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Quantum interferometry uses quantum resources to improve phase estimation with respect to classical
methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on
three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing,
recently adopted for quantum applications. In particular, multiarm interferometers include ‘‘tritter’’ and
‘‘quarter’’ as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter,
respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized
by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information
obtained with classical fields in phase estimation. We also discuss the possibility of achieving the
simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives
to quantum enhanced sensing and metrology performed in integrated photonics.

Q
uantum metrology is one of the most fascinating frontiers of the science of measurement: the counter-
intuitive laws of quantum mechanics are exploited to maximize the amount of information extracted
from an unknown sample, beating the limits imposed by classical physics. The low decoherence of

photons, enabling the observation of quantum effects in an easier way, makes optical interferometry a promising
candidate for demonstrating quantum enhanced sensitivity. The estimation of an optical phase w through
interferometric experiments is indeed an ubiquitous technique in physics, ranging from the investigation of
fragile biological samples, such as tissues1 or blood proteins in aqueous buffer solution2, to gravitational wave
measurements3,4. Whereas optical interferometry relying on classical interference is intrinsically a single-particle
process, quantum advantages arise when quantum-correlated states of more than one particle are employed5,
such as Greenberger-Horne-Zeilinger (GHZ)6 and N00N7 states. N00N states, in particular, allow to saturate the
Heisenberg limit of sensitivity: the ultimate limit to the precision of a measurement imposed by the laws of
physics.

Generally, the quantum advantage over classical approaches increases with the number of particles involved in
the correlated probe state5. Two-photon N00N states can be produced deterministically simply by quantum
interference of two identical photons on a balanced two-mode beam-splitter. However, two-mode N00N states
with more than two particles are difficult to produce. Increasing the number of modes to more than two
represents an interesting possibility to extend the concept of multiparticle interferometry, as pointed out by
Greenberger et al.8. This requires multi-port devices, instead of simple two-mode beam-splitters, to build multi-
arm interferometers. Multi-port beam splitters can be potentially realized by properly combining several
balanced two-port beam-splitters and phase shifters9,10: such implementation has anyway tight requirements
on interferometric stability, making its effective realization challenging with bulk optics. In fact, the few experi-
mental realizations of such devices are reported on fiber-based11 or integrated-optics12 multi-mode devices; in
both cases the characterization was performed with only two-photon states. Multi-photon interferometry is,
indeed, still a widely unexplored field.

Times are mature to demonstrate multi-photon and multi-port devices. In fact, on the one hand in the last few
years the efficiency of quantum multi-photon sources have dramatically improved leading to several experiments
with up to 8 photons13. On the other hand, the advent of integrated quantum photonics have opened exciting
perspectives for the realization of scalable, miniaturized and intrinsically stable optical setups14. In particular, the
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ultrafast laser-writing technique15–18 has proved to be a powerful tool
for demonstrating new quantum integrated-optics devices, able to
perform quantum logic operations19 as well as two-photon quantum
walks20,21. This technique exploits nonlinear absorption of focused
femtosecond laser pulses to induce permanent and localized increase
of the refractive index in transparent materials. Waveguides are
directly fabricated in the material bulk by translating the sample at
constant velocity along the desired path with unique three-dimen-
sional (3D) capabilities.

In the field of quantum metrology, recent results have demon-
strated the possibility of using two-mode path-entangled states in
integrated structures for phase estimation below the Standard
Quantum Limit (SQL)2,22–24. Combination of all the above elements
would enable stepping into multi-photon/multi-port quantum met-
rology. However, the potentials of this approach have not yet been
investigated theoretically.

In this work we introduce the concept of 3D multi-photon inter-
ferometry. First, we propose novel geometries for integrated multi-
arm interferometers based on three-port (tritter) and four-port
(quarter) devices. Second, we theoretically study possible measure-
ment protocols, based on the injection of multi-photon Fock states in
this kind of multi-port devices, demonstrating relevant metrological
advantages in phase-estimation tasks. Our results are not merely
speculative since both the realization of such integrated multi-port
devices25 and the generation of multi-photon quantum states26

appear to be within reach of present state-of-the-art technology.

Results
Multi-arm interferometric schemes. A multi-arm interferometer
can be realized by cascading two multi-port beam splitters. In
particular, a three-arm interferometer is built by the combination

of two tritters and a four arm interferometer by the combination of
two quarters. In our approach the integrated-optics multi-port device
is devised as a 3D multi-waveguide directional coupler [Fig. 1 (a)-(b)],
a structure in which the waveguides are brought close together for a
certain interaction length and coupled by evanescent field. The feasi-
bility of such structures, in the case of three-ports (tritter), has already
been demonstrated by femtosecond laser writing25,27, albeit characteri-
zation has only been performed in a classical framework. Note that in
these compact multi-waveguide structures the interaction between the
different arms happens simultaneously, without the decomposition
into cascaded two-mode beam splitters. This is made possible by
the 3D capabilities of femtosecond laser micromachining, thus rela-
xing the strict requirements on path-length control of alternative
approaches.

The symmetric configuration of a tritter can be easily obtained by
adopting a triangular geometry, as shown in Fig. 1 (c). In this con-
figuration it is possible to obtain equal coupling coefficients, so that a
single photon entering in one input port has the same probability of
exiting from one of the three output ports. The symmetric config-
uration of a quarter can be achieved by adopting two possible solu-
tions. In the first one, the four modes are directly coupled, and the
symmetric condition can be obtained by appropriately tuning the
interaction length [Fig. 1 (d)]. Alternatively, an indirect geometry
may be exploited by coupling waveguides 1-4 through an ancillary
mode, as shown in Fig. 1 (e), and without any direct coupling
between them.

Output states. We start by considering the action of a single tritter
and of a single quarter. The action of these devices on an input state
jyæ is expressed by a unitary matrix U IIIð Þ U IVð Þ� �

, which maps the
input field operators a{i to the output field operators b{i according to

Figure 1 | (a) 3D structure of tritter. (b) 3-dimensional structure of quarter. (c) Geometry showing the direct coupling between the three modes of the

tritter. (d) Geometry showing the direct coupling between the four modes of the quarter. (e) Indirect coupling between the four modes of the quarter by

means of one ancillary mode. (f) 3-mode interferometer built by using two cascaded tritters. (g) 4-mode interferometer built by cascading two quarter

devices. (f)–(g) w: phase to be measured. y: additional phase for adaptive phase estimation.
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b{i ~
P

i,jU kð Þ
ij a{j , with k 5 III, IV9,10,28 (see Supplementary Material).

Let’s consider the Fock state j1, 1, 1æ, where i,j,lj i~ ij ik1
jj ik2

lj ik3
is

the input state in the tritter. By applying U IIIð Þ we obtain the output
state:

1,1,1j i?c 1,1,1f g 1,1,1j izc 3,0,0f g 3,0,0f gj i: ð1Þ

Here c1,1,1~{ei2p=3
� ffiffiffi

3
p

, c 3,0,0f g~ei4p=3
ffiffiffiffiffiffiffi
2=3

p
, and j{i, j, l}æ is the

symmetric superposition of three-photon states where (i, j, l)
photons exit in the three output ports. A similar result is obtained
for a quarter fed with a 1,1,1,1j i~ 1j ik1

1j ik2
1j ik3

1j ik4
state:

1,1,1,1j i?c 1,1,1,1f g 1,1,1,1j iz

c 2,2,0,0f g 2,2,0,0f gj izc 4,0,0,0f g 4,0,0,0f gj i,
ð2Þ

where c1,1,1,1 5 1/2, c 2,2,0,0f g~
ffiffiffi
6
p �

4, c 4,0,0,0f g~{
ffiffiffi
6
p �

4. In both
cases, we observe that some terms of the output states are
suppressed due to quantum interference. They correspond in
particular to the contributions {2, 1, 0} in the tritter case, {3, 1, 0,
0} and {2, 1, 0, 0} in the quarter one. This feature is a N-mode
analogue of the Hong-Ou-Mandel bosonic coalescence effect28–30.
The two devices can be exploited to generate maximally-entangled
N00N states in a post-selected configuration31.

N-modes interferometry. The 3D, N-port structure of tritter and
of quarter devices can be exploited to implement an integrated
N-modes interferometer. This can be realized by a chain of two sub-
sequent multiport beam-splitter, leading to a generalized Mach-
Zehnder structure [see Fig. 1 (f)-(g)]. The phase shifting could be
introduced for instance by adopting a microfluidic channel as re-
ported in Ref. 2,32. Let us now consider the 3-modes system obtained
with two tritter devices, and the action of a relative phase shift w in the
optical mode k3 inside the interferometer, which is described by the
operator Uw~exp {in3wð Þ, being n3 the photon number operator
for mode k3. The output probability distributions Pm,n,q(w) corre-
sponding to the detection of (m, n, q) photons in the three output
ports, are obtained by the overall evolution of the interferometer
U IIIð ÞUwU IIIð Þ acting on the input state. Let us consider again an
input Fock state j1, 1, 1æ; the obtained fringe patterns PF

m,n,q wð Þ,

symmetric for an index exchange (m, n, q), are reported in Figs. 2
(a)-(c). We observe the presence of interferometric patterns pre-
senting the sum of different harmonics up to cos(3w). Furthermore
we note that the PF

2,1,0 wð Þ term presents a sub-Rayleigh l/3 behavior
with a unitary visibility. These results suggest that the output state of
the interferometer, for a j1, 1, 1æ input state, presents nonclassical
features. Similar results can be obtained when a 4-modes interfero-
meter is fed with a j1, 1, 1, 1æ input state [Fig. 1 (g)] (see Supplementary
Material).

Nonclassicality criterion for sub-Rayleigh fringe patterns. In order
to formally address the nonclassicality of this setup we have extended
the criterion proposed by Afek et al. in Ref. [33] from a 2-modes to a
3-modes interferometer. This criterion sets an upper bound Ccl

m,n,q
for classical states on the N-fold visibilites of the Fourier expansion of
the fringe pattern distributions Pm,n,q wð Þ~

P?
k~0Ak cos kw{dkð Þ,

where N 5 m1n1q. The visibilities are defined as the ratio be-
tween the Fourier coefficient Am,n,q of the term oscillating as Nw
and the constant coefficient A0, i.e. Vm,n,q 5 jAm,n,q/A0j. The clas-
sical bound for Vm,n,q is obtained by calculating the probability
distribution of having (m, n, q) photons in the output modes (1, 2,
3) respectively, by feeding the interferometer with a classical
coherent state: ja1, a2, a3æ, where ai~ aij jeihi . Then, the N-fold
visibility Vm,n,q is maximized with respect to jaij and hi, leading to
max Vm,n,q~Ccl

m,n,q. In general, it can be shown that for any classical
state Vm,n,qƒCcl

m,n,q, since any classical state can be expanded in the
coherent states basis according to rC 5

Ð
d2a P(a)jaæÆaj with a well

behaved P(a). The corresponding N-fold visibilities VF
m,n,q for the

input Fock state j1, 1, 1æ are obtained from the probability distribu-
tions PF

m,n,q shown in Figs. 2 (a)-(c), leading to higher visibilities than
the classical limits, except for the PF

1,1,1 case [Fig. 2 (d)]. The same
criterion can be extended to a N-modes interferometer. We then
repeated the same analysis for the N 5 4 case when the interfero-
meter is built by two subsequent quarter devices [Fig. 1 (g)], showing
the presence of nonclassical behaviors in the fringe patterns [see
Fig. 2 (e)].

Phase estimation. The present interferometric configuration can be
adopted to perform a phase estimation protocol. In this context, the

Figure 2 | (a)–(c) Output fringe patterns PF
m,n,q of the 3-modes interferometer fed with a 1,1,1j i input state. (d) Diagram of the N-fold visibilities VF

m,n,q of

the output fringe patterns PF
m,n,q for a N53 interferometer with a 1,1,1j i input state, compared with the classical boundCcl

m,n,q. (e) Corresponding diagram

for the 4-modes case.
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aim is to measure an unknown phase shift w introduced in an
interferometer with the best possible precision by probing the
system with a N-photon state, and by measuring the resulting
output state. The classical limit is provided by the SQL, which sets
a lower bound to the minimum uncertainty dwSQL§1

� ffiffiffiffiffiffiffiffi
MN
p

which
can be obtained on w by exploiting classical N-photon states on two
modes and M repeated measurements34. Recently, it has been shown
that the adoption of quantum states can lead to a better scaling
with N, setting the ultimate precision to dwHL§1

� ffiffiffiffiffi
M
p

N
� �

, corre-
sponding to the Heisenberg limit5,35,36. Hereafter, we show that
the present integrated technology can lead to a sub-SQL perfor-
mance in the estimation of an optical phase, exploiting multi-mode
interferometry.

Quantum fisher information. In order to characterize the present 3-
modes interferometer fed with a j1, 1, 1æ input state, and analogously
the 4-modes case, we need to determine the quantum Fisher
information (QFI) HF

w of the output state37,38. This quantity sets the
maximum amount of information which can be extracted on the
phase w from a state %w according to the quantum Cramér-Rao
(QCR) bound: dw $ (MHw)21/2 37. The classical limit is provided by
the quantum Fisher information HC

w when a coherent state ja1, a2, a3æ
is injected into the interferometer. Note that the comparison between
the performances achievable with an input coherent state and an
input j1, 1, 1æ Fock state must be performed for the same number
of photons impinging onto the phase shifter. Furthermore, for a
coherent state input two different cases can be identified. (i) If an
external reference beam, providing an absolute reference frame for
the optical phase, is available at the measurement stage, the QFI is
calculated for a pure ja1, a2, a3æ input state: HC, ið Þ

w . (ii) If no reference
frame is available at the measurement stage (such as for photon-
counting detection), one needs to average the input state on a
random phase shift h common to all input modes leading to
HC, iið Þ

w . In absence of an external reference beam, an input state %
has to be replaced with the phase-averaged state %0~(2p){1 Ð 2p

0
dhU1

hU2
hU3

h%U
1{
h U

2{
h U

3{
h , where U i

h is the phase shift operator for
mode ki. The two conditions (i) and (ii) are equivalent for the j1, 1,
1æ probe, since this state has a fixed number of photons39. We then
evaluated the three quantities HC, ið Þ

w , HC, iið Þ
w , HF

w , and obtained that the
adoption of a j1, 1, 1æ probe state leads to quantum improved per-
formances. The same result is found for the 4-modes case, as shown
in Fig. 3 (a). We note that, while HC, ið Þ

w is fixed, the QFI achievable
with a Fock state input increases with the number of modes, leading
progressively to a greater advantage in phase estimation protocols.
Furthermore, no post-selection is needed to generate the required
probe state40.

Achieving the optimal bound. We now show that the QCR bound
provided by HF

w can be achieved by adopting a feasible and practical

choice of the measurement setup, consisting in a photon-counting
apparatus recording the number of output photons on each mode.
The detection apparatus can be implemented by splitting each output
mode in three parts by means of a chain of beam-splitters, and by
placing a single-photon detector on each part. The occurrence of 1, 2
or 3 simultaneous clicks of the detectors on the same mode
corresponds to the detection of 1, 2, 3 photons. For a fixed choice
of the measurement setup, the amount of information which can be
extracted on w is provided by the Cramér-Rao (CR) bound dw $
(MIw)21/2 37, where Iw is the Fisher information of the output proba-
bility distribution of the measurement outcomes. The results for IF

w
with the j1, 1, 1æ input state and photon-counting measurements are
reported in Fig. 3 (b). By comparing the trend of IF

w with the
corresponding QFI HF

w , we observe that the ultimate precision
given by the QCR bound can be achieved with this choice of the
measurement apparatus for w 5 0, 2p/3, 4p/3. An analogous result
is found for the N 5 4 case, where the optimal working points are
now w 5 0, p [Fig. 3 (c)].

Adaptive protocol. The obtained w-dependence of the Fisher
information Iw suggests that an adaptive protocol41 is necessary to
obtain optimal performances in the full phase range, that is, to
saturate the QCR bound for all values of w. To this purpose, we
consider the adoption of a three-step adaptive strategy where the
first two steps of the protocol are performed to obtain a rough
estimate wr of the phase w (more details on the protocol can be
found in the Supplementary information). The amount of measure-
ments performed in these steps is a small fraction of the overall
resources M, namely M1~M2~

ffiffiffiffiffi
M
p

. In the first step, a rough
estimate of the phase is obtained up to a two-fold degen-
eracy due to the symmetry of the interferometric fringes (w,4p/3 2
w). The second step is exploited to remove this degeneracy for the
estimate west. Finally, the third step consisting of M3 5 M 2 M1 2 M2

measurements is performed by sending the j1, 1, 1æ input state, and
the system is tuned to operate in the optimal regime wzy^2p=3ð Þ
by means of an additional phase shift y. At each step of the protocol,
the measurement outcomes are analyzed by a Bayesian approach and
assuming no a-priori knowledge on w42. The results of the numerical
simulation for M 5 105 are reported in Fig. 4, together with the
results for a numerical simulation of a one step non-adaptive
strategy. We observe that in the latter case, the uncertainty dw asso-
ciated to the estimation process resembles closely the CR bound
provided by the Fisher information IF

w . A better result is obtained
with the adaptive strategy, showing that the quantum Fisher
information is achieved, leading to sub-SQL performances in the
full phase interval. The choice of the Bayesian approach leads to an
unbiased estimation process, i.e., the estimated phase west converges
to the true value w (see inset of Fig. 4), and the error on the estimation
process can be directly retrieved from the output distribution for w43.

Figure 3 | (a) Comparison of the QFIs for the N52, N53, N54 interferometers fed with a Fock state HF
w a coherent state with an external phase reference

beam HC, ið Þ
w , and a coherent state without an external phase reference beam HC, iið Þ

w . (b)–(c) QFI HF
w and FI IF

w for (b) a 3-modes interferometer with a

1,1,1j i input state, and (c) for a 4-modes interferometer with an input 1,1,1,1j i state. The optimal working points are obtained when IF
w~HF

w .
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Two parameter phase estimation. Let us now consider a different
scenario. The 3-modes interferometer built with two cascaded tritters
proposed in this paper may be adopted to perform a two parameters
estimation process, consisting of the simultaneous measurement of
two optical phases. In this case, the reference wref is provided by the
optical mode k1, and the phases to be measured, w2 and w3, corre-
spond respectively to the optical modes k2 and k3 [see Fig. 5 (a)].
In order to evaluate the maximum precision achievable in the two
parameter problem, it is necessary to extend the concept of quantum
Fisher information to the multiparameter case44. Indeed, it is possible
to define a quantum Fisher information matrix (QFIM) Hmn

corresponding to the set of parameter l 5 (l1, …, ln), which in

the pure state case ylj i~e{i
P

mGmlm y0j i is defined in terms of the
set of generators G 5 (G1, …, Gn) for the parameters l. The error on
the single parameter lm for a fixed value of the other parameters ln,
with n ? m, is bounded by the inequality: dlm $ [(H21)mm/M]1/2. When
performing the simultaneous estimation of the set of parameters l, the
sum of the variances is bounded by the multiparameter Cramér-Rao
inequality:

P
mVar lm

� �
§Tr H{1½ �=M.

We now consider as input state a coherent state jaæ with Ænæ 5 3,
which defines the standard quantum limit for a N 5 3 photon probe.
As for the single parameter scenario, it is necessary to evaluate
the quantum Fisher information matrices both (i) in presence of
an external phase reference HC, ið Þ

w2,w3
and (ii) in absence of an external

phase reference HC, iið Þ
w2,w3

. The corresponding bounds for the sensi-
tivities after M measurements in the two cases are given by

dwC, ið Þ
m § M ~HC, ið Þ

wm

� 	{1=2
and dwC, iið Þ

m § M ~HC, iið Þ
wm

� 	{1=2
. When a

three photon state j1, 1, 1æ is injected into the interferometer, the
bounds for the parameters w2 and w3 are the same for both cases (i)

and (ii) leading to dwF
m§ M ~HF

wm

� 	{1=2
. The same analysis may be

performed in the case of a 4-modes interferometer, fed with a coher-
ent state of Ænæ 5 4 photons or with a Fock state j1, 1, 1, 1æ, where the
two parameters are now the phases w3 and w4 on modes k3 and k4 [see
Fig. 5 (b)]. The results are shown in Fig. 5 (c), showing that in absence
of a phase reference the adoption of Fock probe states can lead to
quantum enhanced performances in the measurement of two optical
phases. Furthermore, in full analogy with the one parameter case, a
greater advantange with respect to the classical strategies may be
progressively achieved by increasing the number of modes.

In the single parameter case, the quantum Cramér-Rao bound can
always be asymptotically achieved41 performing a suitable measure-
ment and choosing the right estimator. On the contrary, in the multi-
parameter case the bound for the statistical errors defined by the
quantum Fisher information matrix is not in general achievable45,46.
This depends on the fact that the optimal measurements for the
individual parameters may not be compatible observables. A neces-
sary condition for the achievability of the multiparameter quantum
Cramér-Rao bound is then given by the weak commutativity con-
dition: Tr[rl[Lm,Ln]] 5 0. Here, the Lm operators are the symmetric
logarithmic derivatives (SLD), which define the optimal measure-
ment and estimators for the individual parameters47. In our case, it
can be shown that (see Supplementary Material) for the 3-mode
interferometer injected by the j1, 1, 1æ input state the operators
{L2, L3} for {w2, w3} commute, thus satisfying the necessary condition
to achieve the quantum Cramér-Rao bound. The same result holds
for the 4-mode case. The next step to be investigated is the identifica-
tion of suitable measurements and estimators.

Discussions
The analysis performed in this work represents the first step in the
investigation of integrated quantum technology in view of the real-
ization of multiport optical beam splitters enabling novel multipho-
ton sensing schemes based on 3D interferometers. We investigated
the adoption of this technology to perform phase estimation proto-
cols leading to quantum-enhanced performances. We provided and
simulated a full protocol for sub-SQL phase measurements, by
exploiting Fock input states and photon-counting detection, thus
not requiring any post-selection for the generation of the probe state.
We also discussed the application of the same multimode structure
for multiparameter estimation purposes. The present technology is
expected to lead to the development of new phase estimation proto-
cols able to reach Heisenberg-limited performances31 and to open a
new scenario for the simultaneous measurement of more than one
optical phase. Indeed, the present approach can be adopted as an

Figure 4 | Results for the phase estimation error dw of a numerical
simulation with M5105 repeated measurements with the three modes
interferometer of Fig. 1 (f). Blue circular points: dw for the adaptive

protocol as a function of w. Blue solid line: QCR bound given by HF
w . Red

cross points: dw for the non-adaptive protocol. Red dashed line: Fisher

information IF
w , providing the bound for the non-adaptive strategy. Shaded

region corresponds to sub-SQL performances achievable with quantum

resources. Inset: plot of the difference between the true value w and the

estimated value west obtained with the adaptive protocol.

Figure 5 | (a)–(b) Schemes for two parameters phase estimation with the 3- and 4-modes integrated interferometers. (c) Comparison between the

effective quantum Fisher informations ~HC, ið Þ
wm , ~HC, iið Þ

wm , ~HF
wm

� 	
for the two-parameters problem when the interferometer is fed with Fock states or coherent

states.
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accessible test bench to investigate theoretically and experimentally
the still unexplored scenario of multiparameter estimation. Further
perspectives may lead to the application of this multiport splitters in
other contexts, such as quantum simulations48, linear optical com-
puting49 and nonlocality tests50.
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