Hindawi

Computational Intelligence and Neuroscience
Volume 2021, Article ID 5528291, 10 pages
https://doi.org/10.1155/2021/5528291

Research Article

A Fuzzy Radial Basis Adaptive Inference Network and Its
Application to Time-Varying Signal Classification

Long Huang ®,' Shaohua Xu®,' Kun Liu®,' Ruiping Yang®,' and Lu Wu"?

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590,

Shandong Province, China

ZShandong Computer Science Center (National Supercomputer Center in Jinan), Jinan 250014, Shandong Province, China

Correspondence should be addressed to Kun Liu; liukun9026@163.com

Received 13 January 2021; Revised 9 June 2021; Accepted 17 June 2021; Published 24 June 2021

Academic Editor: Antonio Dourado

1. Introduction

Copyright © 2021 Long Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A fuzzy radial basis adaptive inference network (FRBAIN) is proposed for multichannel time-varying signal fusion analysis and
feature knowledge embedding. The model which combines the prior signal feature embedding mechanism of the radial basis
kernel function with the rule-based logic inference ability of fuzzy system is composed of a multichannel time-varying signal input
layer, a radial basis fuzzification layer, a rule layer, a regularization layer, and a T-S fuzzy classifier layer. The dynamic fuzzy
clustering algorithm was used to divide the sample set pattern class into several subclasses with similar features. The fuzzy radial
basis neurons (FRBNs) were defined and used as parameterized membership functions, and typical feature samples of each pattern
subclass were used as kernel centers of the FRBN to realize the embedding of the diverse prior feature knowledge and the
fuzzification of the input signals. According to the signal categories of FRBN kernel centers, nodes in the rule layer were selectively
connected with nodes in the FRBN layer. A fuzzy multiplication operation was used to achieve synthesis of pattern class
membership information and establishment of fuzzy inference rules. The excitation intensity of each rule was used as the input of
T-S fuzzy classifier to classify the input signals. The FRBAIN can adaptively establish fuzzy set membership functions, fuzzy
inference, and classification rules based on the learning of sample set, realize structural and data constraints of the model, and
improve the modeling properties of imbalanced datasets. In this paper, the properties of FRBAIN were analyzed and a com-
prehensive learning algorithm was established. Experimental validation was performed with classification diagnoses from four
complex cardiovascular diseases based on 12-lead ECG signals. Results demonstrated that, in the case of small-scale imbalanced
datasets, the proposed method significantly improved both classification accuracy and generalizability comparing with other
methods in the experiment.

dynamic recurrent neural networks [3-5], deep recursive
networks [6], long short-term memory (LSTM) models [7],
and deep convolutional neural networks [8-10]. However,

Signal analysis in nonlinear dynamic systems is an active
area of research in the fields of artificial intelligence and data
modeling [1]. However, due to noise in the measuring in-
strument or environment, the information obtained by
sensors may be inaccurate or incomplete. Therefore, fuz-
zification analysis is usually needed for this kind of signal [2].
In addition, for some complex time-varying systems, it is
difficult to obtain large-scale or complete signal sets due to
the nonrepeatability of state process or the high cost of signal
acquisition. Deep neural network models have been applied
to the classification of time-varying signals, including

these models depend on the completeness of training
datasets and are not suitable for the time-varying signal
classification of incomplete or ambiguous datasets. There-
fore, the application of signal pattern classification and state
prediction in complex nonlinear systems still faces some
challenges.

Fuzzy neural networks can be effective for incomplete
and inaccurate process information modeling and analysis
[11]. Several algorithms, combining neural networks and
fuzzy processing, have been proposed for signal analysis.
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Uyar and {lhan propose a genetic algorithm based trained
recurrent fuzzy neural networks for the diagnosis of heart
diseases [12]. Fei and Wang proposed an adaptive fuzzy
neural network control scheme based on a radial basis neural
network to enhance the performance of a shunt active power
filter [13]. Camastra et al. presented a fuzzy decision system
for environmental risk assessments of genetically modified
plants, based on a Mamdani inference [14]. Liu et al. pro-
posed a generalized prediction system called a recurrent self-
evolving fuzzy neural network (RSEFNN), which utilized
online gradient descent learning rules to classify driving
fatigue in EEG regression problems [15]. Nazari et al.
proposed a fuzzy inference, fuzzy analytic, and hierarchy
process-based clinical decision support system for the di-
agnosis of heart disease. The corresponding fuzzy inference
rules were acquired using expert knowledge [16]. Ilbahar
et al. proposed a novel approach to risk assessment for
occupational health, based on the Pythagorean fuzzy analytic
hierarchy process and a fuzzy inference system [17].
Mohamad and Mukhtar developed a weighted Mamdani-
type fuzzy inference model for a relative ideal preference
system, based on fuzzy if-then rules [18].

A comprehensive analysis shows that most of existing
fuzzy neural networks are the fuzzy analysis models based on
fuzzy feature extraction and if-then rules. These techniques
can be regarded as “static models” and are based on fuzzy
logic that requires embedded expert knowledge. In the fuzzy
analysis of time-varying signals, fuzzy inference processes
are primarily constructed using backpropagation and cir-
culation [19]. As a result, these methods exhibit limitations,
such as weak adaptive learning capabilities, low efficiency for
large-scale dataset processing, or professional experience
requirements.

The radial basis neural network (RBNN) is a widely used
kernel function technique [20]. It achieves nonlinear
mapping by varying the parameters of nonlinear neuron
transformation functions and improves learning speeds of
network by linearizing the connection weight adjustments. It
offers the advantages of fewer model parameters and low
computational complexity and can form effective feature
interfaces [21, 22]. Xu and He extended the processing
domain of a radial basis neural network to the time di-
mension and proposed a radial basis process neural network
(RBPNN) model [23]. This algorithm accepts multichannel
time-varying signals as input and can embed distribution
characteristics for typical signal samples, based on radial
basis kernel center functions. However, it exhibits a shallow
structure with low information capacity and includes strict
requirements for sample set completeness. A novel fuzzy
neural network can be established when rule-based rea-
soning for fuzzy logic systems is combined with the feature
knowledge embedding mechanism and learning properties
of an RBPNN. This provides a new methodology for the
fuzzy classification of time-varying signals. Fuzzy neural
network also has important applications in the field of robust
adaptive control. Kong et al. proposed an adaptive fuzzy
neural network control scheme using impedance learning
for the multiple constrained robots with unknown dynamics
and time-varying constraints, which improved the
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environment-robot interaction [24]. He et al. designed a
boundary control method based on bionics to control a two-
link rigid-flexible wing, which effectively improves the
mobility and the flexibility of aircraft [25]. He et al. used
radial basis function neural network to approximate the
aerodynamic perturbation torque and proposed a hierar-
chical control scheme to study the trajectory tracking
problem of microaerial vehicles in the longitudinal plane,
and it is shown that the tracking errors are bounded [26].

In this paper, a novel fuzzy radial basis adaptive infer-
ence network (FRBAIN) is proposed for multichannel time-
varying signal classification. First, the radial basis process
neural network (RBPNN) was fuzzified to establish a fuzzy
radial basis process neural network (FRBPNN), composed of
a time-varying signal input layer, a fuzzy radial basis kernel
transformation layer, and a membership degree output layer.
The dynamic time warping (DTW) algorithm, which is
insensitive to the contraction and expansion of time-varying
signals, was used to measure the similarity between time-
varying signal distribution features. The dynamic fuzzy
C-means clustering (DFCM) algorithm was used to divide
the sample set pattern classes into subclasses with similar
features. Typical characteristic signal samples for each
pattern subclass could be determined, which were used as
the kernel centers of radial basis process neurons (RBPNs).
The exponential sigmoid function with fuzzy membership
properties was used as the activation function, to produce
the output of each RBPN based on the fuzzy set membership
degree and the fuzzification of RBPN. In this case, the fuzzy
radial basis process neurons (FRBPNs) become the pa-
rameterized membership functions, relative to the fuzzy set
of the pattern subclass. Nodes in the fuzzy rule layer were
selectively connected with nodes in FRBN layer according to
the signal categories of FRBN kernel centers. A fuzzy
multiplication operation was then used to synthesize
membership information of fuzzy sets and establish fuzzy
reasoning rules. The output of rule layer was regularized and
normalized as the excitation intensity. A T-S fuzzy function
was used as the classifier, which accepted the excitation
intensity of each rule as input to classify multichannel time-
varying input signals.

The FRBAIN proposed in this paper can realize the
embedding of the time-varying signal each pattern class
diversity prior feature knowledge, as well as the structure
and data constraints of the model. Through the learning of
the sample set, it can adaptively establish the fuzzy inference
rules and classification rules with fine-grained and effectively
improve the problem that the features of the pattern classes
with few samples in the small-scale, and imbalanced dataset
are suppressed and weakened in the training, and the ro-
bustness and generalization ability of the model are
improved.

Cardiovascular disease diagnosis based on ECG signal is
a typical multichannel signal classification problem. ECG
signals exhibit nonstationarity, irregular periods, stretch
drift, and high background noise, resulting in fuzziness and
multiple solutions [27]. In 12-lead ECG signals, atrial pre-
mature beat, frequent ventricular premature beat, atrial
tachycardia, and atrial fibrillation with rapid ventricular rate
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exhibit similar distributions and complex combination
characteristics. In this study, FRBAIN was used to classify
and diagnose these four diseases using small-scale and
imbalanced datasets, to verify the feasibility and effectiveness
of the proposed model.

The remainder of this paper is organized as follows. After
discussing the challenges of neural network-based time-
varying signal classification, in Section 2, the theoretical
framework for the proposed model is given. A compre-
hensive learning algorithm for the FRBAIN is proposed in
Section 3. In Section 4, the classification experiment of ECG
signals and result analysis are carried out. In Section 5, the
work of this paper is summarized, and the advantages,
limitations, and potential applications of this method are
pointed out.

2. A Dynamic Fuzzy Radial Basis Adaptive
Inference Network

2.1. A Fuzzy Radial Basis Neural Network. The information
processing domain in RBPNN was extended to fuzzy sets to
establish a fuzzy radial basis neural network (FRBNN). This
model consists of a multichannel time-varying signal input
layer, a radial basis fuzzification layer, and an output layer, as
shown in Figure 1.

In the figure, X ()= (x;(t),x,(t),...,x,(1)
(t € [0,T]) is a multichannel time-varying input signal,
FRBN; (j=1,2,...,m) denotes fuzzy radial basis neurons
(FRBNGs), and i is the j™ output of the FRBN. The term w) is
the connected weight between the hidden layer and the
network output unit, and y is the output of network. The input
signal vector X (t) can be linearly transferred to the FRBN
layer. Information fusion and the fuzzification processing of
multichannel input signals were achieved in the FRBN layer, in
addition to membership degree output. The fuzzy classifica-
tion of input signals was performed in the output unit.

The radial basis kernel function was assumed to be an
exponential sigmoid with fuzzy membership [28]. The
output of the j» FRBN is then given by

1
1+ exp(—a(—di(X(t), Zj (t))/az) - c)’

where Z . (t) is the kernel center vector in the jth FRBN. The
term d, (X (t), Zj (t)) represents the distance (or fuzzy
feature similarity) between X (t) and Z i (t), based on a
certain norm, and ¢ >0 is a smoothing parameter. a and ¢
are morphological parameters. The FRBNN output is a fuzzy
linear weighted sum of the hidden layer node outputs. It can
be calculated as follows:

B (X (1)) = (1)

y=FX®)=) o, h(X(t) (2)
j=1

2.2. The Fuzzy Radial Basis Adaptive Inference Network

2.2.1. The FRBAIN Model. The DFRBAIN is composed of a
multichannel time-varying signal input layer, a radial basis

Ficure 1: The FRBFN structure.

tuzzification layer, regularization layer I, a fuzzy rule layer,
regularization layer II, and a T-S fuzzy classifier. This
structure is shown in Figure 2, where x; (t) (i = 1,2,...,n) is
the multichannel time-varying input signal, and
FRBNy (k=1,2,...,K;I, =1,2,...,my) corresponds to
the I subclass in the k™ pattern class. m; is the number of
pattern subclasses in the k™ pattern class. The FR terms are
nodes in the fuzzy rule layer units and T-S is a fuzzy
classifier.

The following mapping relationships between the input
and output of each FRBAIN layer can be determined from
Figure 2.

(1) The input layer accepts a multichannel time-varying
signal X (£) = (x; (8), %, (£), ..., x, () (¢t € [0, T].

(2) In the radial basis fuzzification layer, FRBNs are used
as the fuzzy set membership functions and expo-
nential sigmoid is used to represent the radial basis
kernel function. The output of X () at the jth node in
this layer can be represented as follows:

1
1+ exp(—a(—d%(X(t), Zj (t))/o?) - c)’

A (X (1) = 3)

where A; is the universal fuzzy set, y, is the membership
function for AJ-, V4 j(t) represents the kernel center signal

vector, o; is an FRBN smoothing parameter, and
j=1,2,...,n.n, is the number of samples in the i pattern
subclass.

Kernel center functions for the fuzzy radial basis neurons
were determined using the following approach.

(1) Multichannel time-varying signal sample sets, con-
taining K pattern classes, were used as input. The
DTW algorithm [29], which is insensitive to con-
traction and extension of time-varying signals, was
used to measure the similarity between signal sample
features. The DFCM clustering algorithm [30] was
then used to divide the samples from each pattern
class into subclasses exhibiting similar characteris-
tics, before selecting typical samples from each. The
Kkt pattern class was divided into m (k = 1,2, ..., K)
partitions and the sample set containing a total of
m = Y1, my pattern subclasses.

(2) The selected m typical signal samples were arranged
as follows: Zy, (t),..., 2y, (), Z5, (1), ..., Z,,, (1),
o Zgy (8), s Zgom, (t). Here, the first subscript of
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F1Gure 2: The fuzzy radial basis adaptive inference network.

Zy®)(I=1,2,...,m;k=1,2,...,K) indicates the
cluster center category and the second subscript
represents the I™ cluster center of the k™ pattern
class. The Z;, (t) terms were sequentially assigned as
kernel centers for each node in the RBFPN layer,
with m total nodes in the FRBN. Structural and data
constraints were then produced through the em-
bedding of prior feature knowledge.

(3) Regularization layer I normalized the outputs of
FRBN layers, which is defined as

Ba, (X))

ey 4
Dt Ha, (Xi) @

!41,4,.]. (X)) =

where p, (X;) represents the regularized output
of 4, (X,). The FRBNs were used as parameter-
ized membership functions and the membership
degree of the input signal, relative to the fuzzy set,
was adaptively determined by learning the in-
stance sample set.

(4) The fuzzy rule layer connects the antecedent (reg-
ularization nodes) and the conclusion nodes (FR
output nodes). Connection rules required that each
rule node was connected only to a regular node from
each input (after being fuzzed). This process is shown
in Figure 2 for the connection between the third and
fourth layers. In the classification problem, the fuzzy
sets corresponding to the pattern subclasses were the
same as the pattern classes. In the K-classification
problem, the number of fuzzy sets was denoted by K.
Since the FRBN layer outputs are according to the
pattern subclass fuzzy set, the number of nodes in the
rule layer is given by

L=K" (5)

In practice, connection rules and connection
methods may differ and the number of nodes and
generation rules in the rule layer will vary. Using
fuzzy multiplication, the output of the k™ rule node
can be expressed as follows:

Zk = H#A,,: (X:), (6)
i=1

where other T-normal operators that perform fuzzy
“and” operations can also be used in fuzzy
multiplication.

(5) Regularization layer II processes outputs of the fuzzy
rule layer. The output of the I'" node in this layer can
be considered the activation intensity of the I'" rule.

(6) The T-S fuzzy classifier accepts the L normalized rule
activation intensity q,,q,,. . .,q;, output by regula-
rization layer I, as input. The output of the T-S fuzzy
classifier is then given by

L

5’=J~C<Z(@k%+rk)>’ (7)

k=1

where f is the activation function for the classifier
and W, and ry, are classifier parameters.

2.2.2. The Extended FRBAIN Model. As seen in (5), an in-
crease in the number of nodes in the FRBN layer will cause
an exponential increase in the number of nodes in the rule
layer. To solve this problem, an extended FRBAIN (E-
FRBAIN) model was constructed by adding a pattern layer
between the FRBN and rule layers, representing the mem-
bership degree of pattern class fuzzy sets, as shown in
Figure 3.

In Figure 3, each node in the FRBN layer converges the
output membership degree to the corresponding node
P, (k =1,2,...,K) in the pattern layer, according to pattern
subclass labels for the kernel center and containment re-
lationships with the pattern class. The output of each node in
the pattern layer can be calculated using a “sum” or
“maximum” operation.

The output of the pattern layer is then given by

a= Y hjk=12,...K). )

JEy
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FicURrE 3: The extended FRBAIN model.

In (8), h jis the regularized output of the j" FRBN and K
is the number of signal sample pattern classes contained in
the training set. The term (; is the serial number set for the
FRBN layer node corresponding to the k' pattern class.

In the classification problem, the fuzzy set corresponding
to the pattern class is the same as the fuzzy set corresponding
to the pattern subclass. Equation (8) suggests the fuzzy
membership degree for each node in the pattern layer in-
tegrates membership degree information for each pattern
subclass in the fuzzy set. The number of fuzzy sets in the
K-classification problem is denoted by K. Multiplication
rules require the number of nodes in the rule layer to be
L = KK, where K < m in practice. Therefore, the E-FRBAIN
model effectively reduces the number of nodes in the rule
layer, while generated fuzzy rules simultaneously retain
membership degree information for pattern subclasses.

2.2.3. Property Analysis. Comprehensive analysis shows that
the properties of the FRBAIN are as follows:

(1) In this paper, using an algorithm that combines
DTW and DCEM, each pattern samples of the
dataset are divided into pattern subclasses with more
similar features, and the diversity typical features
samples of each pattern subclass are determined,
which are used as the kernel centers of the RBPN.
When the number of typical feature signal samples is
determined, the number of nodes in the radial basis
fuzzy layer (the first hidden layer) in the model is also
determined. The number of nodes from the second
hidden layer to the final classification unit of the
network model is calculated according to the fuzzy
inference rules, which realizes the structural con-
straints of the model.

(2) The typical signal samples of each pattern subclasses
are used as the radial basis kernel centers, which
implicitly expresses the category features of each
pattern signal, realizes the memory and storage of the
typical signal distribution features of each pattern
class, and strengthens the role of prior feature
knowledge in classification. In the fuzzy radial basis

kernel transformation layer, the input signals and the
kernel centers are measured for feature similarity,
and the transformations of the node units in the
subsequent each layer are calculated according to the
output of the fuzzy radial basis neuron layer, which
realizes the data constraints of the model.

(3) In this paper, the typical signal feature samples of
each pattern class are used as the kernel centers of
FRBNs, which can improve the phenomenon that
the features of the pattern class with less samples in
the imbalanced dataset are suppressed and weakened
in the training and reduce the optimization search
space of model parameters. Moreover, the model
proposed in this paper contains only a few param-
eters, and the parameters can be determined adap-
tively through the learning of small-scale dataset,
which has a strong ability of signal sample feature
identification. It is suitable for the modeling and
analysis of small-scale imbalanced datasets in
mechanism and can improve the robustness and
generalization ability of the model.

2.2.4. Algorithm Complexity. For the FRBAIN model pro-
posed in this paper, assuming that the number of samples in
the training dataset is N, the number of nodes in the radial
basis fuzzification layer is L, the number of nodes in the
fuzzy rule layer is m, and the number of pattern classes is K,
then the time complexity of DTW algorithm, the radial basis
fuzzification layer, the pattern layer, the fuzzy rule layer, and
the T-S fuzzy classifier are O (N?),0(L),O(L x K), O (K™),
and O (m x m), respectively. Adding all the items together,
the total time complexity of the proposed method is
O(N?)+0O(L) + O(L xK) + O(K™) + O (m x m).

3. The Learning Algorithm

The FRBAIN learning process can be divided into 3 stages.
(1) The DTW algorithm can be used to measure the simi-
larity between signal sample features. The DFCM algorithm
can then be used to divide pattern classes for the training set
into several subclasses, identifying typical feature signal



samples in each subclasses. (2) The total number of pattern
subclasses is then set to the number of nodes in the FRBN
layer. Typical signal samples are then used as kernel centers
for each FRBN while calculating the output. (3) The gradient
descent algorithm is used to train the FRBAIN parameters.

3.1. The DTW Algorithm. DTW is a similarity measurement
technique for time-series signal distribution characteristics,
based on dynamic programming, which combines distance
calculations and time warping [31]. The algorithm requires an
optimal time warping function M = &(N), which non-
linearly maps the time axis of time-series signals to the time
axis of a reference template. The resulting function satisfies

N
D =min ) d{T (n),R[D (n)]}. (9)

n=1

It is assumed the test template includes an N-frame
feature vector, the reference template includes an M-frame
feature vector, and d{T (n), R[D (n)]} is the distance mea-
surement between the n™ frame feature vector T (n) in the
test template and the m™ frame feature vector R () in the
reference template. The term D is a warping function rep-
resenting the minimum cumulative distance for each frame
of the test and reference templates under optimal time
warping. Smaller values indicate higher similarity between
two signal distribution features. The primary steps in the
DTW algorithm are as follows [32]:

Step 1. A signal sequence contrast matrix is constructed.

Step 2. The distance measure and warping cost func-
tions are defined.

Step 3. A warping path is determined using a dynamic
programming algorithm.

Step 4. The optimal path is identified and the similarity
degree between signal sequences is calculated.

3.2. The Dynamic Fuzzy C-Means Clustering Algorithm.
The DFCM clustering algorithm is a dataset partitioning
technique that acquires membership degree information
from each sample point for all cluster centers, through
optimization of the objective function, prior to determining
sample point classes [33]. The coupling and separation
degrees between signal samples are then calculated by setting
different clustering numbers, evaluating the corresponding
results, and selecting the optimal clustering output.

Suppose the sample set contains N signals and ¢ clusters.
The coupling degree C,(c) representing the in-class com-
pactness and the separation degree S;(c), reflecting the
between-class separation [34]. The following formula was
used to evaluate the clustering results:

1
Sa (c)
where « is the coupling weight factor. Smaller G D (c) values

represent better clustering results, and the C value corre-
sponding to the minimum of G D (c) is the optimal number

G D(c)=aCy(c) +(1 -a) (10)
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of clusters. Partitions of the sample set produce the best
clustering results.

3.3. The Training of FRBAIN. The parameters of FRBAIN
include the radial basis kernel center smoothing parameter
vector ¢, the morphological parameters a and b, the con-
nection weight matrix W (from the rule layer to the fuzzy
classifier), and the parameter vector V for the T-S classifier.
The specific learning steps are as follows:

(i) Step 1. The DTW-DFCM algorithm is used to di-
vide the subclasses in each pattern class and de-
termine typical signal samples in each. These
subclasses form the kernel centers of each FRBN
and determine the number of nodes in the FRBN
layer.

(ii) Step 2. FRBAIN training control parameters are set,
and all parameters are initialized.

(iii) Step 3. The outputo;(j =1,2,...,m) of each FRBN
is calculated for the input signal samples
x; (£), %, (1), ..., x,(t) using equation (3).

(iv) Step 4. The FRBN layer outputs are regularized.

(v) Step 5. The outputs of each node in the rule layer are
calculated using equation (6), and connections are
established between the rule and regularization
layers.

(vi) Step 6. Fuzzy classifier outputs are calculated using
equation (7).

(vii) Step 7. The gradient descent algorithm is used to
learn all FRBAIN parameters.

4. Experiment and Analysis

4.1. The Datasets. The data used in this experiment consisted
of 12-lead ECG signal samples from the Chinese Cardio-
vascular Disease Database (CCDD). Each recording time
was more than 10 seconds and included 9 heartbeats [35].
Each record lasted more than 10 seconds, including 9
heartbeats. The samples are marked with heartbeat seg-
mentation and the diagnosis results by medical experts.
Atrial premature beats, frequent premature beats, atrial
tachycardia, and atrial fibrillation with rapid ventricular rate
exhibit similar distributions and complex combination
characteristics. In addition, the number of samples available
for different disease types varied significantly. Experimental
data consisted of 926 atrial premature beat, 985 frequent
premature beat, 408 atrial fibrillation with rapid ventricular
rate, and 389 atrial tachycardia samples, selected to form a
small-scale and imbalanced database with 2708 signals.

4.2. The FRAIN Model for ECG Signal Classification. In the
experiment, the DTW-DFCM algorithm was used to cluster
a sample set of 4 diseases. The cluster numbers for the atrial
premature beats, frequent premature beats, atrial tachy-
cardia, and atrial fibrillation with rapid ventricular rate were
5, 6, 4, and 5, respectively. There were 20 pattern subclasses
clustered in total. The clustering centers of these subclasses
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were selected as typical feature signal samples, and each
pattern subclass corresponded to the fuzzy set of 4 diseases.

Network structure parameters in the E-FRAIN model,
shown in Figure 3, were set with 12 nodes in the input layer,
20 nodes in the FRBN layer, 4 nodes in the pattern layer,
4* =256 nodes in the rule layer, and 256 nodes in the
regularization layer II. The T-S fuzzy classifier included 256
input nodes and 1 output node. The stochastic gradient
descent algorithm with Adam optimizer is used to train the
model parameters. The training set samples are divided into
50 batches, each batch has 54 samples, which are trained in
batches. Every 50 training cycles, the learning rate will be
adjusted to 1/10 of the previous batch. The initial learning
rate was set at 0.5. The maximum number of iterations is 500,
and the final learning rate is 0.005. When the training error is
less than 0.005, the training ends.

4.3. Experimental Results and Analysis

4.3.1. Experimental Analysis. The sample set was randomly
divided into 2 groups according to the proportion of ill-
nesses, of which 1800 samples constituted the training set
and the remaining 908 samples formed the test set. Property
parameters and E-FRAIN connection weights were deter-
mined using the learning algorithm discussed in Section 3.
Training error accuracy was set to 0.05, the maximum
number of iterations was 3000, and the learning efficiency
was 0.25. An overall accuracy rate of 87.56% was achieved in
classifying test set samples. Corresponding evaluation in-
dexes are shown in Table 1.

As seen in the table, the classification results achieved by
the proposed technique are comparable to those of existing
algorithms. This is because feature knowledge for typical
signal samples, based on pattern subclasses, was embedded
in the E-FRBAIN to effectively establish the model structural
and data constraints. This approach also had the effect of
reducing model parameters, which improved robustness for
modeling small-scale and imbalanced sample sets. The
membership degree for pattern subclasses was also used as
an information unit to improve the model’s identification
capabilities for complex signal features, thereby maintaining
the diversity of pattern features.

4.4. A Comparative Experiment and Analysis. In the com-
parative experiment, three types of deep neural network
models were selected to directly classify multi-channel
process signals. This included the multichannel deep con-
volutional neural network (MC-DCNN) [10], an algorithm
combining LSTM with random forest (LSTM + RF) [36],
and the deep gated recurrent unit (GRU) recurrent network
(GRU-RNN) [37]. The same training and test sets were
applied to each.

The architecture of the MC-DCNN model used in this
experiment was I — C1(Size) — S1 — C2(Size) - S2 - H - O,
where “Size” denotes the kernel size, C1 and C2 denote the
number of filters, and S1 and S2 denote subsampling factors.
The terms I, H, and O, respectively, represent the number of
input layers, units in the hidden layer, and units in the MLP

output layer. A comparative analysis suggested an architec-
ture of 12-8(5)-2-4(5)-2-440-4 to be optimal. The LSTM + RF
model used in the experiment was constructed using a series
model of two LSTM networks, with 3 hidden layers in each
LSTM. A random forest classifier with 100 trees was estab-
lished in the feature vector space used for classification. The
deep GRU recurrent network was superimposed with 5 GRU
units and included a Softmax classifier.

A 4-fold crossover method was used in the experiment.
The sample set was randomly divided into 4 groups
according to the disease proportion, with 677 samples in
each group. Three of these were combined to form the
training set and one group was used as the test set. Four
experiments were performed and the average value of each
evaluation index in the experimental results was used as the
comparison index. These results are shown in Table 2, where
it is evident the proposed technique achieved the best results
across all evaluation indicators.

This is because the model embeds diverse pattern class
feature knowledge of signal samples in the mechanism.
Decisions were then based on a fuzzy set of pattern sub-
classes. The structural and data constraints are implemented,
and the number of model parameters is reduced, which
improved signal feature identification ability and general-
ization. The other models are end-to-end deep learning
algorithms for time-series signals, which include more pa-
rameters. In the case of incomplete and small-scale imbal-
anced datasets, the model structure and parameter selection
include large degrees of freedom, which can result in
overfitting and decreased generalizability. In addition,
compared with other comparison methods, the time com-
plexity and training time of proposed method in this paper
have been greatly increased, mainly due to the time cost on
iterative use of the DTW algorithm in training, but the
average precision has been greatly improved.

The average correct recognition rate and mean standard
deviations and t-test [38] were used as performance eval-
uation contrast index in the experiments, and the results are
shown in Table 3.

In the experiment, the proposed method achieves good
results in both the training set and the test set. The three
other deep learning models have achieved good results in the
training set learning, but the performance index and gen-
eralization property of the test sets are greatly reduced.

Comprehensive analysis shows that compared with
general fuzzy neural network, the proposed method has
advantages in feature knowledge embedding and fuzziness.
It can express the features of signal samples in fine gran-
ularity, keep the diversity of features, and reduce semantic
adhesion. Compared with it, the learning properties and
generalization ability of deep neural networks have a strong
dependence on the completeness of the dataset. For large-
scale complete datasets, deep neural networks have ad-
vantages. However, in the case of small-scale imbalanced
datasets, the deep neural network models have more pa-
rameters and large degrees of freedom, and the features of
the pattern class with less samples are often weakened and
suppressed during training, and the recognition accuracy
and generalization ability are unstable. Due to the
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TaBLE 1: Experimental results for the proposed technique.

Type Precision Recall rate F1-score

Atrial premature beat 0.9012 0.9419 0.9211

Frequent ventricular premature beat 0.9194 0.8636 0.8906

Atrial tachycardia 0.7632 0.8467 0.8028

Atrial fibrillation with rapid ventricular rate 0.8361 0.7786 0.8063

TaBLE 2: A comparison of ECG signal classification results for various models.

Model Precision (%) Recall rate (%) Fl-score (%) Training time (min)
MC-DCNN 78.73 79.34 79.03 11

LSTM +RF 80.19 81.22 80.70 21
GRU-RNN 77.93 78.68 78.30 14
Proposed 85.50 85.77 85.63 37

TasLE 3: A comparison of ECG signal classification results for various models.
Training set Test set
No. Model o o t-test (p value)
Average accuracy (%) Mean standard deviations Average accuracy (%) Mean standard deviations
MC-

1 DCNN 98.32 0.0294 75.93 0.1227 0.0891

2 LSTM +RT 97.69 0.0326 81.21 0.0914 0.0855

3 GRU-RNN 98.22 0.0341 79.53 0.0756 0.0646

4 Proposed 98.47 0.0368 83.42 0.0473 0.0512

embedding of diversity prior feature knowledge, the pro-
posed method can achieve the structural and data con-
straints, can improve the robustness and generalization
ability of the model, and has good adaptability to modeling
of small-scale incomplete datasets in the mechanism.

5. Conclusion

A fuzzy radial basis adaptive inference network was pro-
posed in this study, which embeds prior feature knowledge
for pattern classes in mechanism, effectively realized
structural and data constraints of the model, and improved
the modeling properties of small-scale imbalanced datasets.
The membership functions for fuzzy sets, fuzzy inference
rules, and classification rules could be determined adap-
tively, based on sample set learning. Due to the DTW-
DFCM algorithm used to cluster and divide the pattern
subclasses of each pattern class, the number of nodes in each
layer can be computable, so that the FRBAIN can be
regarded as a deterministic model. Simultaneously, the in-
ference and classification of whole network are based on
membership degree information from fuzzy sets, so that the
FRBAIN exhibits both fuzziness and randomness. These
bring convenience to the practical application of the model
and better generalization properties and robustness. Based
on the construction of radial basis fuzzification layer and the
feature embedding mechanism of fuzzy radial basis neuron,
it is convenient to embed the new typical feature knowledge
of pattern class, expand and maintain the model, and im-
prove the recognition ability of signal features. The com-
parative experiments results show that in the case of small-
scale imbalanced datasets, the recognition rate of this
method is 5.37% higher than other methods in the

experiment, and other performance evaluation indicators
are also significantly improved. The proposed method has
good applicability in small-scale dataset modeling, but for
large-scale datasets without obvious statistical characteris-
tics, the computational complexity will increase exponen-
tially. In addition, it has a strong dependence on the selection
of typical feature samples, and has higher requirements for the
similarity measurement of time-varying signal distribution
characteristics, and the workload of selecting diverse typical
feature samples in each pattern class is also relatively large.
The proposed method can be extended to the field of typical
feature embedding in pattern recognition, attention mecha-
nism in image detection and segmentation, model architec-
ture construction in multimodal data integration analysis, and
so on, to achieve the structural and data constraint of the
model. It has great application potential and value for re-
search in unknown or low-cognition fields.
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