~1

nilJil tð Þ
 !

emC tztð Þ ð2Þ

Here, time t is defined as a time point at which the system

achieves a steady state where all metabolite amounts remain fixed.

We will allow the community in this state of balanced growth for

some finite amount of time, i.e. for tƒtƒT until nutrients run out

at T . Under this condition, all the mass balances can remain zero

at fixed values for the reactions rates and growth rates, provided

that the term between brackets remains zero. In this period, the

total biomass X increases exponentially over time as,

�XX tztð Þ~
PnX

j~1

Xj tð Þ
 !

emC tztð Þ

Division of equation (2) with this relation for the total biomass

indicates that the biomass fractions
Xj tð ÞPnX

j~1
Xj tð Þ

for organism j,

remain fixed over time at their values at time t,

0~
PnX

j~1

PnR

k~1

nikqkj

Xj tð ÞPnX
j~1

Xj tð Þ
z
PnX

j~1

gijmC

Xj tð ÞPnX
j~1

Xj tð Þ
z
PnE

l~1

nil Jil tð ÞPnX
j~1

Xj tð Þ

This relationship now holds for the entire period of exponential

growth, tƒtƒT ; for this duration the biomass fractions, the

reaction rates and the growth rate are independent of time. We

define the constant biomass fractions as
Xj tð ÞPnX

j~1
Xj tð Þ

~wj and identify

the ratios
Jil tð ÞPnX

j~1
Xj tð Þ

as specific environment exchange fluxes qil (in

molNg21Nh21),

0~
PnX

j~1

wj

PnR

k~1

nikqkjzgijmC

� �
z
PnE

l~1

nilqil ð3Þ

(Note that
PnX

j~1

wj~1). This relationship now holds for all the

variable metabolites in the consortium (for all i) for tƒtƒT . It is

an extension of the concept of balanced growth in microbiology

for single organisms to microbial communities.

To intuitively understand why unequal specific growth rates

would violate the steady-state requirement, a perspective on the

mass balances of the exchange metabolites is instructive. If

organisms would not grow equally fast, metabolites that are being

cross-fed would either deplete or accumulate and the slow growing

cross-feeding species would inhibit growth of its fast growing

partner. Consider for instance the two species shown in Figure 1; if

species i grows faster than j then succinate accumulates – there is

not enough j to consume it – and j does not make enough

ammonium to support species i’s high growth rate and the growth

rate of i drops. The same applies to species j when it grows faster

than species i. Thus, for a cross-feeding metabolite to be at steady

state (in a mutualistic consortium of growing organisms) the

producing and consuming organisms need to grow equally fast.

Above we have shown that when this condition is met, the

fractional biomass remains fixed and the whole consortium can

exist in a balanced growth condition.

Community Flux Balance Analysis Predicts Yields
In community flux balance analysis, equation (3) acts as a

constraint that specifies the consequence of balanced growth; this

is a hard constraint and cannot be violated. The aim of cFBA is to

predict the ‘‘variables’’ from this equation and additional

constraints. The variables are: the specific reaction rates (the

q’s), the community growth rate (mC ) and the fractional biomass

abundances (the w’s). However, fewer balance equations (equal to

the number of variable metabolites) will exist than unknown

variables (equal to twice the number of microorganisms and the

number of reactions) and as a result an infinite set of solutions

exists. In such cases of underdetermined problems, one can take a

constrained optimization approach. This is indeed the approach

taken in flux balance analysis for single organisms: it aims to find a

reduced set of solutions that each give rise to the same degree of

optimal metabolic functioning, e.g. maximization of ATP or

biomass yield. Here, we will take a similar approach for studying

microbial community metabolism. We also add more constraints

to reduce the solutions to a realistic set; i.e. flux constraints that

derive from thermodynamic information about reaction revers-

ibility and measured/estimated upper and lower bounds of specific

reaction rates. As a result, this information sets the bounds for

every specific reaction rate: qij,minƒqijƒqij,max.

One approach to predicting the balanced-growth consortium

structure, i.e. the flux distributions and fractional biomass

abundance, is to search for community structures that optimize

the growth rate of the entire consortium. Equation (3) immediately

indicates that this problem would be ill posed if none of the fluxes

has a maximal bound; because multiplication of the equation with

a constant preserves the same solution for the variables, and,

hence, the maximal growth rate can become infinite. Here, we

follow classical flux balance analysis and solve this problem by

imposing a maximal value on one or several nutrient uptake fluxes

from the environment. Because of the structure of equation (3), an

increase of this upper bound by a certain factor will cause the

optimum to increase with the same factor; unless some other flux

bound is hit (and then this behavior exists with respect to this new

bound). This indicates that the specific growth rate m is optimized

relative to some specific limiting reaction rate; hence, the ratio of m
over some q is maximized, which means, in microbiological terms,

that the yield of biomass is being optimized and not the growth

rate. This indicates that community flux balance analysis predicts

optimal biomass yield, as does classical FBA. This state

corresponds to the most metabolically efficient consortium state.

While classical flux balance analysis problems are linear in

terms of their variables, equation (3) is clearly a nonlinear function

of the optimization variables because the specific rates and

fractional biomass abundances occur as products. This indicates

that the constrained optimization of the community growth rate is

not a linear programming problem, which is the usual approach

taken in FBA of single organisms. However, for small microbial

communities a linear programming based approach remains

feasible. By fixing the fractional biomass abundances, the

optimization problem becomes linear and a linear programming

problem can be formulated to obtain the specific flux values that

optimize the community growth rate. Next, the linear program

optimization is repeated over the entire range of feasible biomass

fractions to identify the vector of biomass fractions at which the

community growth rate reaches its global maximum. The linear

programming result in this optimal state allows for the identifi-

cation of the optimal specific flux values. This is the approach that

Flux Balance Analysis of Microbial Consortia
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we take in this paper. This approach is explained in more depth in

information S1.

cFBA of an Example Community: Metabolic Limitations of
Microbial Consortia

We will analyze the simplified microbial consortium introduced

in Figure 1 with cFBA. cFBA suggests that a biomass fraction exists

that optimizes the community growth rate. We will show that this

state is influenced by the metabolic constraints of the microor-

ganisms and by the nutrient limitations imposed by the

characteristics of the environment. These kinds of limitations

occur naturally in cross-feeding microbial consortia: species i and j
are interdependent and species i can only grow faster if it delivers

more cross-feeding product (i.e. succinate) to j by choosing a more

efficient pathway for product formation. However, there will be a

limit to the yield of product on the growth substrate. Suppose,

species i invests a certain amount of resources in product

formation (i.e. succinate) to attain a certain growth rate; for

species j this implies, to attain the same growth rate, it should take

up more of succinate (cross-feeding metabolite) and at the same

time excrete more of ammonium (its crossing feeding product) to

allow species i to grow equally fast. This continues until either one

of the species hit its maximal excretion or uptake capacity for one

of the cross-feeding metabolites or the environmental influx of

nutrients become limiting. At the same time, the importance of the

biomass ratio can also be rationalized. The objective function of

the consortium is to achieve the maximal specific growth rate and

the organisms cannot grow infinitely fast, because of the

environmental and cross-feeding limitations. As a consequence,

the only way to enhance the maximal specific growth rate is by

adjusting their biomass fractions. The mathematical formulation

of this cFBA is explained in information S1.

In Figure 2, we show the results of cFBA for the simplified

microbial consortium displayed in Figure 1. We carried out the

optimizations in Figure 2 by treating the fractional biomass

abundance as a parameter and determine the optimal specific

growth rate of the consortium (mC ) as a function of this parameter.

This approach gives an overview of the metabolic behaviors that

cross-feeding organisms can display in consortia. In Figure 2A, we

explore various limitations that can emerge in microbial consortia.

We consider the consortium under the condition that glucose

influx from the environment is limiting. When no restrictions

apply to the values of cross-feeding reactions, a minimal amount of

species i is required to attain a non-zero community growth rate.

At low fractional abundance of species i, species j is in high relative

abundance and has a demand for succinate to grow. At this

condition, the total uptake flux of glucose by species i( = qglc i
:wi)

will be low and the production flux of succinate will be too small to

sustain the growth rate and amount of species j and hence the

community cannot be sustained at these fractional biomass

abundances. Upon reaching a critical fractional biomass abun-

dance (0.83 and higher for our particular example in Figure 2A)

the system can easily sustain growth because the nitrogen gas

influx is unlimited, the ammonium production is unlimited, and

the succinate requirement decreases progressively. Therefore,

eventually the system starts to make succinate or takes up less

glucose. Clearly, this is an unrealistic situation: the exchange fluxes

of succinate and ammonium and the fixation and assimilation of

nitrogen gas are not unlimited but are bounded by the biochemical

capacities of the two organisms. Maximal capacities of the cross-

feeding reactions can either cause the system to reach a lower

maximal community growth rate because the exchange reactions

cannot reach high enough rates (‘below critical cross-feeding’ line

in Fig. 2A) or cause a reduction in growth rate at low abundances

of species j because the ammonium production rate hits it

maximal value (‘above critical cross-feeding I & II’ lines in Fig. 2A).

Finally, the cross-feeding reaction bounds can be adjusted to

specific values to reach a unique maximum for the community

growth rate (‘critical cross-feeding’ in Fig. 2A). Clearly, the

situation where the cross-feeding reaction bounds are tuned in

such a way that a unique fractional biomass abundance achieves

maximum growth rate, is an unrealistic scenario. In general, we

would expect, and conclude from this analysis, that cFBA

predictions of microbial communities lead to a range of fractional

biomass abundances that support the maximal growth rate. More

cFBA studies of other microbial communities would have to be

carried out to study this assertion more carefully.

In Figure 2B, the influence of the cross-feeding reaction bounds

on the maximal community growth rate is shown under the

environmental conditions of Figure 2A (glucose limitation). At

each value for the cross-feeding reaction bounds, community

growth rate is maximized and plotted in Figure 2B. A dual

limitation line appears in this plot; at this line succinate and

ammonium exchange reactions are equally limiting and a

reduction of any of them leads to a reduction in community

growth rate. Cross-feeding reaction-bound values at the end of this

dual-limitation line correspond to the critical values identified in

Figure 2A. At any higher values than these critical values, the

entire system becomes limited by environmental influx of nutrient,

i.e. glucose. In Figure 2C, we study the dependence of the

maximal community growth rate on environmental exchange

fluxes. While for all the simulations in Figure 2A and 2B glucose

intake flux was kept limiting and nitrogen intake flux was in excess,

in Figure 2C, the steady-state maximum mC for the consortium is

plotted, by limiting glucose or nitrogen intake or both (along dual

limitation line) flux values.

These results indicate that knowledge of flux bounds (maximal

capacities) is important to assess the types of limitations that

microbial consortia encounter and that scanning of those bounds

allows for a global view of systemic consortium responses to

metabolic and environmental constraints. This scanning of flux

bounds is common practice in FBA applied to single species and is

normally referred to as phase plane analysis [27]. We show here its

relevance and importance for community FBA.

cFBA to Study a Speciation Event in Long-term
Laboratory Evolution of Escherichia coli

Helling & Vargas [28] observed the evolutionary emergence of

polymorphisms in an Escherichia coli culture that was grown for 765

generations in a glucose-limited continuous culture. In a follow-up

experiment, Rosenzweig et al [29] isolated a number of E. coli

strains from these polymorphic populations. It turned out that one

strain had evolved to become a specialized acetate consumer ‘a’

and another strain had become the main glucose consumer ‘g’

producing acetate (Figure 3A). The glucose uptake capacity of

strain ‘a’ proved lower than that of strain ‘g’ when measured in

isolated cultures. We mimicked this in our simulations with an

extra constraint (q
g
glu~1:4|qa

glu) derived from the same experi-

ment. Values for the steady state biomass ratio and glucose input

flux were taken directly from Rosenzweig et al. [29]. Total

biomass amount was estimated by translating cell densities into

gram dry weight, taking 0.95 picogram as the weight of a single E.

coli cell [30]. In all the following simulations, the total biomass

amount (xt) was kept fixed in agreement with the experiment. We

used the genome-scale stoichiometric model of Escherichia coli K-12

strain [31] for our simulations. We made a stoichiometric model

Flux Balance Analysis of Microbial Consortia
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for the acetate consumer and the glucose consumer and studied

this system with cFBA.

Instead of parameterizing fractional biomass abundance of one

organism of a community (Figure 2A), here we have optimized the

consortium growth rate as function of the biomass ratio

(Figure 3B). Since, the biomass fraction can be expressed in terms

of the biomass ratio the optimization is essentially the same as

previously. The biomass ratio scan was performed by either

constraining the capacity of the acetate production flux by strain

‘g’ or the acetate consumption flux by strain ‘a’ (leading to a below

critical CF curve as introduced above) or keeping them

unconstrained (leading to an infinite CF curve). The ‘‘Infinite

CF curve’’ gives us a range of optimal biomass ratios, within which

it is theoretically possible for the community to sustain a maximal

community growth rate. The experimentally measured biomass

ratio (xa=xg~9) lies within this range; and is most likely set by the

biochemical limitations on the capacities of acetate uptake and

production in the chemostat.

Next, we asked what the acetate cross-feeding flux values should

be to give rise to the measured biomass ratio; the corresponding

curve we denote as the below CF curve. Though the acetate cross-

feeding fluxes were not measured during the experiment, our

approach predicts a probable range of flux values that gives rise to

the measured biomass ratio, glucose-uptake rate, and the specific-

growth rate of both of the strains. This illustrates how cFBA can be

used to predict cross-feeding fluxes in a microbial community

using a genome-scale metabolic model of the community.

We also tested whether cFBA predicts alternative cross-feeding

metabolites that can explain the experimental data equally well as

acetate does, to illustrate one useful application of cFBA. It was

concluded in Helling et al. [28] that the newly evolved strain

would be an acetate consumer. With cFBA we tested whether

other carbon sources than acetate could give rise to the same

correspondence of the modeling results and the experimental data.

This would indicate that other metabolite exchanges, in addition

to or instead of acetate, could play a role as well. Other modes of

cross feeding cannot be excluded, because E. coli is known to

excrete many other metabolites that can readily pass biological

membranes, such as the weak acids occurring in central

metabolism. To explore this question of alternative cross-feeding

metabolites, we performed a series of simulations where we

allowed the two strains to cross-feed via a set of metabolites (one-

at-a-time) and minimized the glucose uptake flux to achieve the

experimental growth rate with unlimited cross-feeding flux

capacities. We fixed the specific growth rate at the set dilution

rate and then minimized the glucose uptake rate. We then

searched for single alternative cross-feeding metabolites that would

give rise to the same or lower glucose uptake rate than

Figure 2. Illustration of environmental and metabolic limita-
tions at the consortium level, for the consortium depicted in
Figure 1E. A: Optimal consortium growth rate (mC,), in h21, as a
function of fractional biomass abundance of species i (wi) at different
cross-feeding (CF) reaction capacities, with all J ’s in molNh21 and all q’s
in molNg21Nh21. We consider a limited glucose (flux: Jglu~1) and excess
nitrogen (flux: JN2~?) and vary the flux bounds for CF fluxes (i.e.
succinate (qsucc i) and ammonia (qnh3 j ) production fluxes) to distinguish

different limitation regimes and optimality states: i. infinite CF when , ii.
critical CF (qsucci

~0:35,qnh3j
~0:59), iii. two cases for above critical CF:

c u r v e I ( f o r : qsucci
~0:38,qnh3j

~0:9) a n d c u r v e I I ( f o r :

qsucci
~0:31,qnh3j

~0:71), a n d i v . b e l o w c r i t i c a l C F ( f o r :

qsucci
~0:15,qnh3j

~0:35). This figure indicates that the CF reactions

determine the optimal value of the community growth rate and the

optimal fractional biomass abundance. B: A contour plot is generated
for the optimal community growth rate mC as function of the upper
bound of the succinate production flux by species i qsucc i

� �
and the

ammonia production flux of species j qnh3 j

� �
. The environmental

conditions are the same as in Figure 2A. The different points depict the

various cross-feeding regimes distinguished in Figure 2A (N Above

Critical CF – I, w Above Critical CF – II, ¤Below Critical CF). This figure

indicates that the CF fluxes between the organisms determine the
optimal community state at a fixed environment. C: Contour plot of the
maximum community growth ratemC , as a function of the environment
while cross-feeding capacities are kept unconstrained. This figure
indicates that the optimal state of the ecosystem can be determined by
specific environmental fluxes.
doi:10.1371/journal.pone.0064567.g002
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experimentally found. In Figure 3C, the percentage change in

minimum glucose flux required to achieve the same growth rate,

compared to the situation when only acetate is the cross-feeding

metabolite, is plotted for different alternative cross-feeding

metabolites. This analysis indicates that cross feeding on other

metabolites such as ethanol, pyruvate, lactate and several others

cannot be excluded: they can each explain the experimental data

equally well. This example illustrates the potential of cFBA in

studies of microbial consortia where the cross-feeding metabolites

need to be identified.

General Modular Structure of Stoichiometric Matrices of
Microbial Consortia

Equation (3) captures the entire structure of a microbial

community: it considers the metabolic cross-feedings between

microorganisms, the community growth rate, environmental fluxes

and the fractional biomass abundances. The examples of cFBA

that we have discussed so far considered two species. cFBA can

straightforwardly be applied to communities with many microor-

ganisms (in information S1). In these cases, the stoichiometric

matrix of the community, denoted by C , has a general modular

structure. It is made up of stoichiometric matrices of participating

microorganisms and its sub-matrices are functional blocks that

have a clear microbial-ecological interpretation (Figure 4).

To construct the community stoichiometric matrix, the

reactions of individual microorganisms involved in cross-feeding

reactions and communication with the environment need to be

identified. The reactions of individual species can typically be

derived from genome-scale stoichiometric models that already

exist but can, in principle, also be derived from reduced

stoichiometric models of species that are less well characterized.

Three types of metabolites and four types of reactions can be

distinguished at the level of the metabolism of every microorgan-

ism. Collecting these metabolites and reactions leads to a

rearranged stoichiometric matrix (Ni ) of a single microbial species

i as given below.

Ni~

NII
i NICf

i NIT
i 0 0

0 NCf
i 0 NCf E

i 0

0 0 NET
i 0 NEE

i

2
664

3
775

mi|rið Þ

Here we distinguish the mi metabolites and ri reactions that are

involved in the metabolism of species i. Stoichiometric coefficients

for metabolites that only occur intracellularly, populate the mI
i |rI

i

sub-matrix NII
i . Sub-matrix N

ICf
i mI

i |r
Cf
i

� �
and NIT

i mI
i |rT

i

� �
represents the stoichiometry of cross-feeding reactions (r

Cf
i ) and

unique transport reactions (rT
i ) respectively, acting upon intracel-

lular metabolites. All the extracellular metabolites can be

distinguished by their roles in the consortium; some metabolites

(m
Cf
i ) are cross-fed upon or competed for, while others are

uniquely consumed or produced by specific organisms (mE
i ). Cross-

feeding reactions involved in the transport of cross-feeding or

Figure 3. Illustration of cFBA applied to a genome-scale
stoichiometric model of a microbial consortium evolved in a
chemostat. A: Consortium of two E. coli strains; one is a glucose
consumer ‘g’ and other is a specialist acetate consumer ‘a’. They both
take up glucose with specific glucose consumption fluxes q

g
gluand qa

glu in

mmolNg21Nh21 but ‘a’ does this with lower activity than ‘g’. Strain ‘g’
produces acetate with flux q

g
act and strain ‘a’ consumes it via flux qa

act. In
the chemostat, glucose is provided at a constant rate Jglu . AndJactis the
acetate production rate (molNh21). Various metabolites could be cross-
fed between both organisms besides acetate, which leads to the
question whether those alternative metabolites can be predicted by
cFBA. B: A biomass ratio scan was performed and the community
growth rate mC h{1

� �
is plotted as a function of the steady-state biomass

ratio. The following parameter were determined from the experimental
data of Rosenzweig et al. (1994):Jglu~0:069; xt~0:02866g; dilution rate
(D) = mC = 0.2; and steady state biomass ratio (xa=xg~9). To plot the

‘Below Critical Cross-feeding’ curve, cross-feeding fluxes were con-
strained as indicated in the plot, while for the ‘Infinite Cross-feeding’’
curve, unconstrained acetate cross-feeding capacities were assumed. C:
Percentage change in minimum glucose uptake rate Jgluneeded to
achieve the growth rate mC of 0.2 h21 for alternative cross-feeding
metabolites (one-at-a-time).
doi:10.1371/journal.pone.0064567.g003
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Figure 4. General structure of the stoichiometric matrix of a microbial consortium. The community stoichiometry matrix C has m rows
(metabolites) and r columns (reactions) and is created by merging individual stoichiometric matrices (Ni ,Nj ) of community microorganisms and the
environmental fluxes. The species-specific stoichiometric matrices have a consistent organization of metabolites (intracellular (I ), cross-feeding (Cf )
and extracellular (E)) and reactions (intracellular (I ), cross-feeding (Cf ), unique transport (T ) and environmental exchange (E)). Any sub-matrix
notation has species name (i or j) as subscript and type of metabolites and reactions as superscript. The community stoichiometry matrix multiplied
by the fractional biomass matrix W and flux vector q then gives the steady state mass balances of the community (equation (3)).
doi:10.1371/journal.pone.0064567.g004
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competing metabolites make up sub-matrix N
Cf
i m

Cf
i |r

Cf
i

� �
and

unique extracellular metabolites taken up by unique transport

reactions make up sub-matrixNET
i mE

i |rT
i

� �
. Finally, environ-

mental exchange reactions that exchange extracellular metabolites

with the environment can be classified into two subgroups

depending upon the kind of extracellular metabolites they

exchange in the consortium. Stoichiometric coefficients of

exchange reactions transferring cross-feeding or competing

metabolites to and from the environment make sub-matrixN
CfE
i

m
Cf
i |r

CfE
i

� �
, while the rest of the exchange reactions and

organism specific extracellular metabolites create the sub-matrix

NE
i mE

i |rE
i

� �
. All the individual stoichiometric matrices of

participating organisms can be re-arranged in these generic sub-

matrices and then merged to form the matrix C as shown in

Figure 4.

Discussion

In this paper, we presented an approach to interrelate genotype,

phenotype, and community structure for microbial communities at

steady state. Our cFBA method allows for the prediction of

metabolic fluxes, community growth rate, and the fractional

biomass abundance given (genome-scale) stoichiometric models of

the participating species and constraints derived from biochem-

istry, thermodynamics, microbial physiology, and ecology. We

derived the cFBA method from the microbiological principles of

balanced growth and mass flow in microbial communities. We

thus extended the concept of balanced growth of a single organism

in microbiology to microbial ecology.

At present, cFBA is limited to microbial communities at

balanced growth, such that all microorganisms grow equally fast

and have an intracellular metabolism operating at steady state.

The resulting condition of equal specific growth rate can be

directly used as the objective function that is to be maximized

computationally. The optimization leads to the identification of an

optimal community structure. This structure encompasses the

rates of all the metabolic fluxes in the community and fractional

biomass abundances. cFBA applies to microbial communities

where the environmental changes are slow enough for the entire

community to settle to a steady state. Communities involved in

wastewater treatment or bioremediation can attain steady state

levels when done in specific bioreactors [32,33,34]. But also

communities in natural environments can be exposed to fairly

constant environmental conditions, such as communities found in

the (deep) subsurface or on inert surfaces [23]. Another application

of cFBA is the study of mixed cultures in controlled bioreactors for

new environmental biotechnological applications, such as the

production of bioelectricity [35] or bio-plastics [36].

Constraint-based stoichiometric modeling approaches for the

metabolic networks of microbial communities, such as cFBA or

other methods [11,12,13,14,15,16,18,19,20], can be a great tool to

supplement experimental microbial community analysis. These

computational methods can address specific questions unanswered

by molecular characterization of communities and the mathemat-

ical models are natural ways to integrate heterogeneous data. For

instance, after identification of the microbial species (or ecotypes)

making up the community and the (partial) functional annotation

of their genome, the metabolic network can be reconstructed from

this genome information [8]. Then, depending on the level of

genome annotation, the majority of the metabolic capacities of the

microorganisms are known. How those metabolic capacities

together give rise to ecosystem level properties regarding biomass

abundances, growth rate, and metabolic activities can subsequent-

ly be addressed with constrained-based stoichiometric modeling

approaches. The output of those computational methods can be

directly compared to available experimental data about fluxes and

biomass abundances. cFBA extends the growing arsenal of such

computational methods and has major advantage compared to

previous methods that it is straightforward and predicts the entire

state of a microbial community, including biomass abundances of

individual species. It can address an unlimited number of species

and any type of species interaction. Future extensions of cFBA will

consider dynamic scenario’s where one or several nutrients are

limiting consortium growth and depleting slowly.

The constraint-based stoichiometric modeling of microbial

communities is still largely in its infancy. Much is still to be learnt

from studies where the predictions of these modeling approaches

are critically compared to experimental data. How can we study

microbial communities in a sensible fashion by using an

optimization approach? Do we need to consider multi-objective

nonlinear optimization approaches? If so, the computational

approaches will quickly run into problems related to computa-

tional speed and uniqueness of solutions. However, even if not all

the assumptions hold, as is also often the case for single-species

FBA, these models will be useful to explore the metabolic potential

of microbial communities. We thus expect approaches such as

cFBA to be already sufficiently informative to become a vital

component of the workflow of studying communities with modern

‘‘omics’’ approaches.

Materials and Methods

This cFBA framework has been coded using PythonTM

programming language and requires CBMPy (http://cbmpy.

sourceforge.net/) package and IBM ILOG CPLEX Optimizer

by IBM. CBMPy has been developed based on the principles of

Python Simulator of Cellular Systems (PySCes) [37]. In supple-

mentary materials; scripts for phase plane analyses shown in

Figure 2B and 2C coded in Wolfram MathematicaH 8, python

scripts and data for analyses depicted in Figures 2A, 3B and 3C

and all the stoichiometric models (SBML format) used in this

paper are provided.

Supporting Information

Figure S1 Illustration of the reconstruction of a stoi-
chiometric model of the metabolism of a microbial
consortium. To emphasize the steps involved in the construction

of a stoichiometric model of a microbial consortium, we use

reduced stoichiometric descriptions of microbial growth and

product formation. The metabolic network of the first organism,

species i, is shown in Figure S1-A and for species j in Figure S1-D.

Three types of reactions occur in these network diagrams:

intracellular (colored arrows), membrane transport (solid-black

arrows), and environment exchange reactions (dashed-black

arrows). Every reaction runs at a certain rate or biomass-specific

flux, denoted by q with a unique subscript referring either to the

process (anabolism ‘ana’, catabolism ‘cat’, respiration ‘res’ and

product formation ‘pro’) or extra-cellular metabolite names,

followed by species name (i or j ) separated by underscore. And,

metabolites are classified on the basis of the compartments they

exist in i.e. intracellular (denoted with species name as subscript),

extracellular (subscript ‘ext’) and fixed environmental (underlined)

metabolites. These specific fluxes have as their unit: mass flow per

gram biomass, i.e. molNg21Nh21; and every reaction considered in

these models should be elementally and charge balanced. All

reactions can conveniently be expressed in terms of a stoichio-
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metric matrix for each organism, denoted by N and the species

name as subscript, as shown in Figure S1-B and S1-C. In Figure

S1-E, the metabolic network diagram of the entire consortium is

shown. Some of the products (colored boxes; succinate and

ammonia) that were excreted into the environment in Figure 1A

and 1D have now become cross-feeding metabolites between two

species; and every extracellular metabolite can, in principle,

overflow into the environment via an exchange reaction (dashed-

black arrows). In the consortium, we have to consider the biomass

amounts of the two species explicitly. Species-specific membrane

transport fluxes should be multiplied by the abundance of the

species, denoted by xi and xj.

(TIF)

Information S1 Detailed mathematical descriptions of
the optimization problem, two-species community and

structure of the C matrix of a three-species microbial
consortium.
(PDF)

Scripts S2 Programming scripts for reproducing data
shown in Figure 2 of the manuscript.
(ZIP)

Scripts S3 Programming scripts for reproducing data
shown in Figure 3 of the manuscript.
(ZIP)
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