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Flexible, adaptive behavior is thought to rely on abstract rule representations within lateral
prefrontal cortex (LPFC), yet it remains unclear how these representations provide such
flexibility. We recently demonstrated that humans can learn complex novel tasks in sec-
onds. Here we hypothesized that this impressive mental flexibility may be possible due
to rapid transfer of practiced rule representations within LPFC to novel task contexts. We
tested this hypothesis using functional MRI and multivariate pattern analysis, classifying
LPFC activity patterns across 64 tasks. Classifiers trained to identify abstract rules based
on practiced task activity patterns successfully generalized to novel tasks. This suggests
humans can transfer practiced rule representations within LPFC to rapidly learn new tasks,
facilitating cognitive performance in novel circumstances.
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INTRODUCTION
The ability to flexibly adapt to novel circumstances is a fundamen-
tal aspect of human intelligence (McClelland, 2009; Cole et al.,
2010b). Its profound importance for daily life is made clear by
the substantial debilitation of individuals lacking this capacity
(Burgess, 1997; Gottfredson, 2002). For instance, individuals with
lesions in lateral prefrontal cortex (LPFC) have difficulty with gro-
cery shopping and other common errands, especially when novel
and complex (Shallice and Burgess, 1991). Among the neurologi-
cally unimpaired, measures of fluid intelligence – also associated
with LPFC (Duncan, 2000; Burgess et al., 2011) – test for the ability
to solve complex novel puzzles, and are able to predict important
life outcomes such as academic and job performance (Blair, 2006;
Gottfredson and Saklofske, 2009).

Despite its considerable importance, it is not understood
exactly how the human brain allows for this kind of rapid learning
of complex novel tasks (i.e., new multi-rule procedures). One pos-
sibility is that this ability relies upon the specific coding scheme
used by LPFC. For instance, a compositional scheme of rule repre-
sentation – in which new task representations can be constructed
from different combinations of familiar rule representations –
would allow for rapid representation of a wide variety of novel task
states within LPFC. Rather than having to learn each complex set
of task rules from scratch, a compositional coding scheme could
allow LPFC to transfer skills and knowledge tied to constituent
familiar rules into new task contexts (i.e., unique combinations
of constituent rules) to vastly improve task learning. For example,
rather than having to learn the task “If the answer to ‘is it sweet?’ is
the same for both words, press your left index finger” all at once,
compositional representation could allow recent practice assessing
sameness of decision outcomes (the SAME rule) and, separately,
practice with judging the sweetness of objects from memory (the
SWEET rule) to facilitate learning this novel task.

So far, evidence for compositional representation within LPFC
has been limited. Non-human primate studies suggest that LPFC
representations are conjunctive – unique to each rule rather than
compositionally building upon previously learned rules (Warden
and Miller, 2007, 2010). Similarly, a prominent theory of LPFC
representation emphasizes the fully adaptive nature of represen-
tation within LPFC (Duncan, 2001), based on observations that
neurons in non-human primate LPFC alter what they represent
depending on task demands (Asaad et al., 2000). Perhaps counter-
intuitively, a less flexible LPFC coding scheme – in which rules
are represented statically and used to compositionally build com-
plex task representations – might facilitate cognitive flexibility by
allowing knowledge and skill developed with the constituent rules
to rapidly transfer to complex novel tasks.

A recent study suggests that in contrast to non-human pri-
mates, human LPFC may represent complex tasks compositionally
(Reverberi et al., 2011). However, Reverberi et al. (2011) used com-
plex tasks composed of rules that were independent of one another
(e.g.,“If there is a house press left”+“If there is a face press right”),
such that the complex task representation did not require any inte-
gration of the rules. Task rules can be considered integrated if the
outcome of one rule influences implementation of another rule.
Without integrated rules, it remains unclear if Reverberi et al.
(2011) demonstrated compositional representation within LPFC
in a non-trivial way, or rather simply as the consequence of simul-
taneous independent representation of multiple non-interacting
rules.

Here we used complex tasks composed of integrated rules
to demonstrate compositional representation within LPFC. Fur-
ther, we demonstrate a unique benefit of compositional cod-
ing: the ability to transfer practice with rules to facilitate rapid
learning of complex novel tasks composed of those rules. We
show transfer both behaviorally (demonstrating faster novel task
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learning after rules are practiced) and in the brain (demonstrat-
ing practiced LPFC rule activity patterns are present during novel
tasks).

Each trial of our cognitive paradigm (Cole et al., 2010a)
involved three distinct rules that had to be successfully integrated
with each other to achieve accurate task performance (Figure 1).
For instance, in the task “SWEET–SAME–LEFT INDEX” partic-
ipants must decide if two objects are sweet and press their left
index finger if they are (left middle finger otherwise). Thus, for
this task, the first (semantic) rule specifies that two words (e.g.,
“grape” and “apple”) must each be categorized as sweet or not,
with the outcome of these semantic categorizations used by the
second (decision) rule to decide if the two words have the same
semantic categorization or not. Finally, the third (response) rule
specifies which finger is used to indicate if the decision rule is sat-
isfied. Importantly, there must be some integration of the rules
(i.e., they must be coordinated and influence each other) as each
of these rules depends on the others (e.g., the decision rule cannot
elicit a response without inputs from the semantic rule and outputs
to the response rule). We were most interested in decision rules
given that they are likely the most abstract rule type (they do not
depend directly on stimuli or directly influence motor responses)
and they are the most highly integrated of the rule types (they
receive information from semantic rules and send information to
response rules).

Participants learned each of the rules in one of four tasks (coun-
terbalanced across participants) during a 2-h practice session, such
that practice for each rule occurred only within a single static task

FIGURE 1 | Cognitive paradigm to investigate rapid instructed task

learning. Participants performed 64 distinct tasks in randomly intermixed
short blocks (see Cole et al., 2010a for more details). Tasks were
conceptualized as collections of rules. Each word was presented separately,
but they are grouped here to facilitate illustration. Each task consisted of a
decision rule (highlighted here in bold, though not for participants) and a
semantic rule + response rule combination. Thus, each of the four decision
rules could appear in any of 16 task contexts (four decision ∗ 16
semantic/response = 64 tasks). Four of the tasks (counterbalanced across
participants) were practiced for 2 h in a prior session. For all participants
there was one practiced task per decision rule, and no overlap between the
semantic and response rules across practiced tasks.

context (i.e., a fixed combination with other rules). Participants
were then asked to perform these practiced tasks as well as 60
completely novel tasks (i.e., novel rule combinations) during a
functional MRI session. Their impressive accuracy performing
the novel tasks (>90%) led us to hypothesize that, consistent
with our compositionality hypothesis and despite the static nature
of the rule practice, each participant’s practiced rule represen-
tations transferred to novel task contexts to facilitate novel task
performance.

We investigated this hypothesis using functional MRI with mul-
tivariate pattern analysis (MVPA; Norman et al., 2006), a method
that can identify distributed activity patterns consistently associ-
ated with particular task representations (Woolgar et al., 2011). We
began by applying MVPA to test for compositionality of LPFC rule
representations,assessing if the same activation patterns differenti-
ate rule representations despite changes over 64 distinct novel rule
combinations. Next, we used MVPA to test for transfer of rules
from practiced-to-novel tasks, assessing if the same LPFC activa-
tion patterns that differentiate practiced task rule representations
might also differentiate these same rules when performed in novel
task contexts. Successful MVPA classification performance in this
analysis would demonstrate the extent to which decision rules
exhibit transfer of highly practiced rules to novel task contexts,
possibly generalizing the benefits of practice to novel circum-
stances and helping to explain the extensive adaptability of human
intelligence.

MATERIALS AND METHODS
PARTICIPANTS
We included 14 right-handed participants (seven male, seven
female), aged 19–29 (mean age 22) in the study. Participants were
recruited from the University of Pittsburgh and surrounding area.
Participants were excluded if they had any medical, neurological,
or psychiatric illness, any contraindications for MRI scans, were
non-native English speakers, or were left-handed. All participants
gave informed consent. Theoretically and methodologically dis-
tinct analyses of these data were included as part of Cole et al.
(2010a).

MRI DATA COLLECTION
Image acquisition was carried out on a 3-T Siemens Trio MRI
scanner. Thirty-eight transaxial slices were acquired every 2000 ms
(FOV: 210 mm, TE: 30 ms, Flip angle: 90˚, voxel dimensions:
3.2 mm3), with a total of 216 echo-planar imaging (EPI) vol-
umes collected per run. Siemens’s implementation of generalized
autocalibrating partially parallel acquisition (GRAPPA) was used
to double the image acquisition speed (Griswold et al., 2002).
Three-dimensional anatomical MP-RAGE images and T2 struc-
tural in-plane images were collected for each subject prior to
functional MRI data collection.

TASK PARADIGM
The task paradigm combines a set of simple rule components in
many different ways, creating dozens of complex task sets that
are novel to participants (Figure 1). The paradigm was presented
using E-Prime software (Schneider et al., 2002). Novel and prac-
ticed task blocks (each consisting of task encoding and three trials
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of a single task) were randomly intermixed across 10 functional
MRI runs (six novel and six practiced blocks per run).

Four semantic rules, four decision rules, and four response
rules were used in the paradigm. The semantic rules consisted
of sensory semantic decisions (e.g., “is it sweet?”). The decision
rules specified (using logical relations) how to respond based on
the semantic decision outcome(s) for each trial. The SAME rule
required that the semantic answer was the same (“yes” and “yes”
or “no” and “no”) for both words, the JUST ONE rule required
that the answer was different for the two words, the SECOND rule
required that the answer was “yes” for the second word, while the
NOT SECOND rule required that the answer was not “yes” for
the second word. The motor response rules specified what but-
ton to press based on the decision outcome. The task instructions
made explicit reference to the motor response for a “true” out-
come, while participants knew (from the practice session) to use
the other finger on the same-hand for a “false” outcome.

Since the tasks consisted of one rule from each of the three
categories, combining the rules in every possible unique combina-
tion creates 64 distinct tasks. Of these tasks, four (counterbalanced
across participants) were practiced (30 blocks, 90 trials each) dur-
ing a 2-h behavioral session 1–7 days prior to the neuroimaging
session. These “practiced” tasks were chosen for each subject such
that each rule was included in exactly one of the four tasks, ensur-
ing that all rules were equally practiced. During the neuroimaging
session, half of the blocks consisted of the practiced tasks and half
of novel tasks. Novel and practiced blocks were randomly inter-
leaved, with the constraint that exactly six blocks of each type
(practiced, novel) occurred within every run. With 10 runs total
per participant, each novel task was presented in one block and
each practiced task was presented in 15 blocks.

Each task block consisted of two phases: encoding and trial. The
encoding phase consisted of an initial cue indicating the upcoming
task type: novel (thin border) or practiced (thick border), fol-
lowed by three rule cues indicating the rules making up the task.
The order of these rule cues was consistent for each participant but
counterbalanced across participants. Asterisks filled in extra spaces
around each rule cue to reduce differences in visual stimulation
across task rules. The three rule cues appeared sequentially, with
each presented for a duration of 800 ms followed by a 200-ms delay.
The encoding period was then followed by a 2- to 6-s delay period
to allow the construction of the relevant task representation.

The trial phase began after the encoding phase, and was com-
prised of a sequence of three task trials (each separated by a
randomly jittered 2–6 s inter-trial interval). Each task trial con-
sisted of a pair of target stimuli presented in sequence (again
with 800 msec duration, 200 msec inter-stimulus interval). Stim-
uli were normed by a separate group of participants (21 male,
33 female). Word stimuli were included in the neuroimaging
experiment with exactly two category questions; one in which
the norming group answered “yes” over 75% of the time and
one in which they answered “no” over 75% of the time. Forty-
five stimuli were included per semantic category. Each stimulus
was presented eight times (50% in a “yes” context, 50% in a “no”
context) across both the behavioral practice (50%) and scanning
(50%) sessions.

ROI-BASED ANALYSIS: IMAGE PROCESSING
Image preprocessing was carried out in AFNI (version 2009-
12-31). The images were slice-time corrected, motion-corrected
(realigned), and detrended by run (using a first order polynomial
to remove linear trends). The voxels were kept at the acquired
size of 3.2 mm × 3.2 mm × 3.2 mm. The images were not spatially
normalized, nor smoothed.

Temporal compression (Mourão-Miranda et al., 2006) to one
summary volume per block was performed by averaging the
volumes that were judged, based on a canonical hemodynamic
response to contain the most signal. Specifically, we averaged the
image volumes corresponding to the time period of 4 s (2 TR)
after block onset to 8 s (4 TR) after block offset (i.e., after the final
trial of the block). Note that the second TR always corresponded
to 4 s after block onset because block onset was time-locked to
image acquisition. More images were averaged for some blocks
than others due to variable block duration. Repeating the analy-
ses with slightly different choice of volumes to average (e.g., using
the same number of volumes from every block) did not apprecia-
bly alter the results; nor did using parameter estimates (β values)
instead of averaging.

To examine the activity selective to the encoding phase we cre-
ated a separate summary volume that consisted of the first two
volumes included in the whole-block temporal compression (at
4 and 6 s after block onset; i.e., 3–6 s following the first encoding
screen) were averaged to summarize activity occurring during the
encoding phase. These encoding phase summary volumes likely
had lower signal-to-noise than the summary volumes for the whole
block, since fewer volumes were averaged.

The summary volumes were subjected to a preprocessing step
that normalized activation values. Specifically, each summary vol-
ume was z-normalized across the voxels in each ROI, such that
every summary volume and ROI had a mean activation level of
0 and an across-voxel variance of 1. This form of normalization
ensures that the mean activation level of the voxels in each ROI
in each block is equal, so that ROI-level differences in activation
between the conditions cannot positively bias the classification.
This may help to rule out the effects of mean differences in activity
due to differences in difficulty that may be present across decision
rules (e.g., between the SAME rule and the other rules).

The LPFC region of interest was defined anatomically for each
participant using automated FreeSurfer (version 4.2) gyral-based
segmentation (Desikan et al., 2006). LPFC was defined here as the
anterior and posterior middle frontal gyrus (i.e., the dorsal and
anterior LPFC) along with the pars triangularus and pars oper-
cularis (i.e., the ventral LPFC). These masks were dilated by one
voxel (3.2 mm) to help account for any misalignment between the
anatomical and function images. The post-central gyrus (postCG;
i.e., the somatosensory cortex) was included as a control ROI,
given the use of motor responses. The post-central gyrus was cho-
sen instead of the nearby precentral gyrus to reduce the chance
that LPFC and the control region would overlap.

All non-zero-variance voxels in each ROI mask were included;
no further feature selection was performed. Since the images were
not spatially normalized, the number of voxels included in each
ROI was different for each participant, as summarized in Table 1.
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Table 1 | Number of voxels in each ROI.

ROI Mean SD Maximum Minimum

LPFC 1909.8 282 2490 1579

Left LPFC 956.3 144 1245 795

Right LPFC 953.5 143.7 1245 784

Left postCG 278.6 34.6 319 192

Right postCG 261.8 38.6 328 206

Ranges are given since the volumes were not spatially normalized to an atlas, and so the number of voxels in each ROI varied across participants.

Note that there was no significant correlation between ROI size and
classification accuracy (r = 0.15, p = 0.59, N.S.; based on LPFC
four-way novel → novel classification accuracies).

ROI-BASED ANALYSIS: CLASSIFICATION AND STATISTICAL TESTS
Two different types of analyses were performed: (1) determining
classification accuracy for the four decision rules, using only novel
task blocks for training and testing; (2) determining classification
accuracy using practiced task blocks for training and novel task
blocks for testing.

The ROI-based classification and statistical analyses were per-
formed in R (version 2.11.1, R Foundation for Statistical Comput-
ing) using custom-written scripts. In all cases classification was
performed using support vector machines, with a linear kernel and
the cost parameter fixed at 1 (implemented in the R e1071 pack-
age interface to LIBSVM), which are typical choices for fMRI data.
The classifications were performed within-subjects, fitting a clas-
sifier to each individual participant and averaging the accuracies
across participants. Average classification accuracy across partic-
ipants (proportion correct) was the outcome measure. Four-way
classification was performed (since there were four rules of each
type), followed by pair-wise classification performed to identify
which individual rules could be distinguished. The four-way classi-
fications used the standard“one-against-one”LIBSVM multi-class
approach (Hsu and Lin, 2002).

For the first analysis – training and testing on novel task blocks
only – fivefold cross-validation was used (leave-three-out parti-
tioning) when selecting blocks for the testing set. The time between
adjacent trials, random trial order, and temporal compression
makes it unlikely that temporal dependencies inflated the results
(see Etzel et al., 2011 for additional discussion of these issues).
There were no missing trials, so 10 unique fivefold cross-validation
partitionings were randomly generated and used for all classifi-
cations and permutation tests; accuracies for each subject were
averaged over these 10 repetitions.

For the second analysis – when training on practiced task blocks
and testing on novel blocks – all practiced trials were used as the
training data and all novel as the testing. Since this partition-
ing is unique, no repetitions were needed for cross-validation or
permutation testing.

Significance was calculated by permutation testing (Golland
and Fischl, 2003; Etzel et al., 2009). Non-parametric statistical test-
ing was chosen to provide a stringent test despite the small number
of subjects and the possibility of skewed distributions. The permu-
tation test was performed by repeating each analysis 1000 times,
randomly permuting the data labels each time. The significance

was calculated as the proportion of permuted data sets classified
more accurately than the true data. When the accuracies were
calculated by averaging over repetitions (to compensate for the
randomness in partitioning for the novel-only classification) the
permuted-label data sets were classified using the same examples
as the true-label data sets, with the accuracy for each permuted-
label set averaged across the repetitions in the same manner as the
true data. Since 1000 permutations were used, the lowest p-value
possible (if the true-labeled data was classified more accurately
than all permuted-label datasets) is 0.001. A significance threshold
of p < 0.05 was used. Significance thresholds accounted for mul-
tiple comparisons by using the logic of Fisher’s least significant
differences, since all LPFC ROIs tests were subtests of the statis-
tically significant block-level four-way decision rule classification
in LPFC.

SEARCHLIGHT-BASED ANALYSES
Linear support vector machines were used to classify functional
MRI activity patterns in 9.6 mm (three voxel) radius “searchlight”
spheres surrounding each voxel (Kriegeskorte et al., 2006) in the
anatomical LPFC ROI using PyMVPA (version 0.4.4; Hanke et al.,
2009). Temporal compression was performed using general linear
model parameter estimates from fitting a canonical hemodynamic
response function to each block separately. The activation values of
the voxels making up each searchlight were z-normalized in order
to remove any mean activation effects (such as might originate
from subtle differences in difficulty across the task rules). Four-
way classification (of the four decision rules) was performed in
each searchlight sphere, separately for each participant. Classifica-
tion was performed by training on all practiced blocks and testing
on all novel blocks (similar to one of the analyses performed on
the ROI as a whole).

The resulting statistical maps of classification accuracies were
then spatially normalized to Talairach atlas space and smoothed
at 6 mm FWHM. Each voxel’s accuracy value was then compared
to chance (25%) using one-way one-sample t -tests. The result-
ing group map was then thresholded and cluster thresholded to
correct for multiple comparisons within the LPFC ROI. The clus-
ter size was estimated using AFNI’s AlphaSim with 10000 Monte
Carlo simulations using p < 0.01 uncorrected as the threshold
and smoothing parameter 8.59 mm FWHM. The resulting clus-
ter size correcting to p < 0.05 was 26 voxels (for the whole brain,
34 voxels). The AlphaSim smoothing parameter was estimated
empirically using AFNI’s 3dFWHMx for the group searchlight
map. Statistical results were mapped to the PALS-B12 surface using
Caret software (Van Essen, 2005).
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RESULTS
TESTING FOR RULE DIFFICULTY EFFECTS
We first calculated behavioral accuracy for each task rule to deter-
mine if differences in rule difficulty might confound potential
MVPA effects. Overall accuracy was 92% for novel tasks and
93% for practiced tasks. Mean accuracies for the decision rules
were: 89% (SAME), 95% (JUST ONE), 94% (SECOND), and 93%
(NOT SECOND). Mean reaction times for the decision rules were:
1331 ms (SAME), 1299 ms (JUST ONE), 1256 ms (SECOND), and
1363 ms (NOT SECOND). There were no statistically significant
differences in accuracy or reaction time between the rules (each
p > 0.05, Bonferroni corrected for multiple comparisons). Note,
however, that the SAME rule showed a trend toward having lower
accuracy (p = 0.03 when compared to JUST ONE and p = 0.04
when compared to SECOND, uncorrected for multiple compar-
isons). The smallest p-value for the reaction time comparisons
was SECOND vs. NOT SECOND, but this was not statistically
significant (p = 0.28, N.S.).

We further tested the possibility that differential rule difficulty
influenced our results by testing for correlations between LPFC
decision rule classification accuracy (practiced → novel) and dif-
ferences in behavioral difficulty. We calculated the correlations
using the six pair-wise comparisons between decision rules across
the 14 subjects (i.e., six data points per subject), such that 84 data
points were included per correlation test. Neither the correlation
between reaction times and classification accuracy (r = −0.03,
p = 0.78, N.S.) nor between behavioral accuracy and classification
accuracy (r = 0.006, p = 0.96, N.S.) were statistically significant.
This supports our conclusion that the MVPA classifications are
likely driven by rule identity rather than differences in rule diffi-
culty. As a complementary approach, we calculated a correlation
for each subject separately (six data points per subject) and used
an across-subject t -test with the (Fisher z transformed) correla-
tion values to assess statistical significance. This approach led to
the same conclusion (for accuracies: t = 0.23, p = 0.81, N.S.; for
reaction times: t = −0.75, p = 0.47, N.S.).

In the other task dimensions there were also only small differ-
ences in performance accuracy among the different rules. For the
response rules, mean accuracies were: 91% (L INDEX), 94% (L
MID), 94% (R MID), and 92% (R INDEX), with no significant
differences among the rules. For semantic rules the mean accura-
cies were: 88% (SOFT), 95% (LOUD), 94% (GREEN), and 92%
(SWEET). The only significant difference among the semantic
rules was between SOFT and LOUD (t = 3.0, p = 0.04, Bonfer-
roni corrected). There were no significant effects of reaction time
for any of the rule types. Together, these results suggest that there
were no strong or consistent differences in rule difficulty (e.g.,
one rule that is more difficult than all others) that could bias or
confound MVPA decoding.

TESTING FOR BEHAVIORAL TRANSFER FROM PRACTICED-TO-NOVEL
TASKS
Consistent with our hypothesis that novel task performance ben-
efited from practiced task transfer, we found a significant increase
in performance between the first“practiced”task trials and the first
“novel” task trials [13% increase; t (38) = 2.1, p = 0.046]. Practiced
task performance was assessed during each task’s first trial during

the practice session, while the novel task performance was assessed
during each novel task’s first trial during the test session.

Note that, due to a technical issue, subjects’performance during
the practice sessions was not recorded for the main experiment. We
therefore used a separate experiment (N = 28) including identical
tasks to test for behavioral transfer from practiced to novel tasks.
However, there were several advantages to conducting the analysis
using this alternate dataset. First, unlike the primary experiment,
the practiced tasks were each learned serially (in 144-trial blocks),
allowing us to disentangle the learning of the common task struc-
ture (e.g., familiarity with the kinds of stimuli used and the task
timing) from the learning of the task rules. We accomplished
this by excluding the first practiced task learned for each sub-
ject (in which the common task structure is also learned) from
the analysis of the first practiced task trials. Second, we limited
subjects’ preparation and response windows in this experiment in
order to assess if the behavioral transfer effect would be robust to
increased difficulty. This decreased novel task accuracy from 92%
(in the primary dataset) to 71%, suggesting our finding of a 13%
practiced-to-novel transfer effect is highly conservative.

RESPONSE AND SEMANTIC RULE CLASSIFICATIONS
We expected, based on the previous LPFC research described
above, that decision rule representations would be consistently
decodable by MVPA within LPFC. In contrast, we did not nec-
essarily expect semantic rules to be consistently decodable within
LPFC, since the semantic categories were based on distinct percep-
tual modalities and therefore might each be represented in distinct
parts of the brain (Goldberg et al., 2006a,b). Similarly, we did not
expect motor response rules to be consistently decodable within
LPFC, but rather in specialized motor and somatosensory areas.

Consistent with our expectations, right and left post-central
gyrus (postCG) could effectively classify response rules, while
LPFC could not (Table 2, training and testing on novel trials only).
Only the left LPFC was able to decode the semantic rules better
than chance (Table 3), though this appears to have been primar-
ily driven by the SOFT semantic rule rather than the entire set of
rules.

DECISION RULE CLASSIFICATIONS, NOVEL TASKS ONLY
We found that block-averaged LPFC (Figure 2A) activity dur-
ing the novel tasks (novel → novel analysis) could be used to
decode the four decision rules at accuracy significantly better than
chance (35% classification accuracy; chance = 25%; p ≤ 0.001;
Figure 2B). Most pair-wise decision rule classifications were also
significantly above chance (Table 4A), suggesting that the four-way
classification performance was not driven by a particular subset of
rules.

We reasoned that if LPFC activity truly reflects abstract/context-
independent rule representations then they should also be present
prior to task execution, during the task encoding phase. We thus
repeated the previous analysis, but performed the decision rule
classification using summary volumes spanning the encoding
phase only, rather than both the encoding and trial phases. Classifi-
cation accuracy was significantly greater than chance in left LPFC
(four-way accuracy 29%; chance = 25%; p = 0.008; Figure 2B),
with most pair-wise decision rule classifications also better than
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Table 2 | Response rule classification test results.

LPFC Left LPFC Right LPFC Left postCG Right postCG

Four-way Mean 0.252 0.264 0.258 0.45 0.449

p 0.469 0.152 0.289 0.001 0.001

L INDEX vs. R INDEX Mean 0.489 0.504 0.486 0.844 0.852

p 0.67 0.451 0.715 0.001 0.001

L INDEX vs. L MID Mean 0.55 0.548 0.539 0.53 0.528

p 0.023 0.035 0.064 0.118 0.143

L INDEX vs. R MID Mean 0.552 0.537 0.55 0.841 0.869

p 0.022 0.062 0.024 0.001 0.001

R INDEX vs. L MID Mean 0.496 0.501 0.509 0.79 0.816

p 0.558 0.462 0.368 0.001 0.001

R INDEX vs. R MID Mean 0.521 0.514 0.52 0.548 0.538

p 0.197 0.315 0.214 0.031 0.066

L MID vs. R MID Mean 0.499 0.504 0.516 0.821 0.863

p 0.517 0.427 0.25 0.001 0.001

Four-way and pair-wise tests of novel blocks. Only across-hand response comparisons (e.g., L INDEX vs. R INDEX) were expected to classify better than chance since

same-hand responses (e.g., R INDEX vs. R MID) were equally likely within each block. Values in italics are statistically significant (p < 0.05).

Table 3 | Semantic rule classification test results.

LPFC Left LPFC Right LPFC Left postCG Right postCG

Four-way Mean 0.262 0.278 0.242 0.252 0.229

p 0.201 0.026 0.725 0.449 0.949

GREEN vs. LOUD Mean 0.439 0.461 0.438 0.466 0.473

p 0.987 0.919 0.986 0.91 0.89

GREEN vs. SOFT Mean 0.535 0.556 0.51 0.517 0.489

p 0.087 0.019 0.363 0.262 0.666

GREEN vs. SWEET Mean 0.498 0.516 0.471 0.51 0.477

p 0.506 0.252 0.878 0.354 0.826

LOUD vs. SOFT Mean 0.587 0.584 0.565 0.526 0.495

p 0.002 0.001 0.004 0.172 0.579

LOUD vs. SWEET Mean 0.506 0.521 0.472 0.495 0.48

p 0.374 0.189 0.875 0.574 0.783

SOFT vs. SWEET Mean 0.543 0.531 0.547 0.525 0.498

p 0.041 0.095 0.029 0.16 0.543

Four-way and pair-wise tests of novel blocks. Values in italics are statistically significant (p < 0.05).

Table 4 | Lateral prefrontal cortex four-way and pair-wise decision rule classification results.

Four-way SAME vs. JUST ONE SAME vs. SEC. SAME vs. NOT SEC. JUST ONE vs. SEC. JUST ONE vs. NOT SEC. SEC. vs. NOT SEC.

A – DECISION RULE CLASSIFICATION, BILATERAL LPFC, NOVEL BLOCKS

0.34** 0.52 0.58** 0.58** 0.56** 0.59** 0.59**

B – DECISION RULE CLASSIFICATION, LEFT LPFC, NOVEL BLOCK ENCODING PERIODS

0.29** 0.56* 0.55* 0.57** 0.50 0.58** 0.52

C – DECISION RULE CLASSIFICATION, BILATERAL LPFC,TRAINED ON PRACTICED &TESTED ON NOVEL BLOCKS

0.31** 0.54* 0.53 0.56* 0.56** 0.55* 0.58**

(∗p < 0.05, ∗∗p < 0.01). Values in bold are statistically significant (p < 0.05).
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FIGURE 2 | Evidence of practiced-to-novel transfer of

context-independent decision rule representations within LPFC. (A)

Location of the anatomical LPFC ROI. (B) Classification accuracies across
the four rules using the anatomically defined LPFC ROI for whole novel
blocks, novel task encoding periods, and practiced → novel (classifier
trained on practiced blocks, tested on novel blocks). Significance was
assessed using permutation tests. Left and right LPFC accuracies were
significantly different for the novel → novel whole block (p = 0.006) and
practiced → novel (p = 0.02) classifications (based on permutation tests).
(C) Pair-wise classifications across the six between-rule comparisons
(practiced → novel ) underlying the four-way classifications.

chance (Table 4B). However, right LPFC classification accuracy
(26%) was not statistically above chance (p = 0.16). These results
support the conclusion that, at least in left LPFC, the activity
patterns reflect an abstract (both stimulus-independent and task-
independent) encoding of decision rules that is in place prior to
task performance.

TESTING FOR A RESPONSE AND DECISION RULE DISSOCIATION
We found that LPFC could be used to decode (novel → novel)
decision rules better than response rules (p ≤ 0.001). This could
reflect a real difference in rule representation in LPFC, or it could
result from noise or inconsistency of response rule representations.

FIGURE 3 | Lateral prefrontal cortex vs. postCG double dissociation.

Mean classification accuracy was significantly higher for decision vs.
response rules in LPFC, but was significantly higher for response vs.
decision rules in postCG (both right and left). This interaction was highly
statistically significant (p = 4.7e-07 for right postCG, p = 5.3e-06 for left
postCG). The individual points in the plot are the classification accuracies for
each subject separately.

However, in contrast to LPFC, we found that both left and right
postCG could decode response rules better than decision rules
(p ≤ 0.001). This double dissociation between LPFC and postCG
(ROI × Rule Type interaction) was highly statistically significant
[F(1,13) = 85, p < 0.001 for right postCG, F(1,13) = 54, p < 0.001
for left postCG; tested using parametric ANOVAs; Figure 3]. This
result suggests that LPFC activity patterns were relatively selective
to decision rule representation. Moreover, it indicates that the lack
of response rule decoding within LPFC is unlikely to be due to
poor data quality that might be associated with response rules,
since this rule dimension is clearly decodable in a different brain
region (postCG).

DECISION RULE CLASSIFICATIONS, TRANSFER OF REPRESENTATIONS
FROM PRACTICED TO NOVEL TASKS
In this analysis we trained a pattern classifier to discriminate
the decision rules using the practiced tasks only, but then tested
the classifier with the novel tasks. This is an especially strin-
gent test for transfer of rule representations, because it requires
that the decision rule activation patterns present when perform-
ing practiced tasks are also present when performing the novel
tasks (i.e., for the first time in a new context). Nevertheless,
we found evidence for significant generalization: in the LPFC
the classifier trained on practiced tasks showed significant clas-
sification accuracy when tested on novel tasks (31% accuracy;
chance = 25%; p ≤ 0.001; Figure 2A). We also found that five of
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the six pair-wise classifications driving this four-way classification
result were significant (Figure 2C; Table 4C).

LPFC SEARCHLIGHT PATTERN ANALYSIS
Our hypotheses focused on LPFC as a whole, but abstract deci-
sion rule representations could be present in only a subset of
voxels within the LPFC ROI. We tested this possibility by per-
forming a searchlight analysis on voxel clusters within the LPFC.
Four-way classification analysis revealed clustered regions show-
ing significant practiced → novel generalization effects within all
major subdivisions of LPFC (i.e., dorsal, ventral, anterior, and pos-
terior; Table 5). We next performed a conjunction analysis across
pair-wise (rather than four-way) decision rule searchlight maps
(Figures 4B and 4C). Note that we accounted for the multiple (six)
comparisons by only reporting significant pair-wise searchlights
that also showed significant four-way searchlight effects. None of
the searchlights showed statistically significant results for all or
even most of the six rule comparisons (maximum of any search-
light was two), suggesting each searchlight is driven by a subset
of rules. This suggests the anatomical LPFC ROI is able to decode
most of the pair-wise classifications due to distributed or spa-
tially distant representations within the LPFC ROI. Alternatively,
though less likely, this result could be due to inconsistent localiza-
tion of the pair-wise classifications across subjects, such that only
one or two classifications overlap consistently across subjects. In
either case, this result demonstrates that there is no single location
within LPFC that can be used to consistently decode a majority of
the decision rules across subjects.

Finally, for completeness we include decision, semantic, and
response rule four-way whole brain searchlight classification
results (Tables 6–8). It is important to note that – in contrast
to what was found with the LPFC ROI – these searchlight results
can easily be driven by a small subset of rules (as shown for LPFC
searchlights).

DISCUSSION
We began by asking how individuals are able to rapidly learn com-
plex novel tasks from instruction. The present results suggest this
is possible because the human brain can retain the benefits of
practice even during novel task performance, through the transfer
of practiced rule representations within LPFC into novel contexts.
Similar benefits likely also arise via transfer between novel task
contexts, since this would allow practice effects to accumulate even
with frequent task changes. Transfer of decision rules is likely
possible because these rule representations are highly abstract
and compositional, and are thus usable across a wide variety of
contexts.

These results also suggest that individuals use the same abstract
decision rule representations within LPFC even after extensive
practice with a given complex task. This is an intriguing result
given that participants were unlikely to have gained any advantage
by using compositional/context-independent (rather than task-
specific) rule representations during the practice session. This is
because: (1) the four practiced tasks were non-overlapping, such
that no rules were shared across tasks and so practice with the rules
in one task would not transfer to any other task that participants
were aware of, and (2) there was likely adequate time (2 h) to

FIGURE 4 | Localization of LPFC practiced-to-novel decision rule

transfer. (A) Searchlight MVPA of decision rule four-way classifications
(practiced → novel, whole block) within LPFC. The highlighted locations are
clusters of “searchlights” (spheres with 9.6 mm radii) that consistently
decoded which decision rule individuals were using. SeeTable 5 for a list of
significant clusters. (B) Most of the searchlights were only able to decode a
single pair-wise comparison, with two pair-wise comparisons as the
maximum decoded by any single searchlight. This demonstrates an
advantage of using MVPA with anatomical ROIs rather than searchlights,
and suggests the Figure 2C result is due to spatially variable or distributed
coding of rules within LPFC. (C) Localization of the pair-wise results,
restricted to the significant four-way classification searchlights to correct for
multiple comparisons.

develop optimized task-specific representations for each of the
four tasks. These results suggest that humans use abstract and com-
positional rule representations even when optimized task-specific
representations are viable, possibly “just in case” task rules are
useful in new contexts in the future. This may help to explain
the impressive flexibility of intelligent human behavior. Further,
this interpretation suggests that cognitively impaired populations
might “over fit” task representations in LPFC to practiced task
contexts (by inappropriately using less abstract, task-specific rep-
resentations), reducing their ability to rapidly learn new tasks.
Future research is necessary to test this possibility.

It should be noted that the fMRI experiment included a rel-
atively small group of participants (14 individuals), and that
evidence for behavioral transfer was based on a separate group
of participants. Nonetheless, it appears likely that the fMRI
participants experienced substantial behavioral transfer from
practiced to novel tasks, given their high performance (over 90%
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Table 5 | Statistically significant decision rule searchlight clusters.

Mean accuracy (%) MeanT -stat Number of searchlights X Y Z

Right LPFC 29 3.2 306 35.9 12.4 36.4

Left vPFC/AIC 29 3.2 96 −41.3 15.4 6.9

Left aPFC 28 2.8 42 −36.3 34.1 25.0

Left pPFC 29 3.1 41 −41.4 −3.5 38.5

LPFC four-way classifications (practiced → novel) in 9.6 mm radius searchlights.

PPC, posterior parietal cortex; aPFC, anterior PFC; vPFC, ventral PFC; pPFC, posterior PFC; AIC, anterior insula cortex.

Table 6 | Whole brain decision rule searchlight results.

Mean accuracy (%) MeanT -stat Number of searchlights X Y Z

L parietal 29 3.4 1113 −20.7 −65.3 45.5

R lat. & med. PFC 28 3.3 650 18.7 20 49.2

R inf. parietal 28 3.1 305 44.1 −54.5 47.9

L vPFC/AIC 28 3.1 110 −43.9 16.7 6.8

L aPFC 29 3.0 76 −38.2 38.4 23.3

L pPFC 28 3.2 55 −43.7 −1 38.7

Parahippocampus 27 3.4 42 20.6 −35.9 −16.9

R thalamus 28 3.2 39 7.1 −16.1 0.5

R cerebellum 27 3.0 34 33.4 −56.5 −35.4

Four-way classifications (practiced → novel) in 9.6 mm radius searchlights. Note that significant classification in four-way classifications can be driven by a single rule

or subset of rules (e.g., the “L parietal” cluster could only classify three of the six comparisons better than chance).

Table 7 | Whole brain semantic rule searchlight results.

Mean accuracy (%) MeanT -stat Number of searchlights X Y Z

Inf. ant. cingulate 28 3.2 181 −18.3 14.4 −22.4

R mid. occipital 27 3.1 107 45.9 −73.6 11.3

L inf. temporal 28 3.2 99 −43.3 −17.6 −26.2

L inf. parietal 28 3.2 74 −53.5 −47.9 28.6

L thalamus 28 3.0 64 −9.7 −10.4 −8.2

L pPFC 28 3.1 59 −39 4.4 38.2

L cerebellum 27 3.3 58 −31.8 −61.8 −45.6

Sup. colliculus 28 3.0 54 −6.6 −28.7 −8.2

R aPFC 27 3.4 44 50.7 36.5 6.5

Med. aPFC 27 3.3 38 4.7 63.5 10.9

L med. parietal 28 3.2 38 −20.1 −73.9 40.4

Four-way classifications (practiced → novel) in 9.6 mm radius searchlights. Note that significant classification in four-way classifications can be driven by a single rule

or subset of rules.

accuracy) on the novel tasks. In other words, it is unlikely that
the fMRI participants performed at the same level during the ini-
tial trials of the practice session (when the “practiced” tasks were
novel) as during subsequent novel tasks. Supporting this conclu-
sion, the separate group of participants was only 58% accurate
on the first trials of the “practiced” tasks, and experienced a large
increase in accuracy on novel tasks after the practice session.

We defined LPFC anatomically in order to utilize the advan-
tages of anatomical ROI analysis with MVPA (Etzel et al., 2009).
For instance, defining an ROI anatomically allows for statistical

independence of the ROI (Kriegeskorte et al., 2009). Further, using
an anatomical ROI allows classification of activity patterns that
might vary over relatively large distances across subjects and/or
be distributed over a considerable area, which searchlight analyses
would miss. Indeed, none of the searchlights (Figure 4) showed
classification beyond two pair-wise decision rule comparisons,
while the LPFC ROI showed classification across five of six pos-
sible pair-wise comparisons (Figure 2C). This suggests that the
LPFC results are likely based on spatially variable and/or spatially
distributed activation patterns within LPFC.
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Table 8 | Whole brain response rule searchlight results.

Mean accuracy (%) MeanT -stat Number of searchlights X Y Z

Motor & somatosensory cortex 32 5.2 7798 1.3 −27.1 55.3

Cerebellum 30 4.0 3446 −2.5 −61.4 −16.5

R cuneus 28 3.7 201 25.4 −88.8 26

Mid. temporal 28 3.5 128 −55.8 −4.5 −20.3

Medial frontal 28 3.6 55 12.3 51.1 −11.8

R putamen 28 3.4 51 30.8 −7.5 9.1

R inf. putamen 27 3.7 46 25.8 2.6 −12.1

Inf. ant. cingulate 27 3.6 44 5.2 14.3 −10.5

L mid. occipital 27 3.7 39 −42.7 −78.6 16.2

L vPFC 27 3.5 32 −58.5 9.2 8.2

R pPFC 28 3.7 26 56.4 11.8 24.4

Four-way classifications (practiced → novel) in 9.6 mm radius searchlights. Note that significant classification in four-way classifications can be driven by a single rule

or subset of rules. The italicized clusters are significant for within LPFC correction for multiple comparisons, but not for whole brain cluster correction (p < 0.05).

Our primary analyses were restricted to LPFC based on strong
evidence from previous studies that LPFC represents task rules.
We found that decision rules may be represented in a distributed
manner within LPFC. However, it is also possible that LPFC is
a component of an even more distributed, brain-wide network
involved in rule representation (Cole and Schneider, 2007; Dun-
can, 2010). Thus, it will be important for future research to explore
decision rule representations in other parts of the brain, especially
those that are functionally connected with LPFC.

The current results significantly extend the findings of sev-
eral previous studies that have successfully identified abstract rule
representations within LPFC. In particular, nearly all prior work
on abstract rule representation has focused on simple tasks that
involve the application of only a single, highly practiced rule
on each trial (e.g., Asaad et al., 2000; Wallis et al., 2001; Bunge
et al., 2003; Wallis and Miller, 2003; Haynes et al., 2007; Bode
and Haynes, 2009; Stiers et al., 2010; Woolgar et al., 2011). Sev-
eral of these studies included more than one rule (Woolgar et al.,
2011; Reverberi et al., 2011), but they were not integrated and
so only a single rule had to be applied on each trial. In con-
trast, the present study used somewhat more complex tasks that
each involved multiple integrated and interchangeable rules that
were frequently performed in novel contexts. These differences
provided our study with several advantages. First, using multiple
interchangeable rules for each task allowed us to test for abstract
rule representations more rigorously than previous studies, given
that we could test for generalization of rule representations not
only across different stimuli and responses but also across different
rule combinations. Second, using complex, rule-integrated tasks
(as opposed to tasks involving simple stimulus–response rules,
e.g., Bode and Haynes, 2009; Woolgar et al., 2011) made task-
independent rule generalization non-trivial, as it was not clear
a priori that procedures underlying such rules would be repre-
sented in a compositional manner in the brain. Third, the use
of complex and novel tasks provided increased ecological validity
as an investigation of human mental flexibility, as these kinds of
tasks more closely approximate the types of novel problem-solving
and task learning situations that individuals tend to encounter
outside of the laboratory (Gottfredson, 1997; Gottfredson and

Saklofske, 2009; also see Singley and Anderson, 1989, for ecolog-
ically valid complex rule-integrated tasks involving text editing).
Finally, including both practiced and novel tasks allowed us to test
our main hypothesis: that rule representations used in practiced
tasks transfer to novel tasks to allow for accurate performance in
novel circumstances.

The present results are compatible with, but significantly extend
upon, a recent demonstration of compositional coding in LPFC
(Reverberi et al., 2011). They used MVPA to show that complex
tasks (composed of two rules) could be decoded using brain activ-
ity patterns identified from the simple constituent rules. Critically,
however, their rules were not integrated during the complex tasks
(i.e., they were maintained together but the outcome of one rule
did not influence the other), leaving open the possibility that LPFC
uses compositional coding only when rules are executed inde-
pendently. The present results demonstrate compositional coding
within LPFC even when rules are highly integrated. These results
further extend upon those of Reverberi et al. (2011) by showing
compositionality in a much larger task state space [four differ-
ent rules in 16 tasks vs. two rules in two contexts (simple vs.
compound)]. Finally, these results demonstrate a major advan-
tage of compositional coding by showing behavioral and neural
practiced → novel transfer of rule representations.

Our investigation of rule representation during novel task per-
formance is also important because novel task performance is a
central component of rapid instructed task learning (RITL; pro-
nounced “rittle”), a recently developed domain of inquiry within
cognitive neuroscience (Cole et al., 2010a; Ruge and Wolfen-
steller, 2010). RITL focuses on the mechanisms that underlie
learning of new tasks on the order of seconds, with little or no
practice, with learning occurring primarily via instruction from
symbolic cues. Consequently, RITL can be distinguished from
studies of task-switching since task-switching studies focus on
a small set of repeatedly practiced tasks (i.e., the control con-
dition for RITL studies). RITL can also be distinguished from
other studies of incremental task learning, since these typically
focus on how learning occurs gradually via trial-and-error or
reinforcement-based feedback; in RITL, learning is very rapid (e.g.,
one trial) and based on explicit instructions.
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The growing interest in RITL within cognitive neuroscience
stems from the need to understand the neural mechanisms that
underlie what has been called “the great mystery of human cog-
nition” (Monsell, 1996) – the ability of the human brain to be
rapidly programmed with novel procedures (Cole et al., 2010a;
Hartstra et al., 2011; Ruge and Wolfensteller, 2010). This impres-
sive mental flexibility is central to human intelligence, compatible
with the observation that individual differences in RITL ability
are highly correlated with general fluid intelligence (Dumontheil
et al., 2011). Although to our knowledge this is the first study to
investigate the rule representations underlying RITL with MVPA,
we expect that the increasing recognition of the utility of MVPA
will make its use in this domain a growing trend.

One potential alternative interpretation of the present results
is that they do not specify a role for LPFC in the coding of rule
representations, but rather reflect the coding of visual or linguistic
information present in rule cues. This interpretation is unlikely,
however, given that information regarding semantic or response
rules could not be consistently decoded from LPFC activity. Each
of these other two rule dimensions were presented along with the
decision rules, and were specified via the same kinds of visual
and linguistic cues as used for the decision rules. Thus, a brain
region involved in visual or linguistic coding should have shown
equal sensitivity to all three rule dimensions. Instead, the current
results suggest that LPFC was primarily involved in representing
the task-related meanings of the decision rules.

Another possible alternative interpretation of the results is that
the apparent decision rule sensitivity in LPFC actually reflects
sensitivity to cognitive demands associated with the difficulty of
implementing different decision rules. Although it is impossible
to strictly rule out such an interpretation, behavioral performance
measures suggest no strong difference in difficulty among the
four decision rules, with the possible exception of the SAME rule
having slightly worse performance. Moreover, if LPFC activity
patterns reflected the differential difficulty associated with par-
ticular task rules, then a difficulty-related bias in classification
performance would be expected – e.g., the classifier was actually
discriminating more difficult from less difficult rules. Yet, such
effects were not observed in the pair-wise decision rule classifica-
tions. Instead, nearly every pair-wise classification was significant,
not just those involving the potentially more difficult SAME rule.
Further, difficulty-related activation effects would likely show up
in terms of mean across-voxel signal differences, such as those
typically detected by general linear models (Duncan and Owen,
2000; Cole and Schneider, 2007). However, mean cross-voxel dif-
ferences in activation level were removed by our use of spatial
z-normalization, which adjusted for overall mean differences in
signal within the ROIs (and each searchlight in the searchlight
analyses). Finally, if rule classification was driven by differential
rule difficulty then we would expect differences in classification
accuracy to correlate with differences in difficulty (in terms of reac-
tion time or behavioral accuracy), yet neither of these correlations
were statistically significant (p > 0.75).

Unlike here, a previous study found that activity patterns in
LPFC could distinguish between semantic rule representations
(Li et al., 2007). That study used visual categorization of mov-
ing dot patterns as the basis for semantic categorization. This is in

contrast to the present study’s use of diverse perceptual categories
based on word stimuli. These categories were designed to be as
semantically distinct from one another as possible (each involving
a distinct sensory modality), in order to better test the composi-
tional context-independence of decision rules by covering a wide
set of distinct semantic rule contexts. The substantially differ-
ent semantic representations involved across these semantic rules
likely reduced the chances of a single region (such as LPFC) con-
taining all of the relevant representations across the categories (see
Goldberg et al., 2006a). Alternatively, functional MRI or the MVPA
approach used here may not have been sensitive enough to distin-
guish subtle differences in activity patterns associated with each
semantic rule.

The present study focuses primarily on representation of infor-
mation within LPFC, while many studies have found evidence
of process-specific involvement of LPFC (e.g., Duncan et al., 1995;
Chein and Schneider, 2005). This reflects a recent shift in emphasis
on representational content, rather than processes, within LPFC
(Wood and Grafman, 2003). However, several theories of LPFC
function can accommodate both representational and processing
functions. For instance, it may be that activation of specific rep-
resentations within LPFC lead to implementation of processes via
top-down “context” biases (Cohen et al., 1996; Miller and Cohen,
2001).

Previously reported results using the same dataset as here
emphasized differential activation among LPFC regions rather
than spatial patterns of information contained within those
regions (Cole et al., 2010a). Importantly, those results are comple-
mentary to the results reported here. The current results suggest
that the same rule representations are used across task contexts,
but they do not indicate the mechanism by which rule represen-
tations transfer from practiced to novel tasks. The previous study
found evidence for a mechanism involving anterior PFC (aPFC)
as a coordinator of rule representations in posterior PFC. This
mechanism might allow transfer by providing the appropriate co-
activation/coordination of multiple practiced compositional rules
in novel task contexts. It may be the case that aPFC uses task-
specific coding (in conjunction with the compositional coding
identified here) to enable coordinated use of several compositional
rule representations that have never been used together before.
Future work should investigate the possibility of such conjunctive
codes in addition to the compositional codes identified here. See
Cole et al. (2010a) for discussion of other alternative explanations
of the observed LPFC activity.

In conclusion, the present results demonstrate for the first time
that the human brain codes task rules that are compositional (i.e.,
abstract/independent of task context) and utilized even when such
an abstracted, compositional form of coding is unnecessary (i.e.,
during highly practiced tasks). As such, the findings contrast with
theoretical accounts suggesting that PFC representations are fully
adaptive, flexibly reconfiguring according to changes in task con-
text (Duncan, 2001). The alternative interpretation warranted by
our results is that task rule representation is less flexible, and thus
indicative of a seemingly suboptimal control system. However, the
transfer effects observed between practiced and novel tasks sug-
gest that the context-independent and compositional coding of
task rules actually comes with its own advantage: rules learned

Frontiers in Human Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 142 | 11

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cole et al. Rapid rule transfer in prefrontal cortex

during (or prior to) the practice session can be rapidly transferred
to new contexts, allowing high performance on the first trials
of novel tasks. Thus, the seemingly paradoxical consequence of
less flexible task rule representation is that it enables greater cog-
nitive and behavioral flexibility during novel task learning and
performance – a key aspect of human intelligence.
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