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Heart rate variability (HRV) is the rate of variability between each heartbeat with respect

to time. It is used to analyse the Autonomic Nervous System (ANS), a control system

used to modulate the body’s unconscious action such as cardiac function, respiration,

digestion, blood pressure, urination, and dilation/constriction of the pupil. This review

article presents a summary and analysis of various research works that analyzed

HRV associated with morbidity, pain, drowsiness, stress and exercise through signal

processing and machine learning methods. The points of emphasis with regards to

HRV research as well as the gaps associated with processes which can be improved

to enhance the quality of the research have been discussed meticulously. Restricting

the physiological signals to Electrocardiogram (ECG), Electrodermal activity (EDA),

photoplethysmography (PPG), and respiration (RESP) analysis resulted in 25 articles

which examined the cause and effect of increased/reduced HRV. Reduced HRV was

generally associated with increased morbidity and stress. High HRV normally indicated

good health, and in some instances, it could signify clinical events of interest such as

drowsiness. Effective analysis of HRV during ambulatory and motion situations such as

exercise, video gaming, and driving could have a significant impact toward improving

social well-being. Detection of HRV in motion is far from perfect, situations involving

exercise or driving reported accuracy as high as 85% and as low as 59%. HRV

detection in motion can be improved further by harnessing the advancements in machine

learning techniques.

Keywords: heart rate variability, wireless sensors, drowsiness, stress, morbidity, exercise, machine learning

1. INTRODUCTION

HRV has been associated with many research studies involving morbidity and mortality,
stress, fatigue and athletic performance. HRV is primarily used to assess the function of the
autonomic nervous system (ANS), it consists of the sympathetic nervous system (SNS) and the
parasympathetic nervous system (PNS) which coordinates the activities of the body’s unconscious
actions as a part of the peripheral nervous system. SNS is known as the fight and flight response,
it operates within the middle of the spinal cord and activates in response to stress causing an
increase in HR, constriction of blood vessels and an increase in blood pressure in order to maintain
homeostasis, a healthy/stable state of the body. PNS is known as the rest and digest mechanism,
the activities of the PNS contradicts SNS, it relaxes the heart which slows down the heart rate,
lowers stress and decreases blood pressure. SNS and PNS work together to maintain a balance,
also known as the sympathovagal balance, allowing humans to be safe and sound or an imbalance
would indicate abnormalities associated with the heart (1). Time and frequency domain methods
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are two of the most common approaches used to accurately
assess the function of the ANS (2). Time domain parameters
include features such as: (a) standard deviation of NN (normal
R-peaks)- intervals (SDNN), (b) square root of the mean of
the sum of the squares of differences between successive NN-
intervals (RMSSD) and, (c) proportion of the number of NN-
interval difference of successive NN- interval which are greater
than 50 ms divided by the total number of NN-interval (PNN50)
(3). NN intervals were used instead of RR intervals in order
to emphasize the use of normal R-peaks. These methods can
efficiently analyze HRV through the analysis of the R-R interval
which can indicate changes in the HR due to the activities of
the SNS or PNS but it’s not a sufficient method to discriminate
between the SNS and PNS (3). Frequency domain methods such
as LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz), LF/HF ratio are
often utilized to differentiate between the activity of the SNS
and PNS. LF primarily indicates the activity of the SNS but
is also partially associated with the activity of the PNS, while
HF indicates the activity of the PNS, and their ratio LF/HF is
used to determine the sympathovagal balance (3). These indices
have made it possible to detect many abnormalities, diseases and
possible indication of mortality due to the distorted activity of the
heart and the peripheral nervous system. HRV has been used for
various applications in research studies which include: analysis of
mental and physical stress, classification of drowsiness and other
sleep states, analysis of athletic performance and fatigue, studying
the correlation between a sedentary lifestyle and mental/physical
well-being and analysis of anxiety and depression and various
other morbidities associated with reduced HRV.

Kim et al. (4) presented a review paper to analyze HRV and
stress, the study described the physiological function associated
with stress, as well as HRV related to specific parts of the
brain/heart anatomy responsible for the changes associated
with stress. The paper presented information related to the
anatomy/physiology behind stress, but neglected trends in
wearable devices used for data collection, different types of
signal processing algorithms used for HRV feature extraction
and analysis, machine learning algorithms used for classification
of pathologies, wireless monitoring of HRV to improve the
health care system and ultimately patient’s health and the
various applications associated with HRV research (as shown in
Figure 1).

FIGURE 1 | Some important applications of HRV (5).

This article will analyze the various abnormalities associated
with HRV, their detection and analysis using an ECG
(electrocardiogram), Respiration, GSR and other wearable
devices. The impact of pathologies on the human body and
mental state as well as the possible gaps that are associated with
each research study.

2. METHODS

The literature survey was performed through Ryerson University
Library and Archives (RULA) online system. PubMed, IEEE
Xplore, Web of Science (WoS), Scopus were the primary search
databases directed from RULA. The search was allocated toward
HRV studies using ECG, EDA, RESP, PPG signal analysis, few
papers involved the analysis of EEG or EOG, but were not
considered to present information primarily based on ECG,
EDA, RESP, and PPG signal analysis. All the reviewed articles
were published after 2010 to present information which is not
outdated, except one paper which was used to present the
function of time and frequency domain analysis. The relevant
papers which were reviewed and summarized described the
morbid conditions/situation associated with HRV in depth and
in detail, any paper which only briefly discussed HRV were not
considered. Papers which primarily focused on factors outside
of HRV were also not considered. More than 70 papers were
reviewed but most of themwere not considered for meta-analysis
since they did not provide an in-depth analysis of HRV to
examine cardiac pathologies, exercise or drowsiness. Accounting
for repetitive topics, 18 major concepts were discussed in depth
from 25 articles (as shown in Figure 2). The gaps associated with
each article were acknowledged and presented.

HRV has a wide range of applications, some of those
applications were presented in Table 1. The upcoming sections
will scrutinize various research experiments which transpired
through the analysis of HRV, investigate the changes within a
patient’s/subject’s HRV due to certain activities and morbidities.
It will also examine the void and inconsistency of each research
study and outline future direction for HRV research, areas which
requires more attention in order to become a more efficient
procedure which can have a positive impact on people’s lives and
prevent chaotic outcomes.

3. TRENDS IN HEART RATE VARIABILITY

In this section, we discuss the trends and evolution of HRV from
the oldest upto the most recent research conducted. HRV is not
a new topic by any means, initial research on this topic was
conducted during the early 1940s. Over the years, along with the
significance of HRV analysis, feature extraction and modalities
used to assess HRV have also evolved.

Features play an important role in discriminating the
underlying function associated with any physiological signal.
The evolution of features used to analyze HRV is depicted
in Figure 2. The earliest feature utilized to analyze HRV was
HR from time domain. In 1940, Knox studied the variation in
HR due to exercise through mean and standard deviation of
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FIGURE 2 | Flow chart for HRV article selections which were used for meta-analysis.

TABLE 1 | Research paper associated with HRV detected using an ECG, type of study, results of HRV, concepts being analyzed.

References Features Application Modality Notable results Method of analysis

Rosenberg et al. (6) LF, HF, LF/HF 1D/2D stress study ECG 2D accuracy 90% 2D scatter plot.

Blood et al. (7) LF, HF, LF/HF Depression ECG HRV decreases Frequency Domain

Molina et al. (8) RMSSD, LF Posture ECG HRV Reduced Time Domain

Leti and Bricout (9) RMSSD, LF Overtraining ECG SNS Dominant Time, Frequency

Walker et al. (10) SDNN, HF Noise ECG HRV Reduced Time, Frequency

Wang et al. (11) R-R, LF/HF CHF ECG 100% acc SVM, KNN

Huang et al. (12) LF, HF Anxiety ECG HRV Reduced LF, HF

Pinheiro et al. (13) LF, SDNN MI ECG HRV Reduced Frequency Domain

Toni et al. (14) LF/HF, LF, HF CVD ECG HRV Reduced Frequency Domain

Shi et al. (15) HR, SDNN Emotion ECG LF/HF inc Time, Frequency

Ponnusamy et al. (16) RMSSD, HF Seizure ECG HRV Reduced Time, Frequency

Howells et al. (17) HF Bipolar ECG HRV Reduced HF

Rios et al. (18) R-R, RMSSD Drowsiness ECG HRV Inc Time Domain

Jung et al. (19) RMSSD, HF Fatigue ECG HRV Reduced Time, Frequency

Rahim et al. (20) LF, HF, LF/HF Drowsiness ECG, PPG HRV Reduced Frequency Domain

Georgiou et al. (21) RMSSD, HF Exercise ECG, PPG 91–99% acc Time, Frequency

Gontier (22) LF, HF, LF/HF Mind Wander ECG LF dec Time, Frequency

Vicente et al. (23) LF, HF, LF/HF Drowsiness ECG 98% spec LDA

He et al. (24) ApEn, LF Stress ECG 17.3% err CNN

Schmidt et al. (25) LF, HF, ST Stress ECG, GSR 80% (3 labels) Adaboost

Cho et al. (26) SCL, LF/HF Stress GSR, PPG 95% acc KELM NN

each subject’s pulse rate (27). This translated to classification of
abnormal variability associated with cardiac pathology. In 1958,
Simonson studied the amplitude of the QRS complex (28). He
derived the mean and SD associated with normal subjects and

differentiated them from patients with cardiac pathology. HRV
was more distinguishable using animal studies, due to the level
of invasiveness allowed for animals. In 1968, Lynch studied the
variation in HRV due to shock applied to dogs (29). The data
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FIGURE 3 | Evolution of feature analysis for HRV from 1940 to 2020.

was analyzed using mean and SD of heart rate. A major change
occurred around 1969–1970s, R-R intervals were emphasized
for their ability to better analyze HRV from ECG which led
to the development of time domain features such as RMSSD,
pNN50, and SDNN. In 1977, Rompelman et al. presented a
literature which compared the various methods used to analyze
HRV and demonstrated that R-R intervals were more accurate
for measuringHRV in comparison toHR (30). Researchers didn’t
just stop there, during the 1990s R-R were deemed less effective
in comparison to spectral analysis methods. More studies were
conducted, which primarily assessed PSD features such as LF,
HF and LF/HF associated with ANS impairment due to cardiac
pathologies (30, 31). In 2006, Poincaré plots were introduced
to present a visual representation of non-linear scatter plots
corresponding to cardiac pathologies and reduced HRV (32).
Recently joint time-frequency is a recurring trend which is
gaining a lot of attention from researchers (2). It is capable of
tracking instant changes in HRV through a shorter period, which
can effectively diagnose exercise and cardiovascular diseases.
Figure 3 depicts the evolution of HRV feature analysis from
1940 to 2020.

Figure 4 delineates the evolution of healthcare devices used to
detect physiological signals, which can be analyzed to assess HRV.
Data collection is the key ingredient which allows researchers
to analyze and detect cardiac pathologies associated with an
impaired HRV. Upto the 1980s,
cardiotachometer were most commonly used to record a person’s
electrical signal and record their HR for HRV research (33).
Although ECG was developed in 1924, it took about 60 years
for them to become affordable for public research. 2 lead ECG’s
were typically used during the 1980s for HRV research (34). HRV
was not just related to heart beat, it also involved blood pressure,
mental activity and respiration.

From the 1990s and onwards, HRV research became more
diverse. HRV was also analyzed by measuring BP and respiration
using PPG and thoracic belt (35). This expanded theories and
problems related to impaired HRV, it also added more depth
to HRV analysis through information obtained from various
physiological signals. Twelve lead ECGs were introduced in 2000,
this allowed researchers who were collaborating with clinicians
to analyze various cardiac pathologies more effectively (36). The
signals obtained were smoother andmore efficient in comparison
to signals from other ECGs which used fewer electrodes. The

FIGURE 4 | Evolution of medical devices utilized for HRV data acquisition.

FIGURE 5 | Trends in machine learning for HRV classification.

current trend involves the use of wearable devices to detect
physiological signals, these are much more flexible and portable
in comparison to the traditional ECG and PPG devices (25, 37).

Figure 5 describes the common techniques used to classify
HRV using machine learning algorithms from 2010 to present.
Machine learning has been part of many research studies since
the mid 2000’s. Although it was initially developed in 1950,
supervised methods did not become popular until the 2000s.
Literature for machine learning was nothing less than an instant
success, within the past decade there have been numerous
books, literature, research papers, industrial work and health
care innovation based on machine learning. It’s hard to pinpoint
a specific focus in this domain, so we narrowed the timeline
to beyond 2010 and focused on common machine learning
topics that were the focus for many research conducted on
HRV. Supervised learning has been the most common method
to classify various cardiac pathologies and symptoms related to
HRV since 2010 (37, 38). Supervised models learn the data and
predict labels through learnedmapping, which allowmodels such
as DT, LDA, and SVM to predict labels based on corresponding
features (39). Many research papers in 2011 revolved around
identifying the most important features through feature selection
algorithms, in order to obtain better classification accuracy and
reduce classification time (39, 40). In addition to automatic
diagnosis and classification, researchers have implemented
shorter windows to extract features associated with physiological
function from real-time (41, 42). Deep learning has been utilized
more often for HRV research from 2018 to improve automatic
classification through real-time. They are capable of detecting
hidden patterns from the input through hidden layers, iteratively
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minimizing errors in data prior to classification. This makes
the algorithm more efficient for extracting relevant information
related to the topic being analyzed, improves classification
accuracy and requires less features for real-time classification
(24, 43). An emerging trend on the rise from 2019 is the use of
unsupervised deep learning to classify mental stress associated
with HRV using autoencoder (44). Self organizing map (SOM) is
a dimensional reduction method trained through unsupervised
learning, which can indicate the most effective features required
to classify stress with high accuracy (26).

4. HRV TRENDS FOR DATA COLLECTION

This sections illustrates the various data collection methods
used to detect and analyze HRV. Table 2 reveals the biomedical
devices utilized, how they made a significant contribution to the
corresponding research and their limitations. Wearable devices
are recurrently used in recent HRV research, further indicating
the emphasis on remote andwirelessmonitoring of HRV, in order
to make life easier and improve monitoring the health of patients
suffering from severe cardiac diseases.

4.1. Smartphones and HRV
Recent smartphones are more than just a device used for
communication and listening to music, these devices include
embedded sensors, accelerometers, microphones, digital camera,
and various apps based on measuring the affective state
(neural, emotion, stress) of an individual. These features allowed
researchers to conduct valuable experiments which required
wireless monitoring of physiological activity, position, speech
patterns, facial expression and affective state, in order to analyze
stress levels, behavior and emotion at anytime and anywhere,
thus promoting better human health and well-being (45, 46).

Prolonged work periods without sufficient rest/recovery
periods can reduce happiness and lead to chronic stress due
to mental workload (45). Recent development in technology
which integrates artificial intelligence/machine learning (AI/ML)
provides insight about a persons stress level at work, during social
encounters and sleep. Muaremi et al. (45) utilized smartphones to
collect audio, communication and physical activity data during
work periods and a wearable Wooho chest belt was used to
collect HRV data during sleep. They were able to classify stress
using HRV features with only 59% accuracy, indicating that
although these advancements are quite fascinating and promotes
a healthier lifestyle, it wouldn’t be considered effective or rational
to use such methods to monitor the health of subjects who
are suffering from chronic stress or impaired HRV. The most
critical aspect of wearable sensors is their inability to produce
accurate data. Utilizing such methods would only seem feasible
for empirical studies. They are nowhere near the level required to
be effective for use by people suffering from stress or impaired
HRV. Smartphones are not designed to promote a healthy
lifestyle unlike a wearable ECG sensor, using it for the purpose
of diagnosing work stress would require further modification
of the design, which would make it more adaptable for health
care interventions.

4.2. Wearable Devices and HRV
Smartphones and wireless ECG, EEG, and EDA devices would
make it possible to detect cardiovascular diseases associated with
HRV impairment before it becomes chronic and fatal (46). They
make it feasible for health practitioners and people suffering from
various cardiovascular diseases (Diebetes, Hypertension) to act
proactively and minimize severe outcomes by monitoring their
physiological activity throughout the day, including during sleep.
Machine learning enable them to predict stress and negative
emotions associated with their daily activities, minimizing certain
activities may lead to a greater level of productivity and a better
sense well-being.

ECG is the most commonly used device with respect to
HRV detection (6, 21, 25, 37). Rosenberg et al. (6) utilized a
wireless ECG sensor during various situations to measure stress
response associated with conference presentations, mental stress
test, emergency, and pain. Schmidt et al. (25) utilized Emphatica
E4 to measure BVP, EDA, ACC, and TEMP and RespiBAN to
detect respiration and ACC (accelerometer). The data collected
was used to develop WESAD, a public database which consists
of data required to effectively analyze affective states and stress.
Cho et al. (26) analyzed HRV, skin conductance (SC)/sweat and
skin temperature (SKT) through data collected using a PPG,
EDA, and SKT, respectively. They were able to classify stress
with high accuracy, using a novel feed forward neural network
algorithm and integrated features. Georgiou et al. (21) revealed
that wearable devices can detect HRV at rest with 85% accuracy
using a PPG and 99% accuracy using an ECG which deteriorates
to 85% accuracy during exercise.

Ambulatory detection of HRV is the current resolve for most
researchers who hope to make a pragmatic and positive impact
on the health and well-being of patients suffering from CVD,
hypertension, diabetes, chronic stress and myocardial infarction.
Patients suffering from these pathologies need to be monitored
throughout the day in order to prevent a serious calamity.
Remote monitoring of HRV would undoubtedly benefit senior or
chronic patients, who are suffering from cardiovascular diseases
but cannot make the effort to visit the hospital all the time, due to
the considerable distance and lack of physical ability.

Schmidt et al. (25) were able to classify binary classes of
stress by analyzing data collected through wireless sensors with
93.6% accuracy using multinomial logistic regression model.
They were able to classify low, mid and high level of stress
with 72% accuracy using a random forest algorithm, further
demonstrating that chronic stress is hard to predict, although
stress can be distinguished from a relaxed state with high
efficiency. Cho et al. (26) were able to detect severe stress with
wireless PPG, EDA, and SKT sensors from a VR task with 95%
accuracy using a kernel based extreme learning machine (K-
ELM) algorithm. Although there were numerous studies which
classified stress with high accuracies using HRV features, they
completely neglected statistical analysis of the data. Machine
learning algorithms cannot differentiate between efficient data
and errors. They are highly susceptible to biased predictions
which arise from biased training datasets, a high classification
accuracy can be achieved from erroneous data, if the training
data is biased. Physiological signal analysis and statistical analysis
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TABLE 2 | Data collection methods, their Pros and Cons.

References Modality Pros Cons

Rosenberg et al.

(6)

Wearable ECG Detect stress with 90% accuracy
Less effective during pain

and non-stationary situations

Blood et al. (7) Holter ECG
Effectively detect

depression and HRV
Accuracy of results

Molina et al. (8) 12-lead ECG
Accurate correlation between

HRR and HRV
May cause scar

Leti and Bricout (9) Polar RS 800
Detect fatigue and

HRV in motion
Accuracy of Results

Walker et al. (10) GE Light ECG
Effectively analyze

Noise exposure and HRV

Did not detect correlation

between noise and BP

Wang et al. (11) Wearable ECG
Discriminate between CHF

and NSR with 91.3% acc

RMSSD is not

accurate

Huang et al. (12) 12-lead ECG
Effectively determine HRV

due to stroke and hemodialysis

LF/HF ratio is

not accurate

Pinheiro et al. (13) PTB recorder
Determine prognosis of

patients following MI

Cannot deduce

causality behind results

Toni et al. (14) Clickholter ECG

Detect HRV in

motion due to

antidepressants and exercise

LF/HF, RR

are not accurate

Shi et al. (15) RM6240B ECG

Effectively

discriminate between HRV

of happiness and sadness

RMSSD, pNN50 and

SampEn are not accurate

Howells et al. (17) MP150 Biopac

Accurately analyzed HRV

due to meditation

and BD wirelessly

Results lacked

most ECG measures

Rios et al. (18) Gear S, PPG
Possibly recognize drowsiness

while in motion

No results

were obtained

Jung et al. (19) ECG sensor

Wireless analysis of

HRV due to

drowsiness and fatigue

Accuracy of

results

Georgiou et al. (21) ECG,PPG
Analyze HRV

with 91-99 % accuracy

Accuracy reduces

during motion

Gontier (22) eMotion Faros

Efficiently detect

correlation between

awareness and HR

Did not find

robust correlations

Vicente et al. (23) eXim Pro
Detect drowsiness

while in motion

Detect drowsiness with

62% sensitivity

He et al. (24) custom ECG
Detect stress

using ulta-short epoch

Accuracy of classification

was not revealed

Schmidt et al. (25)
RespiBAN

Empatica E4

Detect stress

with 93% accuracy

May have resulted

from overfitting

Cho et al. (26)
Biopac PPG

EDA,UIM

Detect stress

with 95% accuracy

Not a viable

solution in real-life

can provide an effective corroboration that the data utilized
were an efficient representation of a subjects physiological
function. Venkatesan et al. (47) developed a novel DENLMS
adaptive filter for remote health care applications, in order to
remove white noise from ECG signals obtained from patients
suffering from cardiac arrhythmia. SVM classifier performed
better than other ML algorithms and classified normal/abnormal

cardiac arrhythmia with 96% accuracy using HRV features
extracted from the preprocessed signal through discrete wavelet
transform. Although research is seemingly headed toward
the right direction, most wearable ECG devices still require
much improvement before they can be used to accurately
diagnose heart attack or other cardiovascular diseases. Recent
smartwatches did not present accurate information about a
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subject’s HR with respect to their daily life, research studies which
used wearable watches to improve weight loss demonstrated that
the device produced an ineffective measurement of a person’s
HR and did not improve weight loss (48). Wearable devices can
provide real-time data which can motivate patients to be more
careful and promote better self-management in order to prevent
chronic outcomes but affordability, adaptability and functionality
are still a major concern with wearable devices, especially if they
were to be integrated with ML, which poses a major set back
and might be the reason that prevents the deployment of such
devices. Wearable devices such as a wearable ECG sensor can be
utilized to monitor a person’s cardiac signal, HR and HRV, which
are indicative of chronic outcomes such as myocardial infarction,
but they still require further enhancement before they can be
considered an effective method for such diagnosis.

4.3. Drowsiness and HRV
Around 10–30% of all road crashes are associated with
fatigue and drowsy driving. Recent smart watches and portable
ECGs are efficiently being utilized to antedate drowsiness,
in order to alert the driver prior to any possible accidents.
Accelerometer and gyrometer has been examined to assess the
users HRV and physical activity, which allows for the detection
of drowsiness/fatigue prior to the transition to stage 1 sleep
(drowsiness) (18). There is a high correlation between PPG and
ECG in terms of detecting HR, Lee et al. proposed a method
to automatically remove noise from PPG using a PPG strap
which can be used to accurately detect HR while driving, PSD
can be utilized to detect HRV in frequency domain, making it
a simple and effective method to detect drowsiness through a
persons HR (49). Physiological signals such as an ECG have been
described as the most accurate representation of drowsiness in
comparison to vehicle basedmethod (lane position of the vehicle)
and behavioral method (yawning, eye blinking) (49). Although
it has yet to be fully established, wireless ECG sensors might
be capable of effectively detecting drowsiness, while the driver
is driving. In addition, GSM modules can be utilized to send
continuous signals to the control room, DCmotor can be used to
control the speed of the vehicle upon drowsy detection since the
driver’s reaction would be distorted, LCD can be used to monitor
the driver’s condition and LED in the rear side of the vehicle can
signal the vehicle behind the drowsy vehicle to slow down (50).
Roy andVenkatasubramanian (51) proposed a similar idea which
involved using an accelerometer to detect motion, SMS to send an
alert message to the control room and microcontroller to process
the analog signal prior to its analysis through labVIEW and
Matlab. Research based on drowsy driving is still relatively new in
comparison tomyocardial infarction and hypertension which has
been studied for over 30 years, which is one of the biggest reasons
for lack of adequate research concerning drowsy driving. A
reliable and accurate method to detect drowsiness while a person
is driving is still a part of ongoing research, it makes sense in
theory but HRV is complex and becomes more intricate to detect
in motion such as exercise (only 78.6–85% accuracy in frequency
domain) and it is especially worse during drowsy driving (21).
Vicente et al. (23) conducted a study which involved truck drivers
using a drowsy detection detector as well as a sleep deprivation

detector and the accuracy of the results were 0.59 and 0.62
sensitivity, respectively. The results indicate that when a truck is
in motion, there are a lot of errors associated with wireless ECG
detection, some parts of the signal were blank while in motion.
Specificity and predictivity were 0.98 and 0.96 using a drowsiness
episodes detector and 0.88 and 0.80 using a sleep deprivation
detector, disclosing that detection of the signal was the hardest
part during this process, specifying drowsiness/awake state upon
detection was very accurate through the data analysis of ECG
signals using the linear discriminant analysis (LDA) algorithm.
The biggest impediment with regards to drowsy detection is the
level of interference associated with electrodes. Electrodes are
often attached to a person which can hinder their movement,
driving requires constant steering to maneuver the vehicle, which
produces error and loss of signal detection. Other methods which
involve sensors attached to steering wheels are also hindered by
the constant placement of both hands on the steering wheel. Most
vehicle based measures are deemed unreliable and inaccurate.
Most empirical methods that provide partial results which are
somewhat indicative of a person’s HRV are often imprecise due
the lack of control associated with driving, wireless devices still
require sensors to be attached to a person which hinders a
person’s ability to drive and move freely. Smartwatches which
are capable of detecting a person’s heart rate would be the least
intrusive while driving, but would require extensive modification
and testing before it could be considered a valid option to prevent
drowsy driving. The cost to develop a smartwatch capable of
interpreting a person’s HRV and drowsiness would be much
greater than the current wireless ECG sensors, making it a
less likely solution for drowsiness detection which results in
thousands of casualties each year.

4.4. Video Game and HRV
HCI (human to computer interaction) is one of the various
methods utilized for stress analysis, cognitive games such as
stroop test are often utilized to assess a subjects ability focus
while they are subjected to distraction. Fernandes et al. (52)
developed a novel method in order to design a video game
FlappyHeartPC which used ECG signals as the input, bridging
the gap between human physiology and gaming, such interaction
might spark more interest within the user for a boring activity
(which is relaxing and beneficial for stress reduction health) such
as mediation, fishing, or simply analyzing your physiological
signal in a lab. The game design includes a tailor belt worn below
the chest with electro-textile electrodes was used as the interface
between the sensor and the skin, data acquisition required
Bitalino (a specialized data acquisition board), python was used
to design the signal processing algorithm used to process/filter
the input ECG signal, detect QRS complex and calculate HR.
Unity 3D was the engine which made the development of the
game possible which can utilize HR as the input for certain
physiological analysis (52). The video game is a great innovation
which can be utilized for science and excitement but it did
not have a specific purpose outside of the gaming business.
There have been numerous claims by the gaming industry
which proclaims that videos can be utilized to stimulate the
brain and improve cognitive abilities associated with memory,
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FIGURE 6 | Process flow chart for HRV analysis and classification.

reasoning and processing speed. Unlike 2D video games, 3D
video games often allow the user to be notably immersed within
the virtual environment and absorb more complex information
which stimulates the hippocampus. Analyzing just the heart rate
alone would not provide sufficient information to analyze an
individual’s HRV. Python packages can be used to scrutinize
the detected ECG signal through time, frequency and non-
linear methods but the extracted data may not be accurate
enough to validate the users physiological function. However,
it can be utilized to improve human health by implementing a
stress detection algorithm into the game. If ML learning can be
embedded, there are various possibilities with regards to health
care applications such as predicting stress and low HRV, which
can also antedate cardiovascular diseases.

5. HRV TRENDS FOR FEATURE ANALYSIS

5.1. HRV and Signal Processing Methods
HRV detection is a complex procedure which requires a
series of actions, in order to accurately measure the rate of
change associated with the R-R interval obtained from the

QRS complex, the raw ECG signal first needs to be filtered,
processed and reconstructed. Raw ECG signals need to be filtered
in order to remove baseline wander, powerline interference
and muscle noise (53, 54). After filtering, the ECG signal is a
lot smoother and cleaner, which makes it easier to detect the
QRS complex. Researchers have developed and innovated many
robust R-peak detection algorithms prior to feature extraction
such as: Pan-Tompkins alorithm, wavelet transform algorithm
and empirical mode decomposition (EMD) algorithm (55–57).
Time domain parameters can be extracted using the R-peaks
detected but in order to secure frequency domain parameters,
spectral transformation of the QRS complex is required through
PSD (power spectral density), which can be obtained through
Fast Fourier Transform (represents frequency components),
Autoregressive (reduces spectral leakages to improve the
resolution of the data), Welch Periodogram and Lomb Scargle
Periodogram analysis of the QRS complex. Time domain
parameters are statistical evaluations of the ECG signal (presents
statistical properties) and frequency domain parameters describe
how power (variance) is dispersed as a function of frequency
(58). Figure 6 demonstrates the process required to extract

Frontiers in Digital Health | www.frontiersin.org 8 February 2021 | Volume 3 | Article 639444

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Ishaque et al. HRV Trends Review

TABLE 3 | Time and frequency domain features.

Features Description

HR The rate of change associated with R-R intervals from HR represents HRV. Increases due to stress

SDNN The standard deviation of interval between two normal heartbeats (NN). NN measures the total power. Decreases in response to

stress. SDNN =

√

1
N−1

∑N
j=1(RRj − RR)2

RMSSD The root mean square of successive differences between normal heartbeats. Primarily manipulated by PNS activity.

RMSSD =

√

1
N−1

∑N
j=1(RRj+1 − RRj )2

pNN50 Represents the percentage of the difference associated with NN interval which differ more than 50 ms.It shares a strong

correlation with PNS activity, RMSSD, HF

SD1 Non-linear variables derived from the Poincaré plot. Shares a high correlation with HF, RMSSD. Decreases due to stress

SD2 Non-linear variables derived from the Poincaré plot. Shares a high correlation with LF. Increases in response to stress

ApEN Represents the ratio between SD2 and SD1. Shares a high correlation with LF/HF. Increases due to stress

GSR std Standard deviation associated with electrodermal activity. Increases during stress

GSR mean Mean value obtained from measuring the rate of change associated with EDA activity. Increases during stress

Resp Rate Represents breathing rate, increase in Resp rate leads to increased PNS activity, HF and decreased LF, SNS activity. Increases in

response to stress

VLF Represented within the VLF band (0.0033–0.04 Hz) and it is mediated by SNS activity

LF Represented through 0.04–0.15 Hz within the PSD, it is mostly used to indicate SNS activity but can specify PNS activity

HF Represented by the frequency range of 0.15–0.40 Hz and solely indicates PNS activity

LF/HF Represents ANS activity, increases in response to increased stress and decreased HRV

HRV features from an ECG signal, perform HRV analysis and
classify/predict impaired HRV. Table 3 illustrates the time and
frequency domain features used to analyze HRV and their
correlation to stress.

5.2. HRV and Stress
As described in Figure 7, stress is primarily associated with
the activity of the SNS, increased LF (0.04–0.15 Hz) band in
frequency domain and reducedHRV. It activates due to perceived
danger (such as a deadline, financial worries, exam) and increase
in cortisol levels causing the activation of SNS which mobilizes
the body’s activity under stress in order to react/respond rapidly
to any dangerous situations (6). Rosenberg et al. (6) analyzed
the levels of stress in response to various situations including
public speaking, math, exercise, mediation, pain and cognitive
tests. ECG signal obtained through a wireless ECG sensor was
processed to measure HR, time and frequency domain features
such as SDNN, PNN50, RMSSD, LFn, HFn, LFp, HFp, LFiA,
HFiA. LF/HF (normalized, power, instantaneous) were extracted
to measure HRV as well as SNS and PNS activity associated
with HRV. There are different levels of stress depending on
the person’s HRV, most often 1D frequency domain methods
such as sympathovagal balance (LF/HF ratio) were used since
they are more efficient/ simpler than the time domain methods
(RMSSD, PNN50, SDNN), which takes longer to assess, although
the efficiency of the method can be significantly improved (6,
23). Rosenberg et al. used a 2D scatter plot (LF Vs. HF on
a 2D scatter) using multiple variables such as LFn, LFn, LFp,
HFp, LFiA, HFiA and their ratio and compared it with the 1D
methods (LF/HF ratio or LF, HF computed independently) for
different stress tests such as: mental stress, pain, emergency,
meditation, and pain. The results concluded that 2D scatter
plots were much more efficient than 1D univariate methods, 2D

results produced accuracy of 90% or above, whereas 1D methods
were around 70%. 1D variables are very linear, unlike stress,
they cannot effectively discriminate between 2 tests (such as:
Math and exercise) that lead to similar heart rates. However,
2D scatter plots can efficiently differentiate between each ANS
activity due to the different activities, resulting in much more
efficient results and categorization of ANS activities (SNS and
PNS activity) due to different stress states. The accuracy of the
experiment is questionable since only 10 participants were used,
which is less indicative of the overall population, one individual
can have distinct patterns which is not comparable to the rest
of the world during exercise or math. Another questionable
result would be the result of the HR, exercise should result in a
higher HR since the heart starts pumping faster to pump blood
to the rest of the body during exercise, in order to match the
incremental demand of the exercise, resulting in an increased
HR upto 5 min post exercise. LF value during exercise was
also rather low, exercise promotes efficient use of one’s energy
allowing an individual to be more awake/alert throughout the
day, which is more associated with the activity within the LF
band. A 3D assessment which includes time would probably
result in a more comprehensive analysis, effectively specifying the
periods associated with increased levels of stress.

5.3. Short-Term Signal Analysis and HRV
Rosenberg et al. (6) have also indicated that time of the epoch
used to assess HRV in time domain is very important, 3 min
is the minimum epoch that can be used by RMSSD in order to
measure fatigue in athletes, but 5 min epoch are optimal for stress
analysis, otherwise preprocessing the signal may lead to filtering
out valuable information which would result in inadequate, less
efficient output and representation of HRV activity associated
with stress. Castaldo et al. (41) analyzed HRV using ultra-short
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FIGURE 7 | Describes LF and HF associated with stress, drowsiness, awake,

and fatigue.

term HRV features in order to assess mental stress in real-time.
Theoretically stress is generally associated with perception, it
can be due to internal perception such as negative emotions of
anger, anxiety, fear, depression and mood swings or it may be
induced by external perception of the world around us, such as
an upcoming exam, presentation or deadline which causes us to
worry, lose sleep and accumulate stress (37). MeanNN, stdHR,
HF features resulted in the best accuracy when classified through
an automated classifier such as TPOT, which classifiedHRVusing
various ML models (SVP, MLP, neighbor search IBK, C4.5, and
LDA) and indicated which algorithm was able to classify stress
with the highest accuracy (41). Statistical testing is an essential
component of every research study, in order to verify, validate
and understand the significance of the results obtained. Statistical
hypothesis testing legitimizes the efficiency of the results and
encourages further expansion of notable methods which can
have a significant impact on people suffering from drowsiness,
impaired HRV, and cardiovascular diseases (59). Current trends
in machine learning hints that there is a bigger initiative for
real-time analysis, various algorithms were developed to permit
real-time analysis using ultra-short term epochs of 3 min and
under (60). In certain cases even 1 min epoch can produce data
which can be analyzed to effectively classify HRV using specific
features, some features are peripheral, by reducing such features,
HRV can be classified in real-time and with higher accuracy (41).
Most PSD methods such as FFT, Lomb Scargle periodogram and
Autocorrelation are capable of producing useful results which
can be used to detect HRV from only 3 min, but it requires the
subject to be stationary and stable. Experiments which involve
motion (e.g., exercise, driving) produce erroneous results. Most
research studies emphasized the use of time domain features to
analyse HRV from short-term durations, which is also simpler to
extract than frequency domain features. Time domain features
are not consistent and often vary, which makes HRV analysis
very complicated and flawed. Frequency domain features are
more accurate in comparison to time domain methods but do
not produce valid data from shorter windows since the rate of

change associated with R-R intervals are being compromised as
well. Short-term duration does not allow the data to fully grasp
the activity of the heart, HRV is derived from the rate of change
due to fluctuations in HR, shorter windows produce less data and
less accurate results. Short-term duration results in minimizing
most of the data which also removes valuable information needed
to understand the overall condition of the subject (2, 61). Pre-
processing is also limited by short-term durations since most
of the data might be filtered out if the data is noisy, which is
reasonable from subjects under stress. Short-term data can make
a significant contribution to the health of patients suffering from
CVD, by allowing them to monitor their heart rate in real-time
from a distance using ambulatory ECG sensors but extensive
research is needed to find viable solutions which can minimize
the motion artifacts and reduce errors.

5.4. Low/Reduced HRV
Lower/reduced HRV transpire as a result of increased SNS
activity and reduced PNS. It often infers that higher HR/blood
pressure leads to various morbidities and increases the chances
of mortality. HRV of patients/subjects suffering from depression
is very low, VLF (0.003–0.04 Hz) has been positively associated
with depression and it is also one of the strongest indicators of
depression (7). Blood et al. were able to make these diagnoses
using correlation analysis (scatter plots), which compares the
activity of the LF, VLF, and HF due to various symptoms
associated with depression. The research study also revealed that
low HF (equivalent to low HRV) emanate more anger, sadness,
peer problems, and anxiety, while decreased VLF would cause
the development of chronic inflammation, and dysregulation
of VLF (associated with metabolic process, thermoregulation,
renin angiotensin, regulates blood pressure and fluid balance)
which would result in more fatigue and depression (7, 27,
62). The research neglected any possible solution to counteract
depression, wireless sensors can be incorporated into biofeedback
systems in order tomonitor a person’s HRV and provide feedback
to improve their emotional well-being by increasing their HRV.
Nexus has developed biofeedback devices which are capable
of measuring physiological activity associated with impaired
HRV and providing solutions to improve their physiological
function. Mendi developed a biofeedback device to strengthen
cognitive function associated with lowHRV and stress, which can
improve depressive symptoms as well. Interaxon also developed
a biofeedback device the muse to counteract low HRV and
stress through guided meditation. These devices are expensive
and would not be considered as a cure for chronic conditions
such myocardial infarction but they can improve depressive
symptoms which is often associated with prolonged stress and
imbalanced physiological parameters associated with impaired
ANS activity. Reduced HRV is a risk predictor of heart failure
after acute myocardial infarction, a warning sign for diabetic
neuropathy, and has been associated with patient suffering from
sleep apnea, dilated cardiomyopathy, fetal distress as well as
congestive heart failure (11). Decrease in HRV is correlated to
reduced SDNN and a shorter R-R interval. Significantly lower
LF along with a reduced HRV antedates sudden cardiac death
for patients suffering from CHF, due to the impaired activity of
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the ANS, which is unable to respond/react accordingly to the
treacherous situation. Both time and frequency domain variables
(such as SDNN, LFn, HFn, LF/HF) were used as predictor of
morbidity/mortality within the study conducted by Wang et al.
(11). Moreover lower HRV and vagal tone indicated through low
HF, shorter R-R interval and smaller RMSSD values are associated
with epileptic seizure (16). A study conducted by Shiro et al.
analyzed the correlation between HRV, chronic neck pain and
shoulder pain specifically within females (63). Common cause
of neck and shoulder pain is repetitive/over work which can
cause an increase of intramuscular glutamate and lactate within
the traps. Isometric contraction was performed to indicate the
effect of muscle load, LF/HF was lower (increased HRV) within
the relaxed and pain free subject but it was inactive for the
pain group which was attestation of impaired ANS activity (63).
Inactivity of LF/HF is not a clear and concise representation
of ANS dysfunction, 2D scatter plots may have provided more
efficient results. Undetected signals can also produce dormant
results, ECG sensors are not as competent when monitoring
subjects in motion. Interpolation is capable of estimating rational
values which can be used to fill in the missing values. The results
would not be perfect but it may produce frequency domain
values which can reveal the most likely outcome due to neck and
shoulder pain. A research study analyzed HRV due to fatigue, in
order to prevent athlete performance burnout and overtraining
(9). Competition has been associated with increased LF/HF and
SNS dominance, indicating that athlete’s may suffer from more
fatigue, stress and anxiety during competition (64, 65). Studies
revealed that HRV and HF decrease with an increase in age
(9). Aerobic training positively impacts HRV and HF, which
was indicated through the positive correlation with time domain
parameters such as SDNN and RMSSD and HF. Excessive
training can cause impairment of the cardiovascular control
system, negatively impact a competitors mood/state which has
been associated with injury and fatigue, resulting in reducedHRV
and HF. Increased SNS activity which is specified through an
increase in LF, compensates for reduced cardiac performance and
helps recover normal blood flow. High SNS is also associated
with fatigue during training which correlates to reduced HRV
and HF (64, 65). Two days after the competition, an increased
HF suggested a rise in PNS activity and HRV, disseminating
that exercise/training improves vagal tone and helps to maintain
ANS modulation (64). Unlike Fourier transform which neglects
the time-localization information, wavelet transform extract
information with respect to time and frequency, which is
excellent to detect HRV information which is not stationary.
It can detect the instantaneous change associated with HR
due to exercise more efficiently than common PSD methods
such as fft and AR periodogram which is more effective for
frequency domain analysis and stationary processes (2). Missing
data and ECG signal recording inactivity is a common problem
associated with monitoring HRV in motion and during exercise.
Interpolation, reconstruction of large gaps and reconstruction
with localized estimation are few methods which can help rectify
the data and extract feasible frequency domain features (66).
There is a higher probability/occurrence of myocardial infarction
associated with older women as a result of lower HRV and

ANS dysfunction (13). HRV analysis also revealed that SDNN,
RMSSD, triangular index were significantly worse for women
than men, additionally reduced HRV is the strongest predictor of
myocardial infarction (13, 67). Resting HR is a robust indicator
of myocardial infarction and coronary death within women,
low HR as well as increased HR associated with depression
antedates coronary artery disease. Women and men require
different treatments for an accurate prognosis due to sexual
dimorphism associated with men and women. Time domain
methods are not capable of differentiating between SNS and
PNS activity which can make data analysis somewhat biased
and based on preconceived assumptions. Statistical t-test or chi
squared tests can corroborate the plausibility of the data and
help determine whether the results presented are statistically
significant (3). Patients suffering from stroke and requiring
hemodialysis also indicated a lower HRV, post dialysis presented
an increased VLF, LF, TP, and LF/HF ratio (12). VLF is robust in
terms of prognosis for CHF. Lower HRV is also associated with
adverse cardiac states, increased morbidity and mortality within
patients suffering from ESRD (end stage renal disease). Relaxing
music such as classical music improved HRV in patients with
cardiovascular dysfunction and dementia. Interestingly classical
music at high intensity also reduced HRV, although sufficient
analysis was not provided. LF was reduced during heavy metal
which may indicate that it is harmful and causes increased
fatigue. Higher intensity of music increased sympathetic tone on
HR, the reaction designate that music is perceived as a threat
by the ANS and may induce stress/fatigue (68). The frequency
domain data was analyzed via FFT algorithm which is capable of
producing miscellaneous results due to its inability to apprehend
transient signals through unspecified capture windows. Specific
ranges within the capture windows are capable of producing
valid results depending on the duration of the transient signal,
otherwise it can result in data leakage which distorts the feature
values obtained. Bandwidth filtering of the signal was not
mentioned, which can lead to aliasing and result in incorrect
frequency and amplitude. Do Amaral et al. (68) identified that
music can increase or reduce HRV based on the type of music
and its impact on HRV. Music therapy involving soothing music
improves HR, it has been utilized to improve cardiac function
after taking cardiotoxic medication (68, 69). Heavy metal and
metal rock reduced HRV and the modulation of the heart
indicated through reduced SDNN. Although SDNN is capable
of interpreting the overall HRV, it can increase or decrease as
a result of decrease in HRV. Its simple to compute but does
not provide sufficient information to understand ANS activity
associated with reduced HRV (3). Kubios was used to analyze the
data, its a software which automatically produces results in time
and frequency domain. It uses automatic filters which are likely
to produce imprecise results if the signal is very noisy (21).

6. HRV TRENDS USING MACHINE
LEARNING

This section discusses the recent studies which classified HRV
using machine learning algorithms. Table 4 demonstrates the
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TABLE 4 | Recent publications based on HRV + Machine Learning. The accuracy

produced and the theoretical computational cost required by the algorithm.

References Accuracy (%) Computational cost ML algorithm(s)

Castaldo

et al. (41)

94,88,94,94 0(n),0(kd),0(nlogn),0(nd2) MLP, SVM, C4.5,LDA

Cho et al. (70) 90.19 0(n · k · d) CNN

Cho et al. (26) 95 0(n4) K-ELM

Coutts et al.

(71)

83
0(W)

W = 4IH+ 4H2
+ 3H+ HK

LTSM

Taye et al. (72) 98.6
0(W)

W = IH+ HK
ANN

Arsalan et al.

(73)

92.85 0(n) MLP

Lima et al.

(38)

80 0(n*log(n)∗d ∗ k) Random Forest

Kublanov

et al. (74)

91.3,87.8,

87.1,88.2

0(nd2),0(kd),

0(n*log(n)*d), 0(c ∗ d)
LDA,SVM,DT,NB

Ma et al. (75)
96.58,

98.2

0(n · k · d),

0(n)

CNN,

MLP

Persson et al.

(76)

77.5,83.4,

82.4,85.4

0(nd),0(n2),

0(nt),0(n*log(n)*d*k)

KNN, SVM,

AdaBoost, RF

accuracy achieved and the computational cost associated each
machine learning algorithm. In order to make a significant
impact and connect to as many patients as possible, remote
monitoring and analysis of HRV needs to improve. Machine
learning is revolutionizing society. It is progressing at a very fast
rate to make remote monitoring of HRV effective and accessible
to everyone. HRV analysis through machine learning is creating
a major impact in research and the world at large, making it
possible to accurately antedate diseases, lower healthcare cost and
help patients make the right decision, with regards to treatments
and therapies.

6.1. Stress Classification Through HRV
Analysis
Alhitary et al. (37) have indicated that people need a little bit
of stress in their life to stay focused, alert and energetic, so
that they can solve the problems they face in their daily life.
Alhitary et al. (37) also revealed that if people let stress linger
around and continue to worry, it can evolve into chronic stress,
leading to more anxiety, lack of coordination and reduced level
of productivity. If stress is not detected early, it often leads to
many heart related diseases such as hypertension and CVD. In
addition to increasing the chance of an infection, it is also a major
cause of emotional trauma such as depression. Schmidt et al. (25)
developed WESAD, a multimodal public dataset using wearble
devices, which includes data for stress and affective emotions.
They detected the affective states of users through Emphatic
machines such as RespiBAN and Empatica E4, which was placed
on their chest and wrist, respectively, to assess their neural state
(baseline brain activity), stress levels and amusement condition
(emotional state, in this scenario humor was induced). Utilizing

the machine learning classification algorithm Adaboost, they
were able to classify stress/no stress conditions with 93% accuracy
using features obtained from physiological signals (e.g., ECG,
EDA, Respiration, skin temperature, accelerometer). Adaboost
is a boosting classifier which is considered a strong learner, it
is made up of cascade of weak learners such as DT. Unlike
weak learners, boosting models learn from the training data and
iteratively reduce error by adding a weak learner based on the
weight associated with the error. It can predict labels with high
precision, by adapting to the training data andminimizing errors.
It takes longer to train adaboost and it is not effective for learning
imbalanced training data (77).

6.2. HRV Analysis Using Random Forest
Lima et al. (38) revealed that research experiments are sometimes
unpredictable as LF and LF/HF activity during stress decreased
for certain circumstances where stress was detected. Delineating
the changes in ANS activity plays a significant role toward
preventing CVD and stress. ANS is regulated by the CNS,
it comprises multiple neuroanatomical structures. CNS sends
a signal to the SA node in order to adjust to physiological
arousal, it’s also responsible for responding and adapting
to environmental changes (38). The structures of the brain
influences the activity of the heart. In contrast to the theory
that SNS activity increases during stress, LFnu decreased for
some subjects during instances of stress. In order to efficiently
classify stress and detect the event, they implemented a SVM
algorithm which included an optimal hyperplane to separate
subjects whose LFnu increased and decreased during stress (38).
There was also a contradictory decrease in LF, LF/HF ratio during
stress phases. Using time domain HRV features such as: HR,
RR-interval and SD1/SD2, they were able to classify stress with
80% accuracy through Random forest (RF) classifier. SCL, SCR
and rise time extracted from EDA resulted in 77% accuracy
using RF. Stress labels were obtained by comparing the results
to a baseline for both experiments (38). These features used to
predict stress are not consistent with the theories associated with
ANS activity, stress was classified by comparing the results to
a baseline signal and HR which always varies was a prominent
predictor of stress in this scenario. Classification report which
includes TN, TP, FN, FP accuracy behind stress detection would
better indicate the reason behind the contradictory results, which
varies from standard theories associated with ANS activity (such
as: a decrease in contrast to an increase in LF, LF/HF ratio
during times of stress). RF is a bagging algorithm which also
implements an ensemble of decision trees much like Adaboost.
In contrast to most strong learners which are prone to overfitting
and memorizing the data, bagging algorithms reduce variance in
a data which improves accuracy and reduces overfitting. Most
models perform more effectively if features with linear pattern
are utilized, RF is a curve based algorithm which can efficiently
adapt to non-linear parameters. It also requires a longer training
period and a lot of computational power to handle the excessive
number of decision trees used (A standard classification process
for a RF algorithm is shown in Figure 8).
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FIGURE 8 | A standard classification process for a RF algorithm. Source:

Montantes (78).

6.3. Classifying HRV From ECG and EDA
Features Through ML Classification
Algorithms
Posada and Bolkhovsky (79) conducted a study to assess
Psychomotor vigilance (PVT-measures reaction time), auditory
working memory (n-back task), visual search (ship task) through
ECG, EDA features, and ML classification algorithms. Lack of
sleep due to stress reduces vigilance and the ability of working
memory regresses with prolonged lack of sleep. The detection
of the activities indicated that PVT, auditory working memory
and ship search all had different effects on ANS. SCL, TVsym,
and LFn which are SNS biomarkers were the most significant
differences associated with EDA and ECG activity during each
task. Data was classified using linear kNN, linear SVM, LDA
with 66, 66, and 62% classification accuracies, PVT along with
ship search was classified with 69% classification accuracy using
kNN, while working memory was classified with 69% accuracy
using LSVM. The study was conducted upto 24 h, classification
after 20 h indicates that ANS activity diminished after 20 h
of wakefulness, but surprisingly recovered after 24 h (79). In
order to improve the low classification accuracy, feature selection
would be an appropriate method to reduce the number of
features which are futile. Dimensional reductionmethods such as
PCA can also be used to classify the data with the most valuable
features, which can also reduce model complexity, improve
classification accuracy and reduce overfitting (80). Training data
is almost of no importance for KNN algorithms, it is an instance
based algorithmwhich cannot derive any discriminative function
from the training data, large number of features makes it difficult
for the algorithm to derive the distance between each dimension,
which also results in a low accuracy. Noisy data-set also hinders
performance, outliers and missing data have to be optimized
to improve performance. Noisy data also negatively impacts
SVM, making feature engineering an essential component to
improve performance (81). Noise can produce flawed data which
is random and is not normally distributed, if the data set is non-
gaussian, it negatively impacts LDA algorithms ability to preserve

the complex structure data needed for an efficient classification.
Data wrangling is often utilized prior to training/testing a
dataset, to minimize outliers, missing data and transform the
data-set in order to make it more appropriate, which would
make it more efficient and effective for classification using
unsupervised models (82). There is a recurring trend between
low classification accuracy and irrelevant features, although
more data may improve classification accuracy, the appropriate
feature selection method is capable of significantly improving
the efficiency of the results (83). Ideally more features result in
better accuracy, but Taye et al. (72) demonstrated that innovating
features based on the specific domain is a much more efficient
approach. They were able to reduce 7 dimensions and improve
classification accuracy by 26.6% using a novel QRS complex
feature engineering method. This is another example of reducing
the computational costs while improving the efficiency of the
methods. Additional research which combines such methods
with wearable devices will allow researchers to dive deeper and
further reduce the gap which prevents remote monitoring and
diagnosis of HRV from being accessible to everyone in today’s
healthcare. COVID-19 has really addressed an urgent need for
remote health solutions, researchers can revolutionize healthcare
by combining ML with HRV in order to reduce stress and
cardiac pathologies.

6.4. HRV Associated With Affective
Computing, Classified Through NN and
SVM
Mobile devices which can monitor health accurately can
positively impact a large population of people. This research
is targeting more than just CVD and stress, it is expanding to
cancer detection, muscle injuries, circadian rhythm and affective
emotion (emotion, stress due to age and gender). Rukavina et al.
(84) analyzed physiological signals obtained through EMG, EDA,
ECG and respiration to distinguish between various affective
states based on gender and age. NN and SVM reported the
highest classification accuracy using features Mean, Std, fEMG,
low valence low arousal (LVLA), low valence high arousal
(LVHA), high valence low arousal (HVLA), high valence high
arousal (HVHA), and neutral. Mean and std were analyzed to
detect skin conductance associated with SNS activity. Valence
and arousal state were scrutinized by studying the correlation
between neural states and emotions. Performance was evaluated
using the leave one out cross validation (LOOCV) method. The
classification accuracy was blunted by a small dataset, which can
be improved through more trials and additional features (84, 85).

Pathoumvanh et al. (86) revealed that ECG biometrics are
different from affective states, they were able to classify HRV
conditions with 97% classification accuracy and also achieved
80% robustness study accuracy, using only a single beat ECG
feature and LDA algorithm. LDA is a simple model that predicts
labels based on the highest probability obtained through Bayes
theorem. Fisher’s linear discriminant analysis is an extension of
LDA which can reduce RMS dimensions and classify data with
higher precision. Unlike DT, it’s not prone to overfitting (87).
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FIGURE 9 | Process of transforming data in a deep learning ELM algorithm.

Source: Terry-Jack (88).

6.5. Stress Induced Through VR
Environment and Classified Using Extreme
Learning Machine (ELM)
Cho et al. (26) were able to classify stress with 95% accuracy
using features obtained from three physiological signals (PPG,
ECG, EDA) through Kernel based Extreme Learning Machine
(K-ELM). K-ELM is based on a single hidden layer feedforward
neural network which generates input weights and hidden layer
biases, it requires less resources to classify results with high
accuracy and leave one out cross validation (LOOCV) was used
to evaluate the classifier. KELM is capable of discriminating
between classes with high efficiency due to its ability to
transform data which is hard to distinguish into linearly separable
data while utilizing specific features (as shown in Figure 9).
However, the features are selected randomly without utilizing
an established algorithm like CNN, which makes the results
unreliable and random for a specific dataset. The algorithmmight
not effectively classify other data-set as efficiently. LOOCV takes
advantage of one feature to evaluate model performance, it has
a high variability despite classifying labels with high accuracy.
LOOCV also requires a lot of time to fit and evaluate the
data. The experiment unfolds the possibilities which exist for
wireless monitoring of stress, accurate results produced from
HRV through a wireless device is an indication of phenomenal
solution that is yet to be produced in health care due to the
lack of efficiency, this is an indication of many possibilities that
may arise within the next decade for wireless monitoring of HRV
and human health through the use of machine learning and
wearable devices.

6.6. Convolutional Neural Network (CNN)
Used to Detect Stress Through HRV
Whether it involves stress, CVD or drowsiness detection, one
of the limiting factor that exists within most innovations is
their inability to perform during real-time applications. He et al.
(24) was able to classify cognitive stress using features which
were observed in real-time through ultra short 10 s windows.
They utilized Lomb scargle periodogram to obtain the PSD from
the detected R-peaks. CNN was used to understand the 0.04–
20 Hz band from the PSD and extract the relevant features
from the input layer. CNN utilizes automatic feature learning
for fast and accurate analysis of cognitive stress through HRV
features. CNN is similar to other deep learning methods, but
it also consists of a convolutional layer in its hidden layer
(process flow chart shown in Figure 10). It can automatically
capture the relevant information from the input unlike other
feedforward neural networks, it can reduce the image features to
the point where the information becomes very simple to process
without losing valuable features required to make an accurate
prediction. A typical architecture for HRV classification using
a CNN algorithm is shown in Figure 11. In order to classify
stress using data from the PSD, 10 layers were utilized which
included an input layer of size 799 × 1 × 1, a convolutional
layer that consisted of 6 filters with size 4 × 1 × 1, batch
layer, RELU layer, dropout layer, 3 fully connected layers with
batch normalization between them, softmax layer and an output
layer. Batch normalization layer normalizes the data, reduces
overfitting, and allows each layer to learn independently. RELU
layer is essential for effectively updating the data with each
iteration. Dropout layer is used to reduce overfitting. Fully
connected layers connect the information obtained after being
filtered with the output later, in order to classify the data.
Softmax layer allows for multiclass classification of the data.
CNN produced a 17.3% error rate, which was 7.2 and 32.6%
lower than SVM, using comB (combined) feature and LF/HF
ratio, respectively. CNN performed better than conventional
methods in terms of ER and FAR (false acceptance rate) (24).
CNN is really an extension of deep learning models which only
use fully connected hidden layers, it’s more effective due to its
ability to reduce errors through the convolutional layer. Unlike
most deep learning models, the convolutional layer allows the
model to adapt to the input data more effectively, the activation
depth significantly improves due the number of filters, resulting
in better classification (43). One of the biggest advantages of
CNN is its ability to predict labels with high accuracy using less
features than standard deep learning models. Overfitting is the
downside to all deep learning models, batch size and epochs
allow the model to update the weight and minimize error, but
such a method is also prone to overfitting especially if its a
smaller dataset. The development of CNN has made remote
monitoring of HRV much more effective and simpler. CNN
is a powerful algorithm which can be used to extract valuable
features from raw ECG signals obtained through a wireless ECG
sensor, and classify HRV and stress with a high accuracy of
90.19% (70). The results are biased, most CNN algorithms are
very prone to overfitting and memorizing the data, especially
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FIGURE 10 | A typical CNN architecture for stress classification using HRV parameters.

FIGURE 11 | An example of a CNN algorithm process flow chart. Source: Aishwarya (89).

if the data-set is very small. Although it can be combined with
wireless sensors to monitor heart rate and classify HRV from a
distance, further research should be conducted with 50 people
and larger datasets, in order to better verify the significance
of developed algorithms for remote monitoring of HRV. The
positive outcomes does hint that if researchers continue to
improve existing CNN algorithms and the efficacy of analyzing
data obtained through wireless sensors, remote monitoring of
HRV can make a huge impact on the lives of others who are
stressed due to work, suffering from cardiovascular diseases or
are incapable of going to a clinician for routine checkups (90).
The computational time complexity of convolutional layers is
0(n) = 0(

∑d
l=1 nl−1 · s

2
l
· nl · m

2
l
), where l represents the index

of the convolution layer, d represents the depth, nl represents
the number of filters in the l-th layer, nl−1 describes the number
of input channels, sl indicates the spatial size of the filter and
ml represents the spatial size of the output feature map (91). A
typical 1D convolutional layer has a computational complexity
of 0(n · k · d), further demonstrating the high computational
resources and time required for a basic CNN architecture
(92). Outside of HRV, there are numerous research conducted
to reduce the computational cost of CNN, which typically
compromises the output and classification accuracy (93). Inouchi
et al. (93) developed a functionally-predefined kernel which
significantly reduced the number of training parameters without
compromising the accuracy. Further contribution toward similar

methods catered toward HRV research can create a significant
change within the healthcare system, such as reducing the
number tedious hours needed from healthcare professionals and
improving patient outcomes while decreasing healthcare costs.

7. CONCLUSION

This article which presented various summaries and reviews
of the different applications associated with HRV research
emphasized that reduced HRV is associated with increased
morbidity and stress. Lower HRV is associated with increased
SNS activity, which increases HR and blood pressure, presenting
an immediate indication of the threat perceived by the ANS,
which reacts to maintain normal function of the body and keep
the body in a state of homeostasis. HRV in motion is less efficient
in comparison to many other research studies such as stress and
myocardial infarction. Numerous studies have indicated the lack
of accuracy associated with exercise and drowsiness detection,
this aspect of HRV research requires more attention and should
be improved, in order to prevent injuries which may occur
from performance fatigue near a sports competition or accidents
associated with drowsy driving. HRV research will continue to
expand due to its relevance in science, health and wellness of the
heart. ML algorithms, AI (artificial intelligence) and frequency
domain analysis of HRV can cause a huge impact in people’s lives
in a short period, if it is accurate, thus researchers go with the flow
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and improve these processing methods to improve lives/health of
patients, prevent possible road accidents and enhance the quality
of life.

7.1. Future Direction
HRV is a prominent topic concerning the activity of the heart
and the ANS, although research has been steadily increasing,
data analysis of HRV in motion is far from where it should
be especially concerning drowsiness. Vicente et al. (23) and
Georgiou et al. (21) have explained that HRV is hard to detect
in motion, whether it involves exercise or drowsy driving,
accuracy of HRV detection declines due to motion. Detection
method in motion is a concern and should be a priority for
improvement with regards to future research involving HRV.
Machine learning algorithms, frequency domain analysis have
been effective for stress analysis and remote monitoring of
cardiovascular diseases through HRV analysis. Expansion in
these domains of data analysis could provide effective/efficient
results that produce an accurate representation of a person’s
HRV, which is easy to compute and can analyse a lot of data at
once, making the detection process a lot smoother and quicker.
Machine learning can be utilized to improve prognosis, since it
can better assess medical records through logical algorithms in
comparison currents scoring tools, which utilize a generalized
thought process. CNN is a great algorithm that can effectively

predict pathologies from X-ray images, at a faster rate than
radiologists. Recent development also suggests that machine
learning algorithms can create an immense impact toward public
health, antedating infectious diseases and increasing the chances
of preventing a chronic outcome.
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