is 0.27%, compared with the previously reported rate of 2.5% that included resistance to ertapenem or MER.

Conclusion Implementing CRE PCR testing to identify CP-CRE organisms resulted in a significant reduction in utilization of anti-CRE agents for CREIs. Additionally, the testing algorithm allowed for accurate reporting of our local CRE prevalence. By avoiding CA, MV, or TG in patients without CP-CREs, this has the potential to optimize therapy while reducing collateral damage associated with broad-spectrum agents.

Disclosures. All authors: No reported disclosures.

2131. Multicenter Evaluation of Meropenem/Vaborbactam MIC Results for

Enterobacteriaceae Using MicroScan Dried Gram-Negative MIC Panels Omai Garner, PhD, D(ABMM)¹; Maria M. Traczewski, BS MT (ASCP)²; Denise Beasley, BS²; Amanda Harrington, PhD³; Sharon DesJarlais, BS³; Christine Hastey, PhD⁴; Regina Brookman, BS⁴; Zabrina Lockett, MS⁴; Jennifer Chau, PhD⁴; Barbara Zimmer, PhD⁴; ¹UCLA Medical Center, Los Angeles, California; ²Clinical Microbiology Institute, Wilsonville, Oregon; ³Loyola University & Medical Center, Maywood, Illinois; ⁴Beckman Coulter, West Sacramento, California

Session: 243. Bacterial Diagnostics Saturday, October 5, 2019: 12:15 PM

A multicenter study was performed to evaluate the accuracy of Background. meropenem/vaborbactam on a MicroScan Dried Gram-negative MIC (MSDGN) Panel when compared with a frozen CLSI broth microdilution reference panel.

Methods. For efficacy, an evaluation was conducted at three US sites by comparing MIC values obtained using the MSDGN to MICs using a CLSI broth microdilution reference panel. A total of 560 Enterobacteriaceae clinical isolates were tested using the turbidity and Prompt" methods of inoculation. For challenge, 95 Enterobacteriaceae isolates were tested on MSDGN panels at one site. For reproducibility, a subset of 14 organisms was tested on MSDGN panels at each site. MSDGN panels were incubated at $35 \pm 2^{\circ}$ C and read on the WalkAway System, the autoSCAN-4 instrument, and read visually. Read times for the MSDGN panels were at 16–20 hours. Frozen reference panels, prepared according to CLSI/ISO methodology, were inoculated using the turbidity inoculation method. All frozen reference panels were incubated at 35 ± 2°C and read visually. Frozen reference panels were read at 16-20 hours. FDA/CLSI breakpoints (µg/ml) used for interpretation of MIC results were: Enterobacteriaceae $\leq 4/8$ S, 8/8 I, and $\geq 16/8$ R.

Results. When compared with frozen reference panel results, essential and categorical agreements for isolates tested in the Efficacy and Challenge are as follows (see table). Reproducibility among the three sites were greater than 95% for all read methods for both the turbidity and Prompt* inoculation methods.

This multicenter study showed that meropenem/vaborbactam MIC Conclusion. results for Enterobacteriaceae obtained with the MSDGN panel correlate well with MICs obtained using frozen reference panels using FDA/CLSI interpretive criteria. PROMPT^{*} is a registered trademark of 3M Company, St. Paul, MN, USA. Beckman Coulter, the stylized logo and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. Vabomere (Meropenem/Vaborbactam) is a registered trademark of Melinta Therapeutics, Inc.

Read Method	Essential Agreement %		Categorical Agreement %		Very Major Error (VMJ) %		Major Error (MAJ) %		Minor Error (MIN) %	
Method T	т	P	т	P	Т	P	Т	P	Т	P
Visually	97.9	96.5	98.5	99.1	3.2	0	0	0	1.4	0.9
	(641/655)	(632/655)	(645/655)	(649/655)	(1/31)	(0/31)	(0/619)	(0/619)	(9/655)	(6/655)
WalkAway	98.2	98.3	98.5	99.1	3.2	0	0	0	1.4	0.9
	(643/655)	(644/655)	(645/655)	(649/655)	(1/31)	(0/31)	(0/619)	(0/619)	(9/655)	(6/655)
autoSCAN-4	97.9	97.3	98.5	99.1	3.2	0	0	0	1.4	0.9
	(641/655)	(637/655)	(645/655)	(649/655)	(1/31)	(0/31)	(0/619)	(0/619)	(9/655)	(6/655)
T = Turbidity inoculation method, P = Prompt inoculation method										

Disclosures. All authors: No reported disclosures.

2132. Multicenter Evaluation of Eravacycline MIC Results for Enterobacteriaceae Using MicroScan Dried Gram-Negative MIC Panels

Maria M. Traczewski, BS MT (ASCP)¹; Denise Beasley, BS¹;

Amanda Harrington, PhD²; Sharon DesJarlais, BS²;

Omai Garner, PhD, D(ABMM)3; Christine Hastey, PhD4;

Regina Brookman, BS⁴; Zabrina Lockett, MS⁴; Jennifer Chau, PhD⁴; Barbara Zimmer, PhD⁴; ¹Clinical Microbiology Institute, Wilsonville, Oregon;

²Loyola University & Medical Center, Maywood, Illinois; ³UCLA Medical Center, Los Angeles, California; ⁴Beckman Coulter, West Sacramento, California

Session: 243. Bacterial Diagnostics

Saturday, October 5, 2019: 12:15 PM

Background. A multicenter study was performed to evaluate the accuracy of eravacycline on a MicroScan Dried Gram-negative MIC (MSDGN) Panel when compared with a frozen CLSI broth microdilution reference panel.

Methods. For efficacy, an evaluation was conducted at three sites by comparing MIC values obtained using the MSDGN to MICs using a CLSI broth microdilution reference panel. A total of 414 Enterobacteriaceae clinical isolates were tested using the turbidity and Prompt" methods of inoculation. For challenge, 79 Enterobacteriaceae isolates were tested on MSDGN panels at one site. For reproducibility, a subset of 11 organisms was tested on MSDGN panels at each site. MSDGN panels were incubated at 35 ± 2°C and read on the WalkAway System, the autoSCAN-4 instrument, and read

visually. Read times for the MSDGN panels were at 16-20 hours. Frozen reference panels, prepared according to CLSI/ISO methodology, were inoculated using the turbidity inoculation method. All frozen reference panels were incubated at $35 \pm 2^{\circ}$ C and read visually. Frozen reference panels were read at 16–20 hours. FDA breakpoints (µg/mL) used for interpretation of MIC results were: *Enterobacteriaceae* \leq 0.5 S. Potential major and very major errors were calculated using the NS result in place of resistant (R).

Results. When compared with frozen reference panel results, essential and categorical agreements for isolates tested in the Efficacy and Challenge are as follows (see table). Reproducibility among the three sites were greater than 95% for all read methods for both the turbidity and Prompt inoculation methods.

Conclusion. This multicenter study showed that eravacycline MIC results for Enterobacteriaceae obtained with the MSDGN panel correlate well with MICs obtained using frozen reference panels using FDA interpretive criteria. * PROMPT is a registered trademark of 3M Company, St. Paul, MN USA. Beckman Coulter, the stylized logo and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. Xerava[™] (Eravacycline) is a registered trademark of Tetraphase Pharmaceuticals, Inc.

Read Method	Esse Agreer	ential nent %	Categorical Agreement %		**Potential Very Major Error (VMJ) %		Potential Major Error (MAJ) %	
	Т	Р	т	Р	Т	P	Т	P
Visually	99.0	97.0	98.8	98.2	0.0	0.0	0.4	1.3
	(488/493)	(478/493)	(487/493)	(484/493)	(0/44)	(0/44)	(2/449)	(6/449)
WalkAway	98.0	96.8	98.2	98.4	0.0	0.0	1.3	1.6
	(483/493)	(477/493)	(484/493)	(485/493)	(0/44)	(0/44)	(6/449)	(7/449)
autoSCAN-4	96.1	92.3	98.4	98.0	0.0	0.0	0.4	1.1
autoSCAN-4	(474/493)	(455/493)	(485/493)	(483/493)	(0/44)	(0/44)	(2/449)	(5/449)
T = Turbidity inoculation method, P = Prompt inoculation method								
Calculation of Potential VMJ excluding 1 well errors								

Disclosures. All authors: No reported disclosures.

2133. Clinical Impact of Implementation of Rapid Diagnostic Testing of Blood Cultures on Patient Outcomes

Anndee Gritte, PharmD¹; Teri Hopkins, PharmD, BCIDP, BCPS²; Kathleen Morneau, PharmD³; Christopher R. Frei, PharmD, FCCP, BCPS²; Jose Cadena-Zuluaga, MD⁴; Elizabeth Walter, MD⁵; ¹South Texas VA, UT Health San Antonio, University of Texas at Austin College of Pharmacy, San Antonio, Texas; ²South Texas Veterans Health Care System, UT Health San Antonio, UT Austin College of Pharmacy, Baltimore, Maryland, ³Audie L. Murphy VA Medical Center, San Antonio, Texas; ⁴South Texas Veterans HCS, UT Health San Antonio, San Antonio, Texas; 5South Texas Veterans Health Care System, UT Health San Antonio, San Antonio, Texas

Session: 243. Bacterial Diagnostics

Saturday, October 5, 2019: 12:15 PM

Background. Rapid diagnostic testing (RDT) in microbiology labs shortens the time to identification of bacteria in blood cultures. This study evaluates the impact of implementation of Cepheid* GeneXpert* to detect methicillin-resistant Staphylococcus aureus and S. aureus in Gram-positive blood cultures.

Methods. Patients with positive blood cultures for Staphylococcus spp. before (November 2015-August 2016) and after (November 2017-8/2018) implementation of a new rapid diagnostic technology were evaluated. RDT results were reviewed once daily by the antimicrobial stewardship team. The primary outcome was time to appropriate antimicrobial therapy. Secondary outcomes included the duration of antimicrobial therapy from time of positive culture, duration of vancomycin therapy, and length of hospital stay (LOS).

A total of 113 patients were in the pre- and 73 patients were in the Results. post-implementation cohort. Patients treated post-RDT demonstrated significantly shorter median time to appropriate therapy (20.6 hours vs. 49.8 hours, P = 0.03) and numerically shorter median duration of vancomycin therapy (3.0 days vs. 1.0 days, P = 0.32). These numerical differences were present despite the post-RDT cohort having significantly more MSSA and MRSA infections. Differences in duration of antimicrobial therapy were not statistically significant. Patients treated pre-RDT demonstrated a shorter median LOS than those treated post-implementation (7.0 days vs. 8.5 days, P = 0.03).

The use of RDT significantly decreased time to appropriate anti-Conclusion. microbial therapy. Patients in the post-RDT cohort had longer LOS, which may due to a higher incidence of S. aureus infections, compared with coagulase-negative Staphylococcus, in this cohort These results are promising for future RDT interventions. Disclosures. All authors: No reported disclosures.

2134. Differential Changes in Breath Volatile Metabolites to Identify Carbapenem-Resistant Enterobacteriaceae (CRE) in a Murine Pneumonia Model

Nour Ismail, MD¹; Hazem Albashash, MD¹;

Mahesh J. Thalavitiya Acharige, PhD¹; Mohamad Hejazi, MD¹; Carmen Leon Astudillo, MD²; Obadah Aloum, MBChB¹; Seena Koshy, PhD¹;

Laura Fredenburgh, MD¹; Raji Balasubramanian, ScD³; David Skurnik, MD, PhD¹; Thomas Guillard, PharmD, PhD⁴; Sophia Koo, MD, SM⁵; ¹Brigham and Women's Hospital, Harvard Medical School, Brookline, Massachusetts; ²Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; ³University of Massachusetts Amherst, Boston, Massachusetts; ⁴Reims Champagene-Adenne University, Reims, Champagne-Ardenne, France; ⁵Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts

Session: 243. Bacterial Diagnostics Saturday, October 5, 2019: 12:15 PM

Background. CRE infections cause significant mortality, in large part because rapid identification of these infections is challenging. We tested the hypothesis that CRE and their isogenic carbapenem-susceptible counterparts have differential metabolic responses to carbapenem therapy.

Methods. We generated isogenic pairs of *E. coli, E. cloacae*, and *K. pneumoniae* by inserting a bla_{NDM-1} -containing plasmid into carbapenem-susceptible *E. coli, E. cloacae*, and *K. pneumoniae*. We confirmed phenotypic meropenem (MPM) resistance per CLSI breakpoints for Enterobacteriaceae (MIC ≥4) in the NDM-1⁺ member and susceptibility (MIC≤1) in the NDM-1⁻ member of each pair. We administered 2×10^8 CFU of each isolate intranasally to 23-28 g male C57BL/6J mice, infecting 6 mice with the NDM-1⁺ member and 6 with the NDM-1⁻ member of each species pair (12 mice) per bacterial species). 24 hours after infection, we treated 3 mice in each NDM-1⁺ and NDM-1⁻ bacterial species cohort with MPM over 4 hours, and the other 3 mice in each cohort with saline over 4 hours as controls, confirming adequate infection (a target of 10^6 CFU/g of lung tissue) in quantitative lung homogenate cultures. We then collected breath samples from each mouse via tracheostomy using a murine ventilator, identifying all volatile metabolites in each sample using thermal desorption-gas chromatography/tandem mass spectrometry. We used Wilcoxon tests to examine differences in metabolite abundance between MPM and saline-treated control mice in the NDM-1⁺ and NDM-1⁻ a member of each species pair, it with a two-sided *P*-value threshold of < 0.1.

Results. Several breath volatile metabolites changed differentially within each NDM-1⁺/NDM-1⁻ pair, outlined in Table 1 (*E. coli*), Table 2 (*E. cloacae*), and Table 3 (*K. pneumoniae*). Each listed metabolite that changed with MPM did not change with MPM in mice infected with each isogenic counterpart

Conclusion. There are differential *in vivo* metabolic responses with effective vs. ineffective treatment of mice with pneumonia caused by *E. coli, E. cloacae*, and *K. pneumoniae* pairs that are genetically identical other than $bla_{\text{NDM-i}}$; this differential treatment response can potentially be used to identify these infections.

Table 1. Differentially changing breath metabolites in mice infected with NDM-1+

Breath Volatile Metabolite	Escherichia coli bla _{NDM-1} ⁺ Direction of change in	Escherichia coli bla _{NDM-1} Direction of change in	
breach volathe metabolite	abundance with MPM treatment	abundance with MPM treatment	
2-methyldodecane	Increased	ND	
2,4-dimethylundecane	Increased	ND	
Camphor	Increased	ND	
2,6,10-trimethyldodecane	Increased	ND	
Bicyclo[2.2.1]heptane-2,3-diol, 1,7,7-trimethyl-, (2-endo,3- exo)-	Increased	ND	
Undecanal	Increased	ND	
Octanal	ND	Increased	
3-methyldodecane	ND	Increased	
Acetaldehyde	ND	Decreased	

*MPM: meropenem, ND: no difference in abundance between MPM and saline

reatment.

 Table 2. Differentially changing breath metabolites in mice infected with NDM-1⁺ vs. NDM-1⁻ Enterobacter cloacae.

	Enterobacter cloacae bla _{NDM-1} ⁺	Enterobacter cloacae bla _{NDM-1} -		
Breath Volatile Metabolite	Direction of change in	Change in abundance		
	abundance with MPM	with meropenem		
	treatment	treatment		
2,3,7-trimethyldecane	Increased	ND		
2,4-dimethylundecane	Increased	ND		
3-methyldodecane	Increased	ND		
6-ethylundecane	Increased	ND		
2,6,10,14-tetramethylpentadecane	Increased	ND		
2,4-Dimethoxybenzylalcohol	Increased	ND		
3-methyldodecane	Increased	ND		
Benzyl methacrylate	Decreased	ND		
Undecanal	Decreased	ND		
1-methylnonylbenzene	Increased	ND		
butylcyclooctane	ND	Increased		
2-ethenylbicyclo[2.1.1]hexan-2-ol	ND	Increased		
Decane	ND	Increased		
1,3-Octanediol	ND	Increased		
Undecanal	ND	Increased		
2-methylpropanalmethylhydrazone	ND	Increased		
2-(R)-Octanol	ND	Increased		
Sulfurous acid, cyclohexylmethyl	ND	Increased		
tridecyl ester				
(1-methylethyl) benzene	ND	Increased		
2,6,10-trimethyldodecane	ND	Increased		
2-(R)-Butanol	ND	Increased		
Ethanol	ND	Increased		
2-methylbutane	ND	increased		
2-hexyl-1-decanol	ND	Decreased		
Tetradecanal	ND	Decreased		

*MPM: meropenem, ND: no difference in abundance between MPM and saline Treatment **Table 3.** Differentially changing breath metabolites in mice infected with NDM-1⁺ vs. NDM-1⁻ *Klebsiella pneumoniae*.

	Klebsiella pneumoniae bla _{NDM-1} +	Klebsiella pneumoniae bla _{NDM-1} Direction of change in abundance with MPM treatment		
Breath Volatile Metabolite	Direction of change in abundance with MPM treatment			
2-methylbutane	Increased	ND		
2-methyl-2-propyl-1,3- propanediol	Increased	ND		
ethylcyclopentane	Decreased	ND		
3-methylphenol	Decreased	Increased		
Acetic acid, hydrazide	ND	Increased		
Methyl Isobutyl Ketone	ND	Increased		
N-methyleneethenamine	ND	Increased		
1-methyl-3-propylbenzene	ND	Increased		
2,4,6-trimethyldecane	ND	Increased		
Octane	ND	Increased		
α-methyl, β-ethenyl- Benzeneethanol	ND	Increased		
1,3-dimethylbenzene	ND	Increased		
2-hexyl-1-decanol	ND	Increased		
1-ethyl-3-methylbenzene	ND	Increased		
2-nitro-3-Pyridinecarbonitrile	ND	Increased		
4-methyl-3-[2-pentenyl]- Tetrahydrofuran-2-one	ND	Increased		
Carbonic acid butylphenylester	ND	Increased		
3-hydroxybutanal	ND	Increased		
Mesitylene	ND	Increased		
Methylstyrene	ND	Increased		
3-methyl-5-propylnonane	ND	Increased		
1,3-bis(1,1- dimethylethyl)benzene	ND	Increased		
Acetic Acid	ND	Decreased		

*MPM: meropenem, ND: no difference in abundance between MPM and saline treatment

Disclosures. All authors: No reported disclosures.

2135. *Streptococcus pneumoniae* DNA (*lytA*) Detection in Clinical Samples Sent for a Respiratory Viral Polymerase Chain Reaction: Is There Bacterial-Viral Association?

Matthew Roberts, MBBS, MPH&TM, FRACP¹; Tania Sadlon, PhD²; Geoff D. Higgins, MBBS, PhD, FRCPA²; ¹Royal Adelaide Hospital, Adelaide, South Australia, Australia; ²South Australia Pathology, Adelaide, South Australia, Australia

Session: 243. Bacterial Diagnostics

Saturday, October 5, 2019: 12:15 PM

Background. Streptococcus pneumoniae (SPNEU) is a major cause of community-acquired pneumonia and frequently complicates respiratory viral infections. Clinical differentiation of viral and bacterial respiratory tract infection can be difficult, as can predicting which patients with respiratory viral infection will develop bacterial infection. A SPNEU polymerase chain reaction (PCR) to specific DNA region lytA may be able to determine which patients with viral infections may develop bacterial infection.

Methods. Stored nucleic acid extracts from clinical samples collected and tested for respiratory viral PCR (RVP) in 2015 and 2016 were tested for SPNEU lytA DNA using standard laboratory procedure. Analyses of demographic data, RVP and SPNEU PCR result were performed to determine relevant associations.

Results. 1581 stored clinical RVP samples were tested for SPNEU DNA with PCR to lytA, 1550 of these had complete RVP panel results available for analysis. RVP samples from patients 0–5 years old were more likely to have a viral or bacterial pathogen detected than > 5 years old (78% vs. 45%, P < 0.001). Of 1,550 samples analyzed with SPNEU PCR, 19% were positive for SPNEU, this was more likely in those 0–5 years old than > 5 years old (50% vs. 10%, P < 0.0001). In 0–5 years old, SPNEU was more frequently detected when multiple pathogens were detected on RVP vs. those with no pathogen (63% vs. 43%, P = 0.031). In > 5 years old, compared with no pathogen samples, the presence of multiple pathogens, any single pathogen, influenza, rhinovirus and Bordetella pertussis were significantly associated with higher SPNEU positivity rates. Median SPNEU PCR DNA load was higher in multiple pathogen and single pathogen samples than in no pathogen RVP samples.

Conclusion. We have demonstrated an association between common respiratory pathogens and detection of SPNEU DNA via PCR. This association is strongest in samples with multiple RVP pathogens, suggesting additional nasopharyngeal inflammation may contribute to SPNEU presence in the nasopharynx. Previous data have focused on those 0–5 years old, we have demonstrated an SPNEU-viral association in those > 5 years old. This tool may be clinically useful to determine which individuals with viral respiratory tract infection will progress to bacterial pneumonia and warrants further investigation.

Disclosures. All authors: No reported disclosures.

2136. Rapid Antimicrobial Susceptibility Testing using ATP Luminescence and Machine Learning Methods

Shunsuke Kawabe, PhD¹; Yuichi Uchiho, PhD¹; Hideyuki Noda, PhD¹;