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Accurate incidence forecasting of infectious disease provides potentially valuable insights in its own right. It is critical for early
prevention and may contribute to health services management and syndrome surveillance. This study investigates the use of a
hybrid algorithm combining grey model (GM) and back propagation artificial neural networks (BP-ANN) to forecast hepatitis B
in China based on the yearly numbers of hepatitis B and to evaluate the method’s feasibility. The results showed that the proposal
method has advantages over GM (1, 1) and GM (2, 1) in all the evaluation indexes.

1. Introduction

Hepatitis B is a vaccine preventable disease caused by the
hepatitis B virus (HBV) that can induce potentially fatal liver
damage. It has infected approximately 2 billion people world-
wide, which represents one-third of the world population.
Each year around the world, HBV infection is responsible
for about one million deaths due to liver failure and cirrhosis
and more than 75% of the hepatocellular carcinomas world-
wide develop from HBV infection [1–3]. HBV is most
prevalent in China, South East Asia, sub-Saharan Africa,
and the Amazon basin of South America where health care
resources are most limited [4]. In the Chinese population of
1.3 billion individuals, there are estimated to be 93 million
HBV carriers. Each year, 300,000 deaths are attributed to
chronic hepatitis B, including deaths associated with liver
cirrhosis and hepatocellular carcinoma (HCC) [5].Therefore,
it is critical for early prevention of hepatitis B and an accurate
forecasting which would enable public health officials to
evaluate intervention strategies andmake educated decisions.

Mathematical and computational models have gained
in importance in the public-health domain, especially in
infectious disease epidemiology, by providing rationales and

quantitative analysis to support decision-making and policy-
making processes in recent years. And many researchers
advocate the use of these models as predictive tools [6–12].

The accurate forecasting of hepatitis B can be obtained
by analyzing the sufficient historical data. However, in China
and perhaps some other developing countries, the current
public health surveillance system does not collect detailed
essential epidemiological information as they are often diffi-
cult to obtain.The forecasted of hepatitis B will be inaccurate
only by the limited data. Therefore, it is significant to make
the limited data-processing.

The grey systems theory chiefly including the theory
of grey system analysis, modeling, prediction, decision-
making, and control is established by Deng, which focuses
on uncertainty problems with small samples, discrete data
and incomplete information that are difficult for probability,
and fuzzy mathematics to handle. Grey prediction is an
important embranchment of grey systems theory, which
makes scientific, quantitative forecasts about the future states
of grey systems. The precise prediction of system can be per-
formed by generating and extracting the useful information
from the small samples and the partially known information
[13–15].
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Artificial neural networks (ANN) are complex and flex-
ible nonlinear systems with properties not found in other
modeling systems. It allows a method of forecasting with
understanding of the relationship among variables and in
particular nonlinear relationships. ANN function by initially
learning a known set of data from a given problem with a
known solution (training) and then the networks, inspired
by the analytical processes of the human brain, are able to
reconstruct the imprecise rules. Once a model is trained, the
forecasted outputs can be generated from novel records [16–
19].

The aim of this study is to investigate the use of a hybrid
method combining grey model (GM) and back propagation
artificial neural networks (BP-ANN) to forecast hepatitis B
in China based on the yearly numbers of hepatitis B from the
years 2002 to 2012 and to evaluate themethod’s performances
of prediction.

2. Materials and Methods

2.1. Data Sources. The incidence data of hepatitis B are
collected from theMinistry of Health of the People’s Republic
of China from the years 2002 to 2012, which are opening
government statistics data [20].

2.2. Methods. The proposed method is established based
on the grey systems theory and BP-ANN theory. MATLAB
software version 2011b is used for the statistical analysis.

The incidence data are considered as the original time
series 𝑋 = (𝑥
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operators to weaken the randomness, grey predictionmodels
are designed to excavate the hidden laws; through the
interchange between difference equations and differential
equations, a practical jump of using discrete data sequences
to establish continuous dynamic differential equations is
materialized. Here, GM (1, 1) is the main and basic model
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The procedure for a GM (2, 1)model is derived as follows.
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(3) Solve the whitenization equation. If 𝑋
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equation, 𝑋1∗ = 𝐶𝑥; and (iii) when 0 is the only root of the
characteristic equation, 𝑋1∗ = 𝐶𝑥

2.
The steps of the forecasting method can be described as

follows.

Step 1 (train the BP-ANN). In order to obtain the input of
the BP-ANN, the GM (1, 1) and GM (2, 1) model are used to
predict for the original time series of hepatitis B, respectively.
The two groups of prediction are taken as the input of the
BP-ANN. At the same time, the original time series are taken
as the output. Thus the structure of a three-layer BP-ANN is
constructed and the trained BP-ANNmodel will be obtained
by training.

Step 2 (forecast by the trained BP-ANN). The GM (1, 1) and
GM (2, 1) model are used to forecast for the original time
series of hepatitis B, respectively, at first.Then the two groups
of forecasted data are taken as the input of the trained BP-
ANN. Finally, the forecasted of hepatitis B will be obtained
by running the trained BP-ANN.

The method flow chart is shown in Figure 1.

3. Evaluation Criteria
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Figure 1: Flow chart of the hybrid method.
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Figure 2: The incidence number of hepatitis B in China from 2002
to 2012.
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4. Result

The incidence data of hepatitis B are collected year by year
from 2002 to 2012 in China and taken as the original time
series, which is shown in Figure 2.

4.1. The GM (1, 1) and GM (2, 1) Models Calculation. TheGM
(1, 1) and GM (2, 1) models are calculated and shown as
follows.
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Figure 3: The topology structure of the proposal method.

4.1.1. The Parameters

GM (1, 1) Model. Consider the following: −𝑎 = 0.027523,
𝑏 = 893075.402372. Therefore, the GM (1, 1) model of
this time series can be forecasted for long term forecasting
for the reasons that GM (1, 1) can be used for long term
forecasting when −𝑎 ≤ 0.3 and for short term forecasting
when 0.3 < −𝑎 ≤ −0.5. −𝑎 reflects the development states of
the accumulation generated sequence 𝑥

(1) and the sequence
of raw data 𝑥

(0).

GM (2, 1) Model. Consider the following: 𝑎
1

= 0.4083, 𝑎
2

=

0.0158, 𝑢 = 583425.10336, 𝑟
1

= −0.04329, 𝑟
2

= −0.36502,
𝑐
1
= −38764735.45099, and 𝑐

2
= 2527585.93078.

4.1.2. The Forecasting Models

GM (1, 1) Model. Consider the following:

𝑥 (𝑡 + 1) = −33116202.802344𝑒
0.027523𝑡

+ 32447876.802344.

(7)

GM (2, 1) Model. Consider the following:

𝑥
1
(𝑡 + 1) = −38764735.45099𝑒

−0.04329𝑡

+ 2527585.93078𝑒
−0.36502𝑡

+ 36918146.77020.

(8)

4.2. The Forecasted. In the three-layer BP-ANN, the hidden
node 𝑛

2
and the input node 𝑛

1
are related by 𝑛

2
= 2𝑛
1
+1.The

two groups of prediction created by the two GM models are
taken as the input of the BP-ANN and the observed data is
taken as the output. Therefore, a three-layer proposed model
with 2 input nodes, 5 hidden nodes, and 1 output node is
obtained. The topology structure is shown in Figure 3.

The weights and thresholds of the proposal model will
be obtained by training. Let the training time be 1000, the
learning rate be 0.9, the momentum factor be 0.95, and
the error be 0.001; Levenberg Marquardt is used as training
algorithm.
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Figure 4:The forecasted incidence of hepatitis B in China from 2013
to 2021 by the proposal method.
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Figure 5: The scatter diagram of the relationship between the
observed data and the prediction.

The prediction of the original time series by the GM (1, 1)

and GM (2, 1) model, respectively, are taken as the input of
the trained BP-ANN. Then the forecasted of hepatitis B will
be obtained by running the trained BP-ANN. The forecasted
is shown in Figure 4.

5. Discussion

In order to compare the prediction created by the two GM
models and the proposed method, a prediction is performed
under the same conditions. The results are listed in Table 1
and the scatter diagram is shown in Figure 5. It can be seen
from Figure 5 that the prediction generated by the two GM
models has greater dispersion than that by the proposed
method.

The RE of prediction is shown in Figure 6. From the
figure, we know that the prediction obtained by the proposed
method has higher accuracy and smaller RE than that by
the GM approaches. Figure 6 indicates that the smaller the
relative error is, the closer prediction is to the observed data.



Computational and Mathematical Methods in Medicine 5

Table 1: The prediction created by the GM (1, 1), GM (2, 1), and the proposal model.

Year The observed data GM (1, 1) GM (2, 1) The proposal method
2003 719011 924130 882183 736600
2004 916396 949918 1036306 884300
2005 982297 976426 1133758 1027700
2006 1109130 1003674 1183850 1096300
2007 1169946 1031682 1201811 1118200
2008 1169569 1060471 1198178 1124300
2009 1179607 1090065 1180237 1125900
2010 1060582 1120484 1153018 1126400
2011 1093335 1151751 1119982 1126500
2012 1087086 1183892 1083509 1126500

Table 2: The evaluation indexes comparison.

Index 𝑅 MSE MAE RMSE MAPE SSE
The proposal method 0.9495 2.3649 × 107 3.9704 × 104 4.863 × 103 3.9704 × 106 1.8162 × 1010

GM (1, 1) model 0.6365 2.2867 × 108 1.0492 × 106 1.5122 × 104 1.0492 × 108 1.1078 × 1013

GM (2, 1) model 0.9392 1.6798 × 108 1.1173 × 106 1.5122 × 104 1.1173 × 108 1.2570 × 1013

Table 3: The forecasted generated by the three methods.

Year GM (1, 1) GM (2, 1) The proposal
method

2013 1216929.0 1045223.6 1077864.1
2014 1250888.2 1006228.6 1074038.2
2015 1285795.1 967267.6 1012371.7
2016 1321676.0 928834.0 976301.8
2017 1358558.3 891248.9 946959.7
2018 1396469.7 854715.0 939194.1
2019 1435439.1 819353.3 937881.5
2020 1475496.0 785229.0 937607.7
2021 1516670.7 752369.4 937531.5

The comparison of𝑅,MSE,MAE, RMSE,MAPE, and SSE
are listed in Table 2. It can be seen that the proposed method
has advantages over GMs in all the evaluation indexes.

The forecasted generated by the GM (1, 1), GM (2, 1),
and the proposal model are listed in Table 3 and shown in
Figure 7.

The weights and thresholds of BP-ANN will generate
randomly at first when the model is training. This will make
the predicted and forecasted uncertainty. To describe this
clearer, the proposal model is ran 100 times and the mean
value will be taken as predicted or forecasted value. The
95% confidence interval and predicted or forecasted value are
shown in Figures 8 and 9, respectively.

Although the prediction result created by the proposal
method in the paper has more accurate than that by the
two gray models, the proposal model has its limitations.
Firstly, since the proposal model is built on the basis of gray
model, the sample size, namely, the number of historical
data must be not less than 4. Secondly, the prediction result
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Figure 6: Comparison of the RE of the prediction by the proposal
method and the GMs.

will be inaccuracy if the weights and thresholds in BP-
ANN ran into local optimum in the process of training.
Intelligent algorithms can be used to optimize theweights and
thresholds of BP-ANN [21].

6. Conclusion

The hepatitis B epidemiological information is often difficult
to obtain. Forecasting of hepatitis B will be inaccurate by the
limited data. The grey systems theory focuses on uncertainty
problems with small samples and incomplete information. At
the same time, the BP-ANN is a method of forecasting with
understanding of the relationship among variables and non-
linear relationships. The research proposes a new forecasting
method, which combines the GM and BP-ANN, to forecast
hepatitis B in China.The useful information can generate and
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Figure 7:The forecasted incidence of hepatitis B in China from 2013
to 2021 by the three methods.
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Figure 8:The predicted incidence of hepatitis B in China from 2003
to 2012 by the proposal methods.
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Figure 9:The forecasted incidence of hepatitis B in China from 2013
to 2021 by the proposal methods.

extract from the small samples and the BP neural networks
can train data more sufficiently. The prediction results show
that this method can obtain better forecasting.
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