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Abstract
To objectively evaluate the influence of hesitant fuzziness on the ranking of alternatives in multi-attribute decision making
with hesitant fuzzy or probabilistic hesitant fuzzy information, the binary connection number of set pair analysis is applied
to hesitant fuzzy multi-attribute decision making. The hesitant or probabilistic hesitant fuzzy set is transformed to the binary
connection number. A hesitant fuzzy multi-attribute decision making model based on binary connection number is then
established. Binary connection number theory is utilized to obtain the hesitant fuzzy center and decision-making suggestions
about the alternative ranking under different hesitant fuzzy conditions. Experimental examples show that the hesitant fuzzy
multi-attribute decision making model based on binary connection number has a certain versatility. It can determine the
optimal scheme under the influence of hesitant fuzziness on the alternative ranking and contains the results of the same
hesitant fuzzy decision-making problem using other methods, which helps in targeted decision making according to different
hesitant fuzzy conditions.

Keywords Hesitant fuzzy sets · Probabilistic hesitant fuzzy sets · Multi-attribute decision making · Binary connection
number · Conditional decision making

1 Introduction

Decision making is a mental activity. Due to the differ-
ences in the cognition of conditions and the complexity of
decision-making problems, there is always a certain hesita-
tion and fuzziness in qualitative judgments and quantitative
characterizations of decision-making elements. Researchers
have recently applied the hesitant fuzzy set (HFS)(Torra and
Narukawa 2009; Torra 2010) to fuzzy decision making. HFS
theory allows the membership degree of an element of a
set to take several hesitant fuzzy values, which can better
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reflect the preferences and hesitation of decision makers.
Its resemblance to a real decision-making environment has
popularized the study of the multi-attribute decision-making
(MADM) problem in hesitant fuzzy environment based on
HFS theory (Ali and Rashid 2019; Farhadinia and Herrera-
Viedma 2019; Ma et al. 2019; Liao et al. 2018; Qin et al.
2016;Xia andXu2011). Rodriguez et al. (2012) proposed the
hesitant fuzzy linguistic term set (HFLTS), based on a fuzzy
linguistic approach, to increase the flexibility and richness of
linguistic elicitation, and established a multi-criteria linguis-
tic decision-making model to manage linguistic expressions
represented byHFLTS.Yang andHussain (2019) constructed
new distance and similarity measures between HFSs and
applied them to multi-criterion decision making and clus-
tering. Zhao et al. (2017) defined the hesitant fuzzy expected
value and established two optimization models to gain the
attribute weights in decision-making. Xia and Xu (2011)
discussed the concept of the hesitant fuzzy element (HFE)
to represent the degree to which an alternative satisfies an
attribute, and developed some operations and aggregation
operators for it. Mishra et al. (2021) introduced a novel diver-
gence measure for hesitant fuzzy sets to identify the key
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challenges ofmedical decisionmaking during theCOVID-19
pandemic. Saha et al. (2021) developed some hybrid hesitant
fuzzy weighted aggregation operators and presented a pro-
cedure of MADM based on the proposed operators under a
hesitant fuzzy environment. Krishankumar et al. (2021a) pro-
posed a new decision framework under a double-hierarchy
hesitant fuzzy linguistic term set context for rational decision
making and validated the applicability of this term set by
solving the green supplier selection problem. However, the
HFS assumes that the probability of different membership
degrees is consistent. To effectively consider the probabil-
ity that each membership degree occurs, Zhu (2014) defined
a probability hesitant fuzzy set (P-HFS), which considers
membership degrees and provides their probabilities, and
can better describe the psychological preferences of deci-
sion makers. Krishankumar et al. (2021b) presented a new
decision framework under an interval-valued probabilistic
hesitant fuzzy set context with fully unknown weight infor-
mation and validated the framework applied to green supplier
selection for a leading bakery company. Krishankumar et al.
(2021c) presented a systematic procedure for the estimation
of occurrence probability of each hesitant fuzzy element,
that provided sensible and rational probability hesitant fuzzy
elements for evaluation. A new ranking method was also
proposed that extended a well-known VIKOR method to the
probability hesitant fuzzy set context. Although these algo-
rithms express the hesitant fuzziness of decision evaluation
values with HFSs or P-HFSs, the model does not objectively
reflect the influence of the hesitant fuzzy intensity of decision
evaluation values on the ranking of schemes. The resulting
decision suggestions have difficulty reflecting the hesitant
fuzziness of the decision conditions and environment, mak-
ing it necessary to explore a new method of hesitant fuzzy
multi-attribute decision making (HFMADM).

The binary connection number (BCN) is a mathematical
concept in set pair analysis (SPA) theory, which can simulta-
neously represent a system’s certainty and uncertainty mea-
sures, alongwith their relationship. It has been applied in arti-
ficial intelligence and uncertain decision making (Shen et al.
2020; Garg and Kumar 2018a; Grag and Kumar 2018b; Garg
and Kumar 2019, 2020; Kumar and Garg 2018a, b). Kumar
and Garg (2018a, b) proposed technology for order prefer-
ence by similarity (TOPSIS) to solve decision-making prob-
lems under intuitionistic and interval-valued intuitionistic
fuzzy environments using the BCN in SPA theory. Cao et al.
2018 used connection degree to represent interval-valued
intuitionistic fuzzy information, and transformed interval-
valued intuitionistic stochastic decision-making matrices to
connection degree matrices for interval-valued intuitionistic
stochastic multi-criterion decision-making (MCDM) prob-
lems. Alternatives are ranked according to values of set pair
potential. We use BCN to analyze the effect of hesitant fuzzi-
ness on the ranking of schemes in HFMADM. By converting

decision-making evaluations expressedwithHFSsorP-HFSs
to the BCN A+Bi , we establish the HFMADMmodel based
on BCN. We can use different values of i in BCN for a pref-
erence order analysis of m alternatives in a hesitant fuzzy
environment. Decision-making suggestions are given in dif-
ferent conditions according to the rankings. The objective of
the work is explained as follows.

1. Thebinary connectionnumber in set pair analysis is intro-
duced into the context of hesitant fuzzy sets to handle the
complex multi-attribute decision-making problems.

2. An extended hesitant fuzzy decision-makingmodel using
the introduced binary connection numbers that can simul-
taneously represent the certainty and uncertainty mea-
sures of the system is established.

3. The practicality of the proposed decision model is
demonstrated using two examples under hesitant fuzzy
environment and probabilistic hesitant fuzzy environ-
ment. Moreover, the strengths and weaknesses of the
framework are discussed by comparisonwith othermeth-
ods.

2 Preliminaries

We review some basic definitions and notations.

2.1 HFSs and HFEs

Definition 1 (Torra 2010; Xia and Xu 2011) Let V be a
nonempty finite universe, and call A = {〈x, hA(x)〉 |x ∈ V }
the HFS on V , where hA (x) is a set of some different values
in [0, 1], representing the possible membership degrees of
the element x ∈ V to the set A. We call hA (x) HFE, and an
HFS is a set of HFEs. When hA (x) has only one element,
the HFS degenerates into a classic fuzzy set.

2.2 P-HFSs and probabilistic hesitant fuzzy elements
(P-HFEs)

Definition 2 (Gou and Xu 2016) Let X be a nonempty set.
A P-HFS on X is a mapping of a probability distribution
function that, when applied to X , returns a subset of [0,1],
expressed as H = {〈x, hx (px )〉 |x ∈ X}, where hx and px
are subsets of [0,1]. hx denotes the possible membership
degrees of element x ∈ X to the set H , and px denotes the
possibilities associatedwith hx satisfying

∑
px = 1. hx (px )

is called a P-HFE. For convenience, we denote the P-HFE
hx (px ) as h (p) = {γl (pl) |l = 1, 2, . . . , |h (p) |}, where
pl is the probability of the possible membership degree γl ,
which satisfies

∑|h(p)|
l=1 pl ≤ 1, where |h (p) | is the number

of all membership degrees.
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2.3 Binary connection number (BCN)

The BCN was proposed by Zhao (2008) when he interpreted
Russells paradox in set theory, also called the barber para-
dox, which states that there is a barber who declares that
“I only cut hair for people who do not cut their own hair.”
According to set theory, all people who do not cut their own
hair are regarded as a set A, so the barber belongs to A. The
question is whether the barber cuts his own hair. According
to his own rules, he should cut his own hair, i.e., he cannot
belong to A. The barber paradox caused the third crisis in the
history of mathematical development. Zhao Keqin defined
another set, B, expressed its uncertainty, with an undeter-
mined coefficient i ∈ [−1, 1], and combined A and B into
a set pair H = (A, B), consisting of all objects the barber
should serve. For the sake of brevity, A+ Bi is directly used
as the feature function of H , where i = 1 when the barber
cuts his own hair, and otherwise i = −1. This avoids the
paradox, and the problem is transformed to the value analy-
sis of i in A + Bi , which is called a BCN. We use BCNs to
research HFMADM, defining a BCN as follows.

Definition 3 Assume that two sets E and F are needed for
the objective description of an object, where E is a deter-
ministic set, and the elements e1, e2, . . . , en are determined
to belong to E ; and F is a hesitant fuzzy set, whose elements
f1, f2, . . . , fm can each have more than one membership
degree v (v ∈ (0, 1)), not equal to 1, of belonging to F . Then
the system formed by the sets E and F is called a hesitant
fuzzy set pair. If H is a hesitant fuzzy set pair, then

H = (E, F) . (1)

The hesitant fuzzy set pair is called a set pair for convenience.

Definition 4 Let H = (E, F) be a hesitant fuzzy set pair,
with hesitant fuzzy center A and hesitant fuzzy radius B, and
let i (i ∈ [−1, 1]) denote the hesitant fuzzy direction and the
hesitant fuzzy intensity of B(F). Then, A+Bi is the charac-
teristic function of the hesitant fuzzy set pair H = (E, F),
which is called the binary hesitant fuzzy connection number,
and i is called the hesitant fuzzy intensity function. The inter-
val [−1, 1] formed by themaximumhesitation fuzzy strength
(i = 1) and minimum hesitant fuzzy strength (i = −1) is
called the hesitation fuzzy region. Let u represent a binary
hesitant fuzzy connection number. Then

u = A + Bi . (2)

Definition 5 Let A+ Bi be the characteristic function of the
hesitant fuzzy set pair H = (E, F), and let A + B = N .
Then N is called the hesitant fuzzy connection norm. Divide
both sides of Eq. (2) by N , and let μ = u

N , a = A
N , b = B

N .

Then

μ = a + bi (3)

Eq. (3) is called the normalized binary hesitant fuzzy con-
nection number, with a constraint,

a + b = 1, (4)

unlike Eq. (2). The normalization binary hesitant fuzzy con-
nection number is expressed as

μ = a + bi

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a ∈ [0, 1]

b ∈ [0, 1]

a + b = 1

i ∈ [−1, 1]

, (5)

and is also referred to as the BCN or connection number
(CN).

2.3.1 Properties of BCN

1. Systematicness

According to Definition 1, the object described by the BCN
a+bi is a system;mathematical expressions about the objects
certainty measure a, uncertainty measure b, and their corre-
lations in the BCN form a system; and the relation between
a and b has two levels. The sum relationship a + b is at the
currently visible macroscopic level, and the value of i must
be further analyzed at the microscopic level. This indicates
that the BCN a + bi is a hierarchical system.

2. Hesitant fuzziness

The value of i in the BCN must be analyzed at the micro-
scopic level, which shows the hesitation compared with the
currently given a + b = 1. While i takes specific values at
different levels, the hesitancy objectively leads the value of
the BCN to have hesitant fuzziness.

3. Comparability

Case 1 According to Eq. (5) in Definition 5, it is easy to
know that (a + bi |i=1) > (a + bi |i=0) > (a + bi |i=−1).

Case 2 It is further inferred from case 1 that when there are
certain values of i1 and i2 in BCNs μ1 and μ2, respectively,
these BCNs can be compared.

For example, if μ1 = 0.6 + 0.4i1 and μ2 = 0.5 + 0.5i2,
then when i1 = 0.3, i2 = 0.5, μ1 < μ2; and when i1 = 0.5,
i2 = 0.3, μ1 > μ2.
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Fig. 1 Module of binary connection number μ = a + bi in D–U space

Case 3 the BCNμn = an +bni can be mapped to the D-U
space, as shown in Fig. 1. The modulus of the BCN can be
calculated by

rn =
√
a2n + b2n . (6)

According to the magnitude relationship of the modulus
rn , the magnitude relationship of n BCNs μn = an + bni
is determined. The principle is to treat the BCN as a pair of
vectors, and to find their combination in D-U space.

It can be seen from Fig. 1 that the modulus of the BCN
a + bi is a combination of the certainty measure a and the
uncertainty measure bi when i = 1.

2.4 Trigonometric representation of BCNs

Using the relations a = r cos θ and a = r sin θ of the rectan-
gular coordinate system, the trigonometric function formula
of the BCN a + bi is expressed as (Zhao 2008)

μ = r (cos θ + i sin θ), (7)

where θ = arctan b
a is called the angle of the BCN.

2.5 Operations of BCNs

BCNs can be used for the ordinary operations of addition,
subtraction, multiplication, and division, but we use only
addition and multiplication, which are defined as follows.

Definition 6 Letμ1 = a1+b1i ,μ2 = a2+b2i be twoBCNs.
Then their sum is a BCN μ = a + bi , denoted as

μ = μ1 + μ2, (8)

where a = a1 +a2, b = b1 +b2. It can be seen that the addi-
tion of BCNs satisfies the commutative law, and the addition
of three or more BCNs satisfies the associative law.

Definition 7 Letμ1 = a1+b1i ,μ2 = a2+b2i be twoBCNs.
Then, their product is a BCN, μ = a + bi , denoted as

μ = μ1 × μ2, (9)

whereμ1×μ2 = (a1 + b1i)×(a2 + b2i) = a1a2+a1b2i+
a2b1i + b1b2i2. When we only consider the relationship
between certainty and uncertainty, regardless of the level
(power) of uncertainty, we can make in = i , so a = a1a2,
b = a1b2 + a2b1 + b1b2.

Definition 8 If a nonezero real number k (k �= 0) is multi-
plied by a BCN μ = a + bi , the product is still a BCN,

kμ = k (a + bi) = ka + kbi . (10)

The pairwise principle of SPA states that things or concepts
always exist in pairs. Hence, BCNs have both scalar and
vector properties. According to the scalar property, we can
define the algebraic operation of BCNs by the polynomial
operation rules of ordinary algebra; according to the vector
property, we can define the synthesis operation of two con-
nection components in BCNs by the vector operation rules
of complex numbers. When solving practical problems, an
operation rule can be selected as required, or two kinds of
operations can be used at the same time, and results obtained
by mutual conversion and complementarity in the operation
process can be used to solve the problem completely.

3 Transformation fromHFSs or P-HFSs to
BCNs

3.1 Transformation fromHFSs to BCN

Definition 9 Let X be a fixed set. An HFS on X is A =
{〈x, hA (x)〉 |x ∈ X}, with HFEs hA (x) = (x1, x2, . . . , xn),
and let

a = hA (x) =
∑

xn
n

. (11)

Then a is called the average hesitant fuzzy degree, or the hes-
itant fuzzy expectation or hesitant fuzzy center of the HFEs
hA (x) = (x1, x2, . . . , xn). Let

b = max (x1, x2, . . . , xn) − hA (x). (12)

Then b is called the distance between the hesitant fuzzy
boundary and the hesitant fuzzy center of the HFEs hA (x) =
(x1, x2, . . . , xn) and is also called the hesitant fuzzy radius.
Equations (11) and (12) are called the conversion formula
from the HFEs hA (x) = (x1, x2, . . . , xn) to the BCN.
Equation (11) extracts the relative certainty in the HFEs
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hA (x) = (x1, x2, . . . , xn), which is a relatively certain
hesitant fuzzy measure; Eq. (12) shows the relative uncer-
tainty in the HFEs hA (x) = (x1, x2, . . . , xn), which is a
relative uncertain hesitant fuzzy measure. In the BCN, the
relation between the relative certain hesitant fuzzy measure
and the relative uncertain hesitant fuzzymeasure in the HFEs
hA (x) = (x1, x2, . . . , xn) is expressed by algebraic addition.

From the perspective of probability theory, the above
conversion is equivalent to treating an HFE hA (x) =
(x1, x2, . . . , xn) as sample data, taking the average xn and
deviation s of x1, x2, . . . , xn as the parameters reflecting
the HFE as a whole. Therefore, when n of hA (x) =
(x1, x2, . . . , xn) is large, e.g., n ≥ 10, the variance of
hA (x) = (x1, x2, . . . , xn) can be used as b in the BCN to
maximize the use of the hesitant fuzzy information of the
HFE hA (x); when n < 10, the variance can be replaced by
the deviation to simplify calculations.

3.2 Transformation from P-HFSs to BCN

Definition 10 For a nonempty set X = {xt | t = 1, 2, . . . , n},
let P-HFS be Ap = Hp {〈xt , hAt (p)〉 |xt ∈ X}, hAt (p) ={
γ l
At

(
plAt

) |l = 1, 2, . . . , |h (p) |}, and let:

a = E
(
Ap

) = 1

n

n∑

t=1

⎛

⎝
|h(p)|∑

l=1

plAtγ
l
At

⎞

⎠ . (13)

Then a is called the average probabilistic hesitant fuzzy
degree, or the probabilistic hesitant fuzzy center. Let

b = Var(Ap) = 1

n

n∑

t=1

⎛

⎝
|h(p)|∑

l=1

plAtγ
l
At − E

(
Ap

)
⎞

⎠

2

. (14)

Then b is called the probabilistic hesitant fuzzy radius. Equa-
tions (13) and (14) are called the conversion formulas from
P-HFEs to BCN.

Thus, the P-HFS can be transformed to the BCN, i.e.,

μ = a + bi = 1

n

n∑

t=1

⎛

⎝
|h(p)|∑

l=1

plAtγ
l
At

⎞

⎠

+1

n

n∑

t=1

⎛

⎝
|h(p)|∑

l=1

plAtγ
l
At − E

(
Ap

)
⎞

⎠

2

i . (15)

4 HFMADMproblems

4.1 Problem statement

Suppose there is a discrete set of m optional schemes,
S = {S1, S2, . . . , Sm}. Let X be the discussion universe con-
taining the attributes, where each scheme has n attributes,
and X = {x1, x2, . . . , xn} is the set of all attributes. Experts
provide the evaluation values Pkt expressed by the HFE
hSk (xt ) = {

γ |γ ∈ hSk (xt ) , 0 ≤ γ ≤ 1
}
, which indicates

the possible membership degrees of the kth alternative
Sk under the t th attribute xt , or the P-HFE hkt (pkt ) ={
γ l
kt

(
plkt

) |l = 1, 2, . . . , |h (p) |} (k = 1, 2, . . . ,m, t =
1, 2, . . . , n) for each attribute is different; the attributeweight
is w = (w1, w2, . . . , wn)

T , where wt ∈ [0, 1],
∑n

t=1 wt =
1. It is agreed that each attribute is a benefit type such that
the bigger, the better. The problem is to determine the opti-
mal among m optional schemes, ranking these schemes, and
performing a hesitant fuzzy analysis.

4.2 Decision-making process

We develop a practical approach to solve HFMADM prob-
lems, whose schematic diagram is shown as Fig. 2.We utilize
an approach to obtain the preference order of all schemes,
which has two cases.

Case I: Assume that the experts provide their evaluation
values withHFEs; we obtain themost desirable alternative(s)
according to the following steps:

Step 1 Convert the mathematical expressions of attribute
values. Utilize Eqs. (11) and (12) to convert the evaluation
values expressed with the HFEs h p (xkt ) =
(xkt1, xkt2, . . . , xktn) given by the decision makers to BCNs,

μkt = akt + bkt i =
∑

xkt
n

+
(

max (xkt1, xkt2, . . . , xktn) −
∑

xkt
n

)

i . (16)

Step 2 Construct the weighted BCNs for each attribute
value, i.e., the BCNs μkt = akt +bkt i of each attribute value
multiplied by the attribute weight wt ,

Pkt = wtμkt = wt (akt + bkt i) = wt akt + wt bkt i . (17)

Step 3 Determine the comprehensive evaluation value of
each scheme. Sum Pkt of each scheme to get its comprehen-
sive evaluation BCN,

M (Sk) =
n∑

t=1

Pkt = Ak + Bkik . (18)
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Fig. 2 Schematic diagram of proposed approach for HFMADM

Step 4 Calculate the preliminary sort. The initial ranking
ofm schemes is only based on the value of the hesitant fuzzy
center Ak . A scheme with a larger Ak is better than one with
a smaller Ak .

Step 5 Hesitant analysis. This paper discussed the influ-
ence of hesitation on the preliminary priority by using ik
in Bkik to take different values, and determined the most
optimistic ranking (ik = 1), the most pessimistic ranking
(ik = −1), the sad and happy neutral ranking (ik = 0) of
all attributes, and the ranking under the condition of partial
attributes being the most optimistic, partial attributes being
the most pessimistic and partial attributes being the sad and
happy neutral, in addition to the sorting of m schemes under
the condition that some attributes are optimistic (ik ∈ [0, 1])
and some attributes are pessimistic (ik ∈ [−1, 0]).

Step 6 Comparative analysis and decision-making sugges-
tions. Compare the results with those of the same HFMADM
problem processed by other methods to find similarities, dif-
ferences, and their causes. Based on the above analysis, a
decision-making method is proposed, and it is explained
under which hesitant fuzzy conditions which scheme is the
best and the order of other schemes.

Case II: Assume that the experts provide their evaluation
values with P-HFEs; we get the most desirable alternative(s)
according to the following steps. Step 1 Utilize Eqs. (13)–
(15) to calculate the comprehensive evaluation value of each
scheme expressed by BCNs,

M (Sk) = Ak + Bki = 1

n

n∑

t=1

⎛

⎝wt

|h(p)|∑

l=1

plktγ
l
kt

⎞

⎠

+1

n

n∑

t=1

⎛

⎝wt

|h(p)|∑

l=1

plktγ
l
kt − E

(
Ap

)
⎞

⎠

2

i, (19)

where E
(
Ap

) = 1
n

∑n
t=1

(∑|h(p)|
l=1 plktγ

l
kt

)
.

Step 2 Preliminarily rank schemes Sk (k = 1, 2, . . . ,m)

according to the value of the hesitant fuzzy center Ak in step
1, to obtain the initial sort.

Step 3 Hesitation analysis. Take different values of ik in
the comprehensive evaluation BCN to discuss the effect of
hesitation on the initial ranking.

Step 4 Give decision-making suggestions.

4.3 A practical case study

We use two practical project-selection problems to illustrate
the implementation of the presented algorithm. A com-
parative analysis of the computational results shows its
effectiveness. Finally, we propose the concept of conditional
decision making.

Example 4.1 (Xia and Xu 2011) An enterprise plans to for-
mulate a strategic investment plan within five years, to select
investment projects from four possible investment project
sets S = (S1, S2, S3, S4). These sets are evaluated by five
members of the board of directors, considering four attributes
suggested by the balanced scorecard methodology (Kaplan
and Norton 1996) (all of the maximization type): v1 is
financial perspective, v2 is the customer satisfaction, v3 is
internal business process perspective, v4 is learning and
growth perspective. The weight vector of the attributes is
w = (0.2, 0.3, 0.15, 0.35)T . The decision makers are to
anonymously provide an opinion on each project. The deci-
sion matrix H = (hkt )m×n of the four alternatives on each
attribute is shown in Table 1, where hkt (k, t = 1, 2, 3, 4) are
in terms ofHFEs.We try to determine the optimal scheme and
the preference order of the other schemes, discuss the effect
of hesitation on scheme ranking, and give decision-making
suggestions.

We utilize our approach to get the most desirable alterna-
tive(s) according to the following steps:
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Table 1 Hesitant fuzzy
decision-making matrix

v1 v2 v3 v4

wt 0.2 0.3 0.15 0.35

S1 {0.2, 0.4, 0.7} {0.2, 0.6, 0.8} {0.2, 0.3, 0.6, 0.7, 0.9} {0.3, 0.4, 0.5, 0.7, 0.8}
S2 {0.2, 0.4, 0.7, 0.9} {0.1, 0.2, 0.4, 0.5} {0.3, 0.4, 0.6, 0.9} {0.5, 0.6, 0.8, 0.9}
S3 {0.3, 0.5, 0.6, 0.7} {0.2, 0.4, 0.5, 0.6} {0.3, 0.5, 0.7, 0.8} {0.2, 0.5, 0.6, 0.7}
S4 {0.3, 0.5, 0.6} {0.2, 0.4} {0.5, 0.6, 0.7} {0.8, 0.9}

Table 2 BCN decision-making
matrix

v1 v2 v3 v4

wt 0.2 0.3 0.15 0.35

S1 0.4333 + 0.2667i 0.5333 + 0.2667i 0.5400 + 0.3600i 0.5400 + 0.2600i

S2 0.5500 + 0.3500i 0.3000 + 0.2000i 0.5500 + 0.3500i 0.7000 + 0.2000i

S3 0.5250 + 0.1750i 0.4250 + 0.1750i 0.5750 + 0.2250i 0.5000 + 0.2000i

S4 0.4667 + 0.1333i 0.3000 + 0.1000i 0.6000 + 0.1000i 0.8500 + 0.0500i

Table 3 BCN decision-making
matrix with attribute weight

v1 v2 v3 v4

S1 0.0867 + 0.0533i 0.1600 + 0.0800i 0.0810 + 0.0540i 0.1890 + 0.0910i

S2 0.1100 + 0.0700i 0.0900 + 0.0600i 0.0825 + 0.0525i 0.2450 + 0.0700i

S3 0.1050 + 0.0350i 0.1275 + 0.0525i 0.0863 + 0.0338i 0.1750 + 0.0700i

S4 0.0933 + 0.0267i 0.0900 + 0.0300i 0.0900 + 0.0150i 0.2975 + 0.0175i

Table 4 Comprehensive evaluation BCN for each scheme

M (Sk) = ∑4
t=1 wt (akt + bkt ikt ) = Ak + Bkik

S1 M (S1) = 0.5167 + 0.2783i1
S2 M (S2) = 0.5275 + 0.2525i2
S3 M (S3) = 0.4938 + 0.1913i3
S4 M (S4) = 0.5708 + 0.0892i4

Table 5 Ranking of comprehensive evaluation BCN Ak + Bkik in hes-
itant fuzzy center (ik = 0)

Ak (ik = 0) Sort Sort using
Xia and Xu’s
method

Compared with
results of Xia
and Xu (2011)

S1 0.5167 3© 3© The same

S2 0.5275 2© 2© The same

S3 0.4938 4© 4© The same

S4 0.5708 1© 1© The same

Step 1. Utilize Eqs. (11), (12), and (16) to convert the HFE
decisionmatrix in Table 1 to the BCNμkt ; the result is shown
in Table 2.

Step 2. Utilize Eq. (17) to construct the weighted BCNs
wtμkt for each attribute value in Table 2; the result is shown
in Table 3.

Table 6 Values of modulus of BCN with weight

v1 v2 v3 v4

S1 0.1018 0.1789 0.0974 0.2098

S2 0.1304 0.1082 0.0978 0.2548

S3 0.1107 0.1379 0.0926 0.1885

S4 0.0971 0.0949 0.0912 0.2980

Step 3. According to the weighted BCNs in Table 3, uti-
lize Eq. (18) to calculate the comprehensive evaluation BCN
M (Sk) for each scheme, as shown in Table 4.

Step 4. The initial preference order of each scheme based
on the Ak value (hesitant fuzzy center) of the comprehensive
evaluation BCN in Table 4 is listed in Table 5.

Step 5. Use ik in BCNs for hesitant fuzzy analysis.
(1) Calculate the modulus of BCN for each alternative in

Table 2, and multiply the modulus by the attribute weight;
the results are listed in Table 6.

According to Table 6, the comprehensive evaluation value
of each scheme can be obtained, whose preference order is
S2 	 S1 	 S4 	 S3.

(2) Calculate the ranking of four alternatives when ik =
−1, 0, 1 in the comprehensive evaluation BCN of each alter-
native in Table 4; the results are listed in Table 7.
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Table 7 Ranking of schemes
when ik = −1, 0, 1, with HFE
evaluation

M (Sk) ik = −1 Ranking ik = 0 Ranking ik = 1 Ranking

M (S1) 0.2383 4© 0.5167 3© 0.7950 1©
M (S2) 0.2750 3© 0.5275 2© 0.7800 2©
M (S3) 0.3025 2© 0.4938 4© 0.6850 3©
M (S4) 0.4817 1© 0.5708 1© 0.6600 4©

Table 8 Evaluations of four
hospitals with P-HFEs

c1 c2 c3

h1 {0.5 (0.4) , 0.7 (0.6)} {0.9 (1)} {0.3 (0.2) , 0.5 (0.8)}
h2 {0.8 (0.3) , 0.9 (0.7)} {0.5 (1)} {0.8 (0.4) , 0.9 (0.6)}
h3 {0.5 (1)} {0.7 (0.5) , 0.9 (0.5)} {0.8 (0.6) , 0.9 (0.4)}
h4 {0.8 (0.5) , 0.9 (0.5)} {0.3 (0.5) , 0.6 (0.5)} {0.7 (1)}

(3) Table 7 shows that when ik = −1, scheme S4 is opti-
mal, scheme S3 is suboptimal, and the preference order of
the four schemes is S4 	 S3 	 S2 	 S1.

When ik = 0, the ranking is that of the hesitant centers
of comprehensive evaluation BCNs in Table 5; when ik = 1,
scheme S1 is optimal, and the preference order of the four
schemes is S1 	 S2 	 S3 	 S4.

The above is an analysis of the ranking changes based on
the “synchronized value” of i in the comprehensive evalua-
tion BCNs for four schemes. From the perspective of hesitant
fuzziness, we should also consider the “asynchronous value”
of i , i.e., the hesitant fuzziness of the comprehensive evalua-
tion BCN, including the combination of taking optimistic or
pessimistic values or not sad not happy, or different fuzzy
states. For example, when ik = 1 in the comprehensive
evaluation BCN of scheme S1, ik = 0, in the comprehen-
sive evaluation BCNs of the scheme S2 and S3, ik = −1
in the comprehensive evaluation BCN of the scheme S4,
the comprehensive evaluation BCNs of Sk (k = 1, 2, 3, 4)
can be obtained as 0.7950, 0.5275, 0.4938 and 0.4817,
respectively. In this case, the four schemes can be ranked
as S1 	 S2 	 S3 	 S4. When ik = 1 for scheme S3,
ik = −1 for the other three schemes, and the relation
among the corresponding comprehensive evaluationBCNs is
0.6850 > 0.4817 > 0.2750 > 0.2383. In this case, the pref-
erence ranking of the four schemes is S3 	 S4 	 S2 	 S1,
and scheme S3 becomes the optimal alternative.

Step 6. Provide decision recommendations. Based on the
above hesitant fuzziness analysis, it is found that all four
alternatives are likely to be optimal in a certain hesitant fuzzy
environment. In actual decision making, if only one can be
implemented, the decision maker should be allowed to fur-
ther consider the objective conditions for decision-making
implementation, which is based on optimistic hesitant fuzzy
decision selection (only considering ik = 1, equivalent
to taking the maximum value max (xkt1, xkt2, . . . , xktn)
for each HFE h p (xkt ) = (xkt1, xkt2, . . . , xktn)), or based

on the pessimistic fuzzy hesitant decision making (only
considering ik = −1, equivalent to taking the minimum
value min (xkt1, xkt2, . . . , xktn) for each HFE h p (xkt ) =
(xkt1, xkt2, . . . , xktn)), or based on neutral hesitant fuzzy
decision making (only considering ik = 0, equivalent to tak-
ing an average value x̄kt = 1

n

∑n
t=1 xktn for each HFE), or

on the basis of the average value, taking into account the
role of the hesitant fuzzy intensity function appropriately,
which requires the decision maker to make a choice after
careful consideration. If the decision maker does not want
to make a decision in the case of extreme values (including
the average value) of each HFE, we recommend a ranking
based on the BCN “modulus+ik proportional value method,”
that is, the scheme S2 is the optimal one, scheme S1 is the
standby one, and the preference order of four schemes is
S2 	 S1 	 S4 	 S3. The reasons are as follows. On the
one hand, the “module” of BCN is a geometric combina-
tion of “hesitant fuzzy relative certainty measure (hesitant
fuzzy center)” and “hesitant fuzzy relative uncertainty mea-
sure (optimistic hesitant fuzzy),”which objectively considers
the relative certainty, relative uncertainty, and their interac-
tion in the hesitant fuzziness of the original evaluation data.
On the other hand, according to the system property of the
BCN, it is known that Ak and Bk in M (Sk) = Ak + Bkik are
in a system, and the value of ik depends on the proportion of
Bk in this system, i.e., there exists the relationship

ik = Bk

Ak + Bk
. (20)

From Table 4, it is known that

M (S1) = 0.5167 + 0.2783i1 (21)

M (S2) = 0.5275 + 0.2525i2 (22)

M (S3) = 0.4938 + 0.1913i3 (23)

M (S4) = 0.5708 + 0.0892i4. (24)
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Table 9 Weighted comprehensive BCNs for each scheme

M (hk) = Ak + Bkik

h1 M (h1) = 0.1787 + 0.0105i1
h2 M (h2) = 0.2753 + 0.0559i2
h3 M (h3) = 0.2560 + 0.0552i3
h4 M (h4) = 0.2350 + 0.0351i4

According to Eq. (20),

i1 = 0.2783
0.5167+0.2783 = 0.3501,

i2 = 0.2525
0.5275+0.2525 = 0.3237,

i3 = 0.1913
0.4938+0.1913 = 0.2792,

i4 = 0.2892
0.5708+0.0892 = 0.1351.

Substituting these values in Eqs. (21–(24), respectively,
we obtain

M (S1) = 0.5167 + 0.2783 × 0.3501 = 0.6141,
M (S2) = 0.5275 + 0.2525 × 0.3237 = 0.6826,
M (S3) = 0.4938 + 0.1913 × 0.2792 = 0.5471,
M (S4) = 0.5708 + 0.0892 × 0.1351 = 0.5829.
Because M (S2) > M (S1) > M (S4) > M (S3), the

preference order is S2 	 S1 	 S4 	 S3.

Example 4.2 (Gou and Xu 2016; Song et al. 2018) We eval-
uate four domestic hospitals in China to search for the one
with the optimal resource allocation benefit. We consider
three main criteria: the environmental factor of medical and
health service (c1), personalized treatment optimization (c2),
and social resource allocation and health services (c3). The
corresponding weight vector is w = (0.2, 0.1, 0.7)T . We
consider theWest China Hospital of SichuanUniversity (h1),
Huashan Hospital of Fudan University (h2), Union Medical
College Hospital (h3) and Chinese PLA General Hospital
(h4). To overcome the information loss, invited experts give
their evaluations with P-HFEs, which constitute the prob-
abilistic hesitant fuzzy decision matrix H = (hkt )4×3, as
shown in Table 8.

We utilize the approach of Sect. 4.1.
Step 1. Calculate the weighted comprehensive BCNs for

each scheme according to Eq. (19), and the results are listed
in Table 9.

Step 2. Preliminarily rank the preference order of alter-
natives according to the Ak values (probabilistic hesitant
fuzzy centers) of the comprehensiveBCNs in Table 9; sorting
results are shown in Table 10.

From the results in Table 10,we can obtain that the ranking
is h2 	 h3 	 h4 	 h1, and the optimal scheme is h2, which
is consistent with Gou and Xu (2016) and Song et al. (2018).
However, if we consider the ik value of each alternative, the
preference order of the four schemes may be different.

Step 3. Utilize ik in the comprehensive BCNs for hesitant
fuzziness analysis.

We rank four alternatives when ik = −1, 0, 1 in the
weighted comprehensive evaluation BCN in Table 9, as
shown in Table 11. From the hesitation itself, ik(k =
1, 2, 3, 4) can take any value other than -1, 0, 1 in the interval
[−1, 1].

Step 4. Give decision-making advice.
It can be seen fromTable 11 that based on the synchronous

value of ik in the comprehensive BCNs, the preference order
of the four schemes is h2 	 h3 	 h4 	 h1. So, the optimal
hospital is Huashan Hospital of Fudan University.

4.4 Comparative analysis and conditional decision
making

We use Example 4.1 to further illustrate the objective sig-
nificance of this work. We compare and analyze our work
with Xia and Xu (Xia and Xu 2011). Xia and Xu rank
the four schemes as S4 	 S2 	 S1 	 S3, which is con-
sistent with the results in Table 5, where ik = 0 in each
hesitant fuzzy comprehensive BCN. In other words, it is
a ranking result that does not consider the hesitant fuzzy
characteristics, especially without the hesitant fuzzy inten-
sity. Xia and Xu (2011) used a generalized hesitant fuzzy
weighted geometric operator to make decisions. It is found
that when λ = 1 or λ = 2, although the optimal alterna-
tive is still S4, the ranking of the four alternatives becomes
S4 	 S1 	 S3 	 S2. When λ = 5, 10 or 20, the ranking
becomes S3 	 S4 	 S1 	 S2; in this case, the optimal alter-
native is S3. However, referring to Table 5, we can see that
the ranking of the four alternatives is the result of avoiding
the effect of hesitation and fuzziness of evaluation values on
the ranking. The work of this paper shows that if we admit
that the selection of the four alternatives is a hesitant fuzzy
decision-making problem in a hesitant fuzzy environment,
any of the four schemes can be optimal under a specific
hesitant fuzzy comprehensive evaluation condition. There-
fore, how to objectively determine some specific conditions
in a given hesitant fuzzy environment to obtain the optimal
scheme and the ranking of all schemes has a certain com-
plexity, which comes from the superposition of hesitation
and fuzziness. A systematic study and detailed analysis are
needed to obtain a more objective conclusion. In this paper,
by utilizing the systematicness, hesitant fuzziness, and deter-
minability of the BCN, the modulus of the BCN and the ratio
formula of the hesitant fuzzy intensity function ik in the BCN
are used to determine that the optimal scheme is S2, and the
ranking order is S2 	 S1 	 S4 	 S3. The common feature
of these two approaches is based on the interaction between
the hesitant fuzzy center and hesitant fuzzy intensity. The
optimal scheme S4 and ranking order S4 	 S2 	 S1 	 S3
obtained by Xia and Xu (2011) are only based on the hes-
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Table 10 Sorting of
comprehensive evaluation BCNs
in probabilistic hesitant fuzzy
center (ik = 0)

Ak (ik = 0) Sort Sort using Guo and
Xu’s method

Compared with the
results in Gou andXu
(2016)

h1 0.1787 4© 4© the same

h2 0.2753 1© 1© the same

h3 0.2560 2© 2© the same

h4 0.2350 3© 3© the same

Table 11 Ranking of each
scheme when ik = −1, 0, 1 with
P-HFE evaluation

M (hk) ik = −1 Ranking ik = 0 Ranking ik = 1 Ranking

M (h1) 0.1682 4© 0.1787 4© 0.1891 4©
M (h2) 0.2194 1© 0.2753 1© 0.3313 1©
M (h3) 0.2008 2© 0.2560 2© 0.3112 2©
M (h4) 0.1999 3© 0.2350 3© 0.2701 3©

itant fuzzy center. S4 is better than S2 if we only compare
it with the hesitant fuzzy center value Ak . However, if we
further consider the influence of hesitant fuzzy intensity Bk

on the hesitant fuzzy center Ak , S2 is certainly superior to
S4. In this sense, our results are more objective and reason-
able than those of Xia and Xu (2011). Of course, from a
global perspective, it is also the result of a specific hesitant
fuzzy condition. Based on this understanding, we propose
the concept of conditional decision making, i.e., we can only
give the optimal alternative for a given HFMADM problem
under specific conditions, but this is difficult under universal
conditions in a hesitant fuzzy environment.

5 Conclusions

We used the BCN in SPA to study HFMADM. It was found
that the calculation results of the HFMADM model based
on BCN not only include the results of the same HFMADM
problembyusing hesitant fuzzy graphmethod, hesitant fuzzy
TOPSIS method, and generalized hesitant fuzzy weighted
geometric operator, but also get more objective and reason-
able optimal alternatives and the preference order. This shows
the feasibility and superiority of the HFMADMmodel based
on BCN. On this basis, the concept of conditional decision
makingwas proposed forHFMADMin a hesitant fuzzy envi-
ronment. It is considered that there will be only the optimal
scheme and the preference order under the specific refine-
ment condition of hesitation and fuzziness.

An innovative decision framework with the expectation +
range binary connection number presented in this paper can
truly reflect hesitation psychology and performance of deci-
sion makers, combining relatively certain decision-making
calculations with uncertain system analysis. The present
research provides a mathematical model for the mutual con-

nection between hesitation and non-hesitation and themutual
conversion under certain conditions.

Some crucial advantages of the proposed decision model
are:

1. It can truly reflect the hesitation psychology and perfor-
mance of decision makers.

2. It studies hesitation and non-hesitation as a unity of oppo-
sites.

3. It provides a mathematical model for the mutual con-
version of hesitation and non-hesitation, which is further
ranked for the selection of a suitable object from a set of
objects.

4. The proposed framework is also flexible to solve other
multi-attribute decision making problems. To demon-
strate the practical use, the selection problems of invest-
ment projects and those of domestic hospitals are pre-
sented.

Some of the limitations of the study are:

1. Theoretically, there are an infinite number of hesitation
points in themodel, which is in contradictionwith limited
decision-making. To solve this contradiction, we need to
introduce new constraints.

2. The reasonable value of hesitant fuzzy intensity function
and the strict algorithm rules for conditional decision-
making need to be studied further.

In our future research, we will extend our proposed aggre-
gation operators for handingmulti-attribute decision-making
problems in intuitionistic hesitant fuzzy, interval-valued intu-
itionistic hesitant fuzzy, and probabilistic interval-valued
intuitionistic hesitant fuzzy; additionally, we will apply them
to other multi-attribute decision-making problems. Although
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the BCN has been applied to other decision-making prob-
lems, this was its first application to HFMADM problems.
The algorithm for the BCN decision making model, the rea-
sonable value of hesitant fuzzy intensity function ik , and the
strict definition and algorithm rules of conditional decision
making require further study.
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