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Abstract

Background: Sequence comparison faces new challenges today, with many complete genomes
and large libraries of transcripts known. Gene annotation pipelines match these sequences in order
to identify genes and their alternative splice forms. However, the software currently available
cannot simultaneously compare sets of sequences as large as necessary especially if errors must be
considered.

Results: We therefore present a new algorithm for the identification of almost perfectly matching
substrings in very large sets of sequences. Its implementation, called ClustDB, is considerably faster
and can handle 16 times more data than VMATCH, the most memory efficient exact program
known today. ClustDB simultaneously generates large sets of exactly matching substrings of a given
minimum length as seeds for a novel method of match extension with errors. It generates
alignments of maximum length with a considered maximum number of errors within each
overlapping window of a given size. Such alignments are not optimal in the usual sense but faster
to calculate and often more appropriate than traditional alignments for genomic sequence
comparisons, EST and full-length cDNA matching, and genomic sequence assembly. The method is
used to check the overlaps and to reveal possible assembly errors for 1377 Medicago truncatula
BAC-size sequences published at http://www.medicago.org/genome/assembly_table.phplchr=1.

Conclusion: The program ClustDB proves that window alignment is an efficient way to find long
sequence sections of homogenous alignment quality, as expected in case of random errors, and to
detect systematic errors resulting from sequence contaminations. Such inserts are systematically
overlooked in long alignments controlled by only tuning penalties for mismatches and gaps.

ClustDB is freely available for academic use.
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Background

More than 500 eukaryotic genome projects are on the way
and will sooner or later generate hundreds of billion base
pairs. The accurate annotation of genes in these many
sequences is a challenging computational problem and
impossible to complete by experimental methods alone.
However, it is also estimated that about 50% of an organ-
ism's genes can be identified by strong sequence similarity
to other organisms. The resulting sequence matching
problems require simultaneous comparisons of large sets
of sequences and are no longer efficiently handled by
matching in turn each candidate sequence after the other
as does BLAST and its various improvements including
BLAT [1]. Using suffix trees and suffix arrays, more effi-
cient and exact methods of simultaneous sequence com-
parison exist. These methods quickly identify perfect
matches of substrings. Their application is justified by the
observation, that approximately identical sequences have
exact common substrings which are often specific enough
to identify sequence similarities of interest. Errors are
rarely randomly distributed but cluster, leaving space for
longer exact matches than expected from probability com-
putations. Hence, by almost perfect sequence matching,
we can easily locate BACs and shorter sequences on chro-
mosomes, relate single ESTs to full-length ¢cDNA and
identify redundant and contaminated sequences. For
instance, such methods quickly reveal large numbers of
almost identical human ESTs stored in Genbank which
cause largely increased multiple output of spliced align-
ment programs, genome browsers use to map ESTs on
chromosomes. One of the largest subset counts 237
human ESTs which are not human transcripts but part of
the E. coli vector AF058756 (Cloning vector pFR-Luc) used
for sequence amplification. Sorek and Safer [2] describe
various kinds of EST contamination which are all detecta-
ble by analyzing matching substrings. By statistical analy-
sis of complete EST libraries these authors found 24,766
human ESTs which are likely contaminated by intergenic,
intronic or repetitive DNA, and may have caused up to
9,575 incorrect gene predictions. By exact string matching
Kurtz et al. [3] discovered a 190,014 bp repeat in the
human chromosome 22 contig 8 caused by wrong
sequence assembly that has been corrected. The Genbank
sequence of Arabidopsis thaliana chromosome III still con-
tains a 5,452 base pairs fraction of the cloning vector
pBACe3.6 at position 13,754,155. Four overlapping
repeats found in chromosome IV are caused by a nine-fold
tandem repeat of 3,259 base pairs that needs careful inves-
tigation. Such facts are generally discovered by chance
since existing methods for sequence matching cannot
simultaneously compare sequence data as large as neces-
sary. The suffix tree approach requires too much memory.
Although the program MUMMER by Delcher et al. [4] is
based on a more space efficient suffix tree implementa-
tion which is also used in REPFIND by Kurtz and Schleier-
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macher [5], it cannot deal with more than 120 MB of
sequence at a time using even 2 GB of RAM. The next bet-
ter program VMATCH by Abouelhoda et al. [6] uses an
enhanced suffix array. Its recent version can handle at
most 250 MB of sequence using the same amount of
memory. Other methods by Burkhardt et al. [7], Hohl et
al. [8] and Lefebvre et al [9], also require at least 8 bytes of
memory for each base pair to compare. However, we will
soon need programs which are able to compare more base
pairs of sequence than there are bytes of RAM. One such
program is ClustDB [10] based on a partitioned suffix
array method. It needs less than four hours to simultane-
ously compare 3.3 GB of human ESTs using a PC with 2
GB of RAM. This program was further improved by a
novel algorithm for match extension with errors which is
the subject of this paper.

Results and discussion

Quality of window-alignment

ClustDB extends to both sides all left maximal pairs of
substrings exactly matching over at least M characters
until a given number of errors K is exceeded in a window
of given size W. This approach controls match quality
independent of alignment length. Its complete match
option confines on listing sequences contained in others
and pairs of sequences which overlap. The total number of
errors could be controlled, too, as implemented in
VMATCH [6]. But this approach turned out to be imprac-
tical for large sets of sequences. From one exact match it
often generates large numbers of differently extended
matches while our approach reduces output by generating
identical match extensions from different exact matches.
We applied ClustDB to a set of 2020 Medicago truncatula
BACs published at the website http://www.medicago.org
and found 1215 complete matches using the parameters
M =100, W = 40 and K = 10. The numbers of errors
reported were compared with the optimal alignment
scores which took more than 30 hours to calculate even
knowing the start and end positions of all matches. Only
64 out of 1215 cases showed differences to the optimal
alignment score in either the number of mismatches or
gaps. The total number of errors differed for 57 cases for
which a histogram is shown in Table 1. The largest differ-
ence was 16 errors over an alignment of more than 100
kbp, a case discussed in the legend of Figure 1.

ClustDB outperforms VMATCH in speed and sensitivity

We applied ClustDB to find redundant sequences in a
smaller set of 997 finished Medicago BACs downloaded
from the NCBI (September 15th, 2005) in order to iden-
tify overlapping sequences and sequences which are con-
tained in others. Consideration of both strands yields
1994 sequences which add up to about 220 MB. Using M
=100, W =20 and K = 5, ClustDB takes 11:37 minutes to
identify 510 complete sequence matches, i.e. those which
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Table I: Histogram of excess errors reported by ClustDB
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| error difference: | 2 3 4 5 6 7 9 16
2 number of cases: 22 23 5 | 2 | | | |
3 length (kbp): 39 45 43 60 I 36 84 46 106

ClustDB reported non-optimal error counts for 64 (5%) of 1215 alignments. Row one shows the error differences and row three reports the
average match length over the number of observed alignments given in row two. The worst case is 16 errors difference for one alignment of length

106 kbp. Figure | explains the reason for this difference.

identify overlapping BACs and those contained in others.
Much shorter run times are obtained for larger values of
M. For M = 1000 ClustDB takes only 6:34 minutes to
derive 465 complete matches admitting 5 errors in each
window of size 20. Hence, 45 complete matches do not
include an exact match of length 1000. The calculations
were performed on a Pentium 4 PC with 2 GB of RAM and
2.6 GHz processor speed.

On the same computer, VMATCH takes 16:40 minutes to
find only 116 exact complete matches for M = 100 or
16:10 minutes to find only 66 exact complete matches
with M = 1000. In this program M is called seed string
length. Admitting at most 10 errors - the maximal error
count allowed in VMATCH - it takes 17:08 minutes to
derive 348 complete matches for M = 100 and 16:23 min-
utes to find 236 complete matches for M = 1000. Further-

seql stal endl lenl seq?2 sta2 end2 len2 aln

<< AC148340 1 105618 105618 AC148483 164269 269897 298559 105638 69

62580

65940

66540

73020

Figure |

AAAGATAGAG
AAAGATAGAG
TTGCTTCTTC
Téé%TTCTTC
ACCTCATCCT
ACCTCATCCT
AATGAAGCCC
AATGAAGCCC

CCTTCATTAA

CCTTCATTAA

GGACGAAAAC

GGACGAAAAC

CAAATTAGAA

CAAATTAGAA

TTAACAAATA

TTAACAAATA

ATCCATCCCC

ATCCATCCCC

TATTCAAGGA

TATTCAAGGA

CAAAAACACG
CAAAAACACG
CAATTTAGCA
CAATTTAGCA
CCAAAACTCC
CCAAAACTCC
CAAGATTATG
canngaiaD

ACTTCGGCCA

ACTTCGGCCA

CAAACTTACA
canaceatan
TTTTAATCCA
TTTTAATCCA
TTGAAGAAAG
randcann
GTTTCTCCAC
GTTTCTCCAC
CCGAAGAAAC

CCAGAAGAAA

TGGATCGTTT
éGGATCGTTT
AAATCTCTGA
AAATCTCTGA
C-AAAATTAA
CéAAAATTAA
GTCTCTTCTA
GTCTCTTCTA
CATTAAATTT

CCATTAAATT

ACATATTTAA

ACATATTTAA

GGTTGATCCG

GGTTGATCCG

AACCATCCGG

AACCATCCGG

CCAACAGCTT

CCAACAGCTT

GCCTGCAGTG

GCCTGCAGTG

Alignment output of ClustDB. The BAC AC148340 (lenl = 105618 bp) is approximately contained in the BAC AC148483
(len2 = 298559 bp). The alignment has length aln = 105638 including 20 gaps in AC148340 and 9 gaps in AC148483. Its dis-
played part shows five clusters of mismatches surrounded by long perfect matches so that the number of errors does not
exceed 10 in each window of size 40. Therefore, ClustDB does not look for improvements by introducing gaps and reports 69
errors, i.e. 16 errors more than the exact alignment computes. Note that each cluster of mismatches can be realigned with

two gaps.
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more the two sets of complete matches derived by
ClustDB contain 414 and 381 complete matches with at
most 10 errors. VMATCH should find all of these matches
but fails. For technical reasons it considers the nucleotide
'n' to mismatch all other nucleotides including itself while
ClustDB takes the biologically more correct point of view
and considers the letter 'n' to match all other nucleotides
and finds more matches this way. Hence, ClustDB outper-
forms VMATCH in speed and sensitivity.

Runtime basically depends on how many matches are
found. For another larger and match rich sample of 1377
BACs as well as their complementary sequences (324 MB)
described in the next section ClustDB took considerably
longer times of execution shown in Table 2. The shortest
time is 25 minutes for M = 100 W = 50 and K = 5.
VMATCH performed very differently on this data set.
While it was fast in generating all extended matches with
at most 6 errors and seed string length M = 100 (27 min-
utes) it suddenly took more than 20 hours to derive all
matches with up to 7 and more errors. The reason could
be a bug in the program or an exponential increase of
match extensions found. VMATCH extends every left max-
imal pair of exactly matching substrings while ClustDB
does not extend matches which are contained in an
already extended match. It is also shown in [10] that
VMATCH is on its limit by processing about 220 MB of
sequence with 2 GB of RAM while the latest version of
ClustDB handles up to 4 GB of sequences. Hence, swap-
ping may be a reason, too. Moreover, the output of
VMATCH makes not much sense for such problems and
requests a massive additional effort to derive the results
obtained by ClustDB using the output of VMATCH.

http://www.biomedcentral.com/1471-2105/8/S5/S7

Testing ClustDB on TIGR's current Medicago BAC
assembly

The website http://medicago.org/genome,
contigviewer_data offers 9 BAC assembly files named
contig_lg0.dat to contig_lg8.dat. They contain 407 chains
of sequences claimed to overlap by more than 1000 nucle-
otides for each junction. The total number of sequences in
these chains is 1377 and they contain 969 overlapping
sequence pairs which form our test set for ClustDB. Of
these 969 sequence pairs 799 (82%) were confirmed by
application of ClustDB to the 1377 BACs and their com-
plementary sequences (324 MB) using parameters M =
100, W = 100, K = 30, the complete match option, and
reporting only extended matches of length greater than
1000. Interestingly, these are in fact all correctly published
overlaps of complete sequences as our following study
shows.

ClustDB was applied to the remaining 170 pairs with the
complete match option switched off. The overlapping
property could not even partly be confirmed for five pairs
CT971491/CT961056, AC171618*/AC160842*%,
AC147960/CR931732, AC153162*/AC159662* and
AC158173*/AC140022. The asterisk denotes working
draft sequences which are incomplete and consist of a
number of unordered sequence sections which must be
considered separate sequences for a meaningful applica-
tion of ClustDB. TIGR claims no confidence in the results
published for these sequences. The two pairs of complete
sequences CT971491/CT961056 and AC147960/
CR931732 were studied using BLAST and no significant
local alignments longer than 300 bp were found. Trusting
BLAST, we are convinced that these two cases are no real
overlaps. In another 12 cases no match extended until one
of both sequence ends. But in all these cases at least one

Table 2: Runtimes for different applications of ClustDB to 1377 Medicago BACs and their complementary sequences (324 MB of

sequence)
w K Runtime matches
50 5 00:25:05 849
50 10 00:35:35 949
50 15 00:42:57 963
50 20 00:51:32 995
80 5 00:38:31 826
80 10 00:57:29 924
80 15 01:12:40 951
80 20 01:28:31 968
100 5 00:50:45 823
100 10 01:12:37 917
100 15 01:34:00 951
100 20 01:50:46 968
100 30 02:20:48 1015

We present the runtimes in hours (column 3) and the number of complete matches found (column 4) as function of the maximum number of
errors (column 2) allowed in all sliding windows of size W (column 1). All computations were performed using a Pentium 4 PC with 2 GB of RAM

and 2.6 GHz processor speed.
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and mostly both sequences were working draft sequences
or had the tag "sequencing in progress" in their GenBank
LOCUS fields. For the same reason we did not consider
another 133 pairs of BACs.

The remaining 20 pairs of complete sequences are listed in
Table 3. Figure 2 shows the kind of match found in 16 of
these cases (type 1). Two excellent matches extend from
both sides of the overlap, but a poorly matching sequence
section stops the window alignment in nearby sequence
positions. Note that if the match extensions are not com-
plete there are necessarily K + 1 = 31 errors in the last win-
dow of size W = 100. Hence, if the total number of errors
is 32, only one error occurs in the remaining part of the
match indicating a very inhomogeneous alignment qual-

1ty.

In three other cases (type 2), ClustDB detects one match
reaching from the start of the overlap to shortly before its
end missing 236, 414 and 409 nucleotides, respectively.
Again, almost all errors occur in the last alignment win-
dow and hence, the tails of the upstream BACs should be
studied. The overlap claimed by TIGR for the sequence
pair AC142394/AC147435 splits into two sections (type
3). One section of length 15702 aligns badly with 7893
errors (about 50%) and is followed by a section of length
85901 that aligns perfectly with only 5 errors. This places
serious doubts on the correctness of both BACs.

Alternative assembly

ClustDB applied to a large set of BACs, simultaneously,
does not only confirm known matches but also detects
large numbers of new alternative matches which are
worth to consider. Our application described in the previ-
ous section produced 1015 complete matches of which at
least 36 are not listed in the published Medicago BAC
assembly tables which suggest alternative BAC assemblies.
Just one example is discussed in Figure 3. It compares a
BAC assembly derived from our complete matches (white

http://www.biomedcentral.com/1471-2105/8/S5/S7

boxes) with the result provided by the Medicago sequenc-
ing consortium (black boxes). Table 4 presents the match
errors for all involved pairs of overlapping BACs. There is
a 21493 bp long exact overlap of sequence AC150776+
with the sequence AC148343+ (white box). It suggests an
alternative assembly that covers the about 60 kbp gap of
unknown sequence. However, there is no proof of it.
Assuming the consortium's assembly is correct, a long
inverted repeat exists as has been observed very frequently
in the human X chromosome [11]. We are far from solv-
ing this puzzle here, but this case proves the importance
of good methods for sequence comparisons that make us
think about such problem:s.

Conclusion

We proved window alignment an efficient way to find
long sections of similar sequences. Compared with tradi-
tional alignment, it is faster to calculate, reveals sequence
sections of homogenous alignment quality, just such as
expected for random errors, and also detects local system-
atic errors like sequence contaminations. Such inserts are
often overlooked by optimizing global scores for long
alignments only tuning parameters like penalties for mis-
matches and gaps. The case depicted in Figure 2 has an
excellent global alignment score and still shows a severe
local sequence matching problem that is important to
detect. However, not only the quality of individual align-
ments but also the speed of simultaneous comparison of
large set of sequences makes ClustDB an indispensable
tool for genomic sequence analysis.

We showed that ClustDB outperforms VMATCH in com-
paring BAC size sequences mainly caused by an inappro-
priate match extension method and the high memory
consumption of the latter program. Application of the
software BLAT to our data was stopped after several days
of endless computation. Note that BAC assembly is just
one application of ClustDB. Our alignment concept is
also beneficial for mRNA to cDNA comparison in order to

Table 3: Twenty pairs of finished Medicago truncatula BACs with obvious sequencing errors detected by ClustDB

type upstream downstream type upstream downstream
| ACI36973 ACI146774 | ACI51621 ACI27168
| AC143339 AC160629 | AC153460 AC137837
| ACI174291 ACI166286 | AC170800 ACI141922
| ACI174299 ACI152886 | ACI47013 ACI38010
| AC148097 ACI40551 2 ACI135234 ACI149208
2 AC138526 AC148775 | AC144476 AC147431
2 ACI125474 ACI21246 | ACI174378 ACI150647
3 ACI142394 ACI147435 | AC148347 ACI135229
| AC138017 AC135800 | AC140720 AC147000
| ACI135800 ACI57757 | ACI147000 ACI36142

The two columns named 'type' denote the kind of the problem as described in the section "Testing ClustDB on TIGR's current Medicago BAC

assembly". The first case is depicted in Figure 2.
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29986 nt

AC146774

Window Alignment detects sequence contamination. The BAC AC146774 is possibly contaminated by an approximate
copy A (93 nt) of a low complexity subsequence section B. Removing A from AC146774 yields a perfect alignment with one

mismatch.

confirm exons, introns and alternative splice sites. Align-
ments used in such contexts should tolerate sufficiently
spaced single errors in larger numbers than dense blocks
of errors. The program GenomeFlicer by Mielordt et al.
[12] admits at most 2 errors in a window of length 20 in
order to confirm genes and to distinguish NAGNAG
acceptor isoforms [13]. We also expect that ClustDB helps
to study highly repetitive genes, a problem described espe-
cially challenging by Check [14]. We developed ClustDB
to play a major role in future genome wide comparisons
of genes and currently work on specialized program ver-
sions for EST- and full-length cDNA matching, genome
wide detection of alternative splicing as well as distributed
parallel processing [15].

Methods

Algorithm

The key concept used in ClustDB [10] is a linear space rep-
resentation of all left maximal sets of common substrings
of a given length M, called substring-clusters. A cluster of
identical substrings is called left maximal if at least two
identical substrings in this cluster are preceded by differ-
ent letters. Other clusters of common substrings need not
be considered for sequence matching. The members of
each cluster are given by sets of triplets (¢, s, p) with the
same value of ¢, called cluster number, s denotes sequence
number and p denotes start position of the substring

within sequence s. These triplets are stored in linear space
and are quickly derived in approximately linear time
based on a novel count sort method performed on the
place. Next they are used to efficiently list pairs of left
maximal matching substrings, and to simultaneously
extend such pairs to maximum length as shown in [10].
Let us here describe how ClustDB further extends such
pairs to both sides until a given number of errors K is
exceeded in a window of given size W. This window
approach easily detects similar sequences, sequences con-
tained in others and pairs of sequences which overlap.

In the program ClustDB all string comparison is done
using a long sequence formed by concatenation of all
individual sequences separated by dot characters used as
end-of-sequence symbols. Hence, pairs of matching sub-
strings are internally represented by triplets (p1, p2, n)
where p1 <p2 are the start positions in the concatenated
sequence and n is the length of the match. In order to
avoid unnecessary match extensions with mismatches, we
alternatively present the maximally extended exact
matches by triplets (p, 0, n) with p = p1 and offset 0 = p2 -
pl > 0. Then, after grouping all triplets with the same oft-
set and sorting each group in increasing order of p, a max-
imally extended match allowing mismatches but no gaps
is prone to contain the next not yet extended exact match
that needs not be considered. The result is a shorter list of

Table 4: Match quality of overlaps between the BACs shown in Figure 4

BACI BAC2 overlap gaps| gaps2 errors
ACI61749+ ACI50776+ 19072 4 | 6
ACI150776+ AC148343+ 21493 0 0 0
AC148343+ ACI125368+ 10907 0 0 0

AC148343- ACI146751+ 1134 0 I 13

Columns | and 2 provide BAC identifiers with + for direct strand and - for complement strand, column 3 provides alignment length, and columns
4-6 show gaps and alignment errors including gaps. Hence, the number of aligned nucleotides is given by overlap-gaps| for BACI and overlap-gaps2

for BAC2.
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Figure 3

Window Alignment detects alternative assemblies. Displayed is a part of the temporary BAC assembly by the Medicago
sequencing consortium drawn to scale using + and - signs to indicate sequence strand. Five BACs (black boxes) are arranged
into two assemblies separated by a 60 kbp gap of unknown sequence. However, a long exact match of AC148343+ with
ACI150776+ suggests another possible assembly indicated by white boxes. See Table 4 for the match quality of all considered

overlaps.

maximally extended pairwise matches with mismatches
represented by quadruplets (p, o, n, €). The new integer e
is the number of mismatches and forms an upper bound
for the edit distance. Such extended match has at most K
mismatches within each internal window of size W. The
two boundary windows have K + 1 errors or reach end-of-
sequence symbols.

For match extension with gaps, we construct an as long as
possible virtual alignment that contains the considered
match and has the property that each internal alignment
window of size W has at most K errors using edit distance.
This alignment is never stored during computation.
Instead we only store and calculate the vectors (p1, e, p2,
e2, e, a) where pl, el and p2, e2 are the start and end posi-
tions of the extended match. The integer a stands for the
length of the virtual alignment including gap symbols and
is necessary for the calculation of the numbers of gaps g1
=a-el +pl-1linsubstringlandg2=a-e2+p2-1in
substring 2, respectively. The number of mismatches fol-
lows from m = e - g1 - g2. On request, complete printouts
of alignments are generated from stored lists of gap posi-
tions relative to p1 and p2. Each match is first extended to
the left, than to the right which we will describe in more
detail.

Assume a match is maximally extended to the right allow-
ing no gaps and at most K mismatches in each internal
window of size W. The boundary window to the right has
K + 1 errors or reaches the end of at least one sequence.
Nothing remains to do in the latter case. Otherwise, we
aim to reduce the number of errors of the rightmost win-
dow by calculating an alignment with gaps. For this rea-

son, we use two work arrays of size 3W in order to
calculate and evaluate optimal alignments by moving a
window of size W along the aligned sequences stored in
the two work arrays. Two pairs of variables (x1, y1) and
(x2, y2) link the four corners of the sliding window with
the real positions in the sequences as seen in Figure 4.
Note that y1 - x1 and y2 - x2 may be less than W if the slid-
ing window includes gaps.

The two work arrays are initialized by substrings of length
W starting at x1 = el - 2W and x2 = e2 - 2W, respectively,
and we set y1 = x1 + Wand y2 = x2 + W. Figure 5 shows a
match with three mismatches at the end of the last win-
dow of size 6 printed in bold, as well as the resulting ini-
tialization of the work arrays. Match extension is now
performed taking the following steps of iterations:

1. Overwrite the last 2W positions of both work arrays
with 2W sequence characters beginning in sequence posi-
tions y1 and y2, respectively, and calculate an optimal
alignment of these substrings. The length of the alignment
may be greater than 2W if it contains gaps. An example for
W =6 and K = 3 is given in Figure 5. It shows under step
1 the contents of both work arrays and the alignment
stored.

2. Copy from the aligned sequences the first W characters
including gap symbols to the work array positions W + 1
to 2W and identify the sequence positions of the last cop-
ied characters. Then, copy subsequent W characters
directly from the sequences to completely fill up both
work arrays. Hence, part of the alignment is ignored and
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attccacgtacgtacgtacgttttgcatgcatgcatgcaaggaa

S[x1]=¢ Y

/ \S[y1]=9

work array 1:
work array 2:

tacgtacgttttgcatgcatgcatgcaagg
tacgtacgtt--gcatgcatgcatgcaagg

S[x2]=¢
N\

S[yz2]=g
|-

attccacgtacgtacgtacgttgcatgcatgcatgcaaggaacc

Sequence 2

Figure 4

The principle of window alignment. Definition of the variables x/, yI and x2, y2 used for match extension with gaps.
Sequence | and Sequence 2 are matching parts of the concatenated long sequences S that is stored in memory. The sliding win-

dow of length 10 is marked by grey colour.

the last W characters of both work arrays are not gap sym-
bols.

3. Count beginning in position T = 1 for all sliding win-
dows of size W the alignment errors displayed in the two
work arrays, stop with the first window that has K errors
and updatex1, y1 and x2, y2 to describe the sequence posi-
tions of this window. It is the last window in case of Figure
5. For T<W + 1 match extension terminates with the result
obtained in the previous iteration since match length is
not improved.

4. Now Tis atleast W + 1. If the work arrays have gap sym-
bols in positions greater than T- W or if T < 2W + 1, then
we move the content of the window beginning in position
T - W to the start positions of the work arrays, update x1,
y1 and x2, y2 and proceed with step (1). Otherwise a gap-
free alignment of length 2W starts in position W + 1. We
perform match extension without admitting gaps until a
window with K+1 mismatch errors is found and start all
over again.

Obvious modifications apply in case an end-of-sequence
symbol occurs in step (1) and terminates match exten-
sion.

This heuristic method is fast and was observed to produce
near to optimum alignments for highly conserved
sequences. The optimal alignment calculated in step (1)

uses gap penalty 2 and mismatch penalty 1 in order to
minimize internal gaps and does not penalize end gaps.
We have not yet optimized the setting of alignment
parameters, window size and maximum number of errors
per window. Since optimal alignments of short DNA
sequences are rarely unique, the result of our match exten-
sions also depends on the particular alignments found.
We therefore work on a first improvement of the algo-
rithm that, if possible, studies alternative optimal align-
ments for a longest possible match extension. Two other
ways of improvement are realigning short overlaps of
extended matches and joining neighboured matches.

But in spite of considerable potential for improvement
our method already provides a close upper bound for the
optimal number of errors which is important information
if the error count is small and the match is long. Our
match extension method cannot lead to a correct optimal
alignment by expanding an exact match that is not part of
it. We therefore often observe different exact matches
leading to the same extended match with different num-
bers of errors and report the match with the smallest
number of errors. However, the gains in alignment quality
were observed to be minor compared to match length and
the time it takes to generate the same extended match
multiple times. We therefore do not extend seed matches
which are completely contained in earlier derived
extended matches.
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A: original pair of substrings

tttttttttttattcc acgtac gttttg catgtt catgcaaggaaaaaaaaa
tttttttttttattcc acgtac gttgca tccgtt catgcaaggaaaaaaaaa

Initialization of work arrays:

acgtac 000000 000000
acgtac 000000 000000

(1)

B: first round of iteration second round of iteration

step 1
acgtac gttttg catgtt (2) gttttg catgtt catgca (2)
acgtac gttgca tccgtt gtt-—-g catccg ttcatg

alignment
gttttg cat--g tt (3) cat--g ttcatg ca (3)
gtt--g catccg tt catccg ttcatg --

step 2
acgtac gttttg catgtt (4) gttttg cat--g ttcatg (4)
acgtac gtt--g catccg gtt-—-g catccg ttcatg

step 3
acgtac gttttg catgtt (5) gttttg cat--g ttcatg (5)
acgtac gtt--g catccg gtt-—-g catccg ttcatg

step 4
gttttg 000000 000000 (6) cat--g 000000 000000 (6)
gtt--g 000000 000000 catccg 000000 000000

Figure 5

Match extension by window alignment for W = 6 and K = 2. Match extension by window alignment for window size W
= 6 and maximum number of errors K = 2. A: We show the original pair of sub-sequences. Beginning from the left, the first
window with 3 errors is printed in bold. Both neighbouring windows are separated by blanks. The work arrays (1) are initial-
ized with the contents of the left hand side windows. B: We show the changes of the work arrays for the single steps of itera-
tions described in Section Algorithm. Step |: The central and right hand side blocks of (1) are overwritten by the next 12
original sequence characters yielding (2). An optimal alignment of these |12 sequence characters is given in (3). Step 2: The cen-
tral blocks of (2) are overwritten by the first six characters of the alignment (3) and the right hand side blocks of (2) are over-
written by the next 6 original sequence characters yielding (4). Step 3: From the left to the right the first window of size 6 with
3 errors is printed in bold. Its starting position is T = 2W +1| and the existence of gaps in the central block requires step 4. Step
4: The central blocks of (5) are shifted to the start positions of the work arrays to set the initialization for the next round of
iteration shown to the left of the first round. The third round of iteration ends in step 3 without gaps in the central and right
hand side blocks of (5) and initiates match extension without gaps as described in the text.

Modes of letter comparison

ClustDB initially searches for clusters of exactly matching
substrings of minimal length M using a count sort method
that ignores all nucleotide letters other than 'a', 'c', 'g', 't'
or the corresponding capital letters. All other letters like 'n'

or 'N' are considered to mismatch any nucleotide letter

including itself. However, subsequent pairwise match
extension with or without gaps uses the full GenBank
nucleotide letter alphabet and operates in two modes. By
default, nucleotide letters are considered to match if they
represent non-disjoint sets of nucleotides (relaxed com-
parison). While this method of comparison generates nice
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results in many cases, it also often produces long pairwise
matches extending into large runs of n-letters used to rep-
resent missing sections of sequences. By switching off
relaxed comparison, ClustDB extends pairwise matches
considering different letters to mismatch whatever they
stand for, a single nucleotide or set of nucleotides.
Another option even considers lower case letters to mis-
match their corresponding capital letters which allows
excluding sequence sections from comparison without
loss of sequence information.

Low complexity sequence problems

Note that our algorithm starts with left maximal clusters
of matching substrings. Hence, depending on the mini-
mum match length M, a low complexity sequence often
generates meaningless large clusters of self-overlapping
identical substrings as shown in Table 5. All identical sub-
strings of cluster CLU = 1 belong to sequence SEQ = 1 and
start in equidistant sequence positions POS. Optionally,
we therefore sort each cluster of matching substrings by
their suffix position, check it for runs of close by equidis-
tant positions, and delete such subsets of matches as they
are prone to cause large numbers of useless match exten-
sions. In particular, such cases can lead to curious results
like reporting one sequence to completely match itself
with a small number of gaps.

Handling of complementary sequences

Many problems like contig assembly require a simultane-
ous comparison of N sequences and their complementary
sequences as well. In such a case ClustDB is applied to 2N
sequences numbered 1,..,N for the direct strand
sequences and N + 1,.,2N for the complementary
sequences so that the complement of sequence number i
receives the number N + i. In such a case most left maxi-
mal clusters of common substrings have redundant coun-
terparts formed by the corresponding complementary

http://www.biomedcentral.com/1471-2105/8/S5/S7

substrings found in complementary sequences. Both clus-
ters collapse to one for self complementary substrings.

Pair wise matches are derived for each pair of sequences in
turn. This allows to use a considerable reduction of the
maximal number of sequence pairs we need to consider.
There are at most N(N - 1)/2 different pairs of direct
strand sequences. Similarly, a pair formed by a direct
strand sequence S1 and a complementary sequence S2c
produces the same matches as the pair formed by S1c and
S2 so that only N (N - 1)/2 pairs formed by a direct strand
sequence and a complementary strand sequence must be
considered. Hence, the maximum number of sequence
pairs to study is N(N - 1) and much less than N(2N - 1),
the number of different pairs formed from 2N sequences.

Output of ClustDB

ClustDB outputs different tables depending on the option
selected. We can ask for maximally extended exact
matches, matches with mismatches, only, and matches
with mismatches and gaps. It is also possible to set a lower
bound for the length of extended matches. The program
package VMATCH first introduced the complete match
option. It reduces output to only those matches which
prove a complete sequence to be contained in another.
We extended this concept to also include matches that
prove sequences to overlap. Hence, by our definition, a
complete match extends to both sides until the end of at
least one sequence. Each line of output starts with a match
kind symbol that classifies 6 types of matches.

== sequence 1 matches sequences 2 completely
<< sequence 1 is contained in sequence 2
>> sequence 1 contains sequence 2

-> sequence 1 extends sequence 2 downstream

Table 5: A typical substring-cluster caused by low complexity sequence

CLU SEQ POS identical substring
| | 2 t |aaaaaaaaaaaaaaaa
aaaalaaaaat...
| | 3 ta|aaaaaaaaaaaaaaaa
aaaalaaaat. ..
| | 4 taa|aaaaaaaaaaaaaaaa
aaaalaaat...
| | 5 taaa|aaaaaaaaaaaaaaaa
aaaalaat...
| | 6 taaaa|aaaaaaaaaaaaaaaa
aaaalat...
| | 7 taaaaa|aaaaaaaaaaaaaaaa
aaaalt...

The sequence "taaaaaaaaaaaaaaaaaaaaaaaaat” generates the left maximal substring-cluster | for match length 20. The common substring is

formed by a run of 20 letters "a"
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<- sequence 1 extends sequence 2 upstream
-- incomplete match

If required, ClustDB also stores on disc a list of gap posi-
tions for each extended match so that all window align-
ments are easy to reproduce. Part of a corresponding
output is seen in Figure 1. By default, output is reduced to
only those lines of the alignments which display errors,
since for a typical application of ClustDB, the number of
extended matches is large and many matches are very
long. Requesting to see all complete alignments is only
recommended for repeated runs of the program if there is
a clear idea of the amount of output implied.

Awvailability of the software

ClustDB is freely available for academic use and can be
downloaded from the link given below. The version is
provided for the Linux operating system and has been
tested on Redhat Linux 9.0. Other versions are available
upon request.

Link: http://www.charite.de/molbiol/bioinf/bioinf/Com
uterprogramme/ClustDB/clustdb.html
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