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Summary 
The regulation of mKNA encoding transforming growth factor 3 (TGF-/3) and interleukin 2 
(I1,2) in normal human T cells was explored using novel competitor DNA constructs in the 
quantitative polymerase chain reaction and accessory cell-independent T cell activation models. 
Our experimental design revealed the following: (a) TGF-3 mRNA and IL-2 mRNA are regulated 
differentially in normal human T cells, quiescent or signaled with the synergistic combinations 
of: sn-l,2-dioctanoylglycerol and ionomycin or anti-CD3 monoclonal antibody (mAb) and anti- 
CD2 mAb; (b) the steady-state level of TGF-B mRNA in the stimulated T cells, in contrast 
to that of II.2 mRNA, is increased by the immunosuppressant cyclosporine (CsA); and (c) the 
paradoxical effect of CsA on TGF-3 mRNA levels is also appreciable at the level of production 
of functionally active TGF-3 protein. Our findings, in addition to demonstrating the utility 
of the competitor DNA constructs for the precise quantification of immunoregulatory cytokines, 
suggest a novel and unifying mechanistic basis for the immunosuppression and some of the 
complications (e.g., renal fibrosis) associated with CsA usage. 

T ransforming growth factor 3 (TGF-3), a 25-kD homodi- 
meric multifunctional cytokine and a secretory product 

of many cell types including T cells, is a potent inhibitor 
of T cell growth and differentiation (1-3). I1,2, on the other 
hand, promotes T cell growth and their acquisition of special- 
ized effector functions (4). TGF-B and I1,2, thus, have the 
potential to exert diametrically opposite effects on the ex- 
pression of antigen-specific T cell immunity. It was of in- 
terest, therefore, to quantify, simultaneously, the regulation 
of mRNA encoding TGF-3 and Ib2 in normal human T 
cells. Also, in view of the ability of TGF-3 to inhibit the 
antiallograft response (5), it was considered important to 
quantify the effect of cyclosporine (CsA) on the induction 
of TGF-fl mKNA in normal human T cells, and compare 
it to its well-characterized inhibitory effect on the induction 
of II.-2 mRNA (6). 

Materials and Methods 
Isolation and Activation of T Cells. T cells were isolated from 

normal human PBMC with a sequential muhi-step procedure that 
yields >98% CD2 antigen-positive cells and <1% cells that are 

positive for the DR, CD14, CD25, or CD56 antigens (7). Acces- 
sory cell-independent T cell activation was accomplished with ei- 
ther sn-l,2-dioctanoylglycerol (DAG; 10.0/zg/ml) and ionomycin 
(1.0 #M) or crosslinked anti-CD2 (OKT11; 0.5 #g/ml) and anti- 
CD3 (OKT3; 0.5 #g/ml) mAbs (7). 

Design and Synthesis of Competitor DNA Constructs. Fig. 1 illus- 
trates the design, synthesis, and authentication of the 290-bp TGF-/~ 
competitor DNA construct created for the quantification of TGF-B 
mRNA by PCR. As shown, the oligonucleotide primer pair was 
designed to amplify a region in the TGF-3 gene that contains a 
MseI restriction site. The MseI digestion of the 246-bp TGF-3 PCK 
product yielded 210- and 36-bp subfragments that were annealed 
with a 44-bp DNA insert synthesized in vitro to have cohesive 
ends for the MseI restriction site at 5' and 3' ends. The phos- 
phorylated 44-bp DNA fragment was ligated with the 210- and 
36-bp DNA fragments using Esckerichia coli DNA ligase. After li- 
gation, the mixture was run on a 2% low melting point agarose 
gel, and the 290-bp fragment was eluted and purified using the 
gene dean kit. 

The 178-bp I1-2 competitor DNA construct was created in a 
similar fashion. Here, the phosphorylated 44-bp DNA insert was 
ligated with the 88- and 46-bp subfragments derived by MseI diges- 
tion of the I1-2 PCR product. 

Quantification by Competitive PCR. The cDNA, for quanti- 
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fication by competitive PCIL (8), was synthesized in a reverse tran- 
scription reaction mixture containing 1/~g of total RNA (isolated 
from normal human T cells by the guanidinium isothiocyanate/ 
cesium chloride method), 100 ng of random hexanucleotide primers, 
and 200 U ofmoloney routine leukemia virus reverse transcriptase. 
A constant amount of the cDNA (2/zl) was then coamplified with 
known concentrations of the competitor DNA construct, for 32 
cycles using 200/~M TGF-3 or II:2 gene-specific primer pairs in 
a reaction mixture (50/A) containing lx Taq buffer, 1 U Taq DNA 
polymerase, and 40/~M of each dNTP. The PCR products were 
resolved by 2% agarose gel electrophoresis, visualized by ethidium 
bromide staining, and photographed. The negative of the photo- 
graphs was analyzed by laser densitometry, and the absolute absor- 
bance values of the PCR products were determined. The ratios 
of the absorbance of the relevant PCIL product pairs (290-bp TGF-~3 
competitor and 246-bp TGF-3; 178-bp II-2 competitor and 149- 
bp Ib2 PCR product) were plotted against the concentration of 
the competitor DNA used. The concentration of mRNA was thus 
determined and expressed as attomoles (amol) of TGF-3 or IL-2 
mRNA/mg of total RNA. 

Results and Discussion 

Differential Regulation of TGF-{3 mRNA and 11,2 raRNA. 
The steady-state levels of TGF-3 mRNA and Ib2 mRNA 
in normal human T calls, quantified by competitive PCR, 
are displayed in Table 1. Several features that distinguish TGF-3 
mRNA regulation in T calls from that of Ib2 mRNA are 
apparent. First, in quiescent normal human T cells, TGF-fl 
mRNA is readily quantifiable at every time point tested, and 
Ib2 mRNA is not detectable, at any of the time points evalu- 
ated, even by the application of the sensitive PCR method- 
ology (Table 1). Second, quantitative and qualitative differ- 
ences exist between TGF-/J mRNA and Ib2 mRNA 
regulation in T cells signaled with the synergistic combina- 
tion of DAG and ionomycin. As shown in Table 1, the con- 
centration of Ib2 mRNA in the stimulated T cells is several- 
fold greater than that of TGF-fl mRNA in the same T cell 

population, and the highest concentration of Ib2 mKNA 
is found 4 h after stimulation, and that of TGF-f3 mKNA 
1 h after signaling of T cells with DAG and ionomycin. 

The most striking difference between TGF-B mRNA regu- 
lation and that of I1.-2 mKNA was evident when T cells, 
pretreated with CsA, were signaled with DAG and ionomycin. 
Whereas CsA completely prevented activation-dependent Ib2 
mKNA accumulation in the T cells, the steady-state levels 
of TGF-fl mRNA were increased by CsA (Table 1). The Ca/k- 
mediated increase in the abundance of TGF-3 mKNA was 
best seen at the 1 h time point (Table 1). 

Demonstration of Differential Regulation of TGI~/3 mRNA 
and 11,2 mRNA by Crosslinking the CD3 and CD2 Antigen 
on the T Cell Surface. Differential regulation of TGF-3 
mRNA and IL-2 mRNA, uncovered in this instance, by trans- 
membrane signaling of T cells by crosslinkage of the CD3/ 
TCR complex with the CD2 antigen is illustrated in Fig. 
2. Laser densitometric scanning of the agarose gel electropho- 
resis analyses data displayed in Fig. 2 and its computation 
resulted in the following values (per mg of RNA from T 
cells): unstimulated T cells, 1,038 amol of TGF-13 mRNA 
and undetectable level of Ib2 mRNA (Fig. 2, AI and BI); 
T cells stimulated with crosslinked anti-CD3 and anti-CD2 
mAbs, 1,992 amol of TGF-B mRNA and 17,170 amol of 
II.-2 mRNA (Fig. 2, A2 and B2); and T cells stimulated in 
the presence of CsA, 9,903 amol of TGF-B mRNA and un- 
detectable level of IL-2 mRNA (Fig. 2, A3 and B3). Thus, 
CsA increased the steady-state level of TGF-3 mRNA from 
1,992 to 9,903 amol in T cells stimulated via cell surface pro- 
teins implicated in physiological antigenic signaling. 

CsA Enhances TGF-~3 Protein Production. CsA's ability to 
augment TGF-3 gene expression was evident at the level of 
production of functionally active TGFq3 protein. As illus- 
trated in Fig. 3, the highest levels of TGF-3 protein were 
found in the supernatants of T cells pretreated with CsA and 
then signaled with either DAG and ionomycin or with cross- 

Figure 1. Design and authentication 
of the TGF-3 competitor DNA con- 
struct. The primer design, the restric- 
tion site for MseI, the subfragments 
generated by Msel digestion of the 
TGF-/3 PCR product, the insert DNA, 
and the creation of the competitor 
DNA construct are all schematically 
shown in A. Agarose gel dectrophoretic 
validation of the 246-bp TGF-~ PCR 
product, generation of the appropriate 
sized subfragraents of 210 and 36 bp 
lengths after digestion with MseI, the 
insert DNA of 44 bp, and the 290-bp 
competitor DNA construct are shown 
in B. The digestion with MseI of the 
290-bp TGF-3 competitor DNA con- 
struct yielding subfragments of 210, 44 
and 36 bp and the 123-bp and the 
pGEM ladders are also shown in B. 
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Table 1. Differential Regulation of TGF-~ mRNA and IL-2 mRNA in T Cells 

Amount of mRNA in T cells 

l h  4 h  16h  4 0 h  
Additions to 

Exp. T cells* TGF-B IL-2 TGF-/3 IL-2 TGF-B IL-2 TGF-/3 IL-2 

attomol/mg of RNA 
1 None 657 <20 406 <20 228 <20 200 <20 

DAG + Iono 2,408 2,736 441 24,419 172 2189 147 21 

CsA + DAG + Iono 5,488 <20 744 <20 238 <20 213 <20 

2 None 360 <20 441 <20 431 <20 294 <20 

DAG + Iono 625 3,449 253 37,832 544 366 272 57 

CsA + DAG + Iono 1,567 <20 685 <20 272 <20 413 <20 

3 None 431 <20 463 <20 156 <20 147 <20 

DAG + Iono 653 129 259 192,050 147 232 169 78 

CsA + DAG + Iono 1,085 <20 222 <20 181 <20 131 <20 

" Highly purified T cells (106 cells/ml) were incubated with the agents shown for 1, 4, 16, or 40 h. Total KNA was then isolated, reverse tran- 
scribed into cDNA, and amplified by PCR. The amount of TGF-~ mRNA was quantified by using the 290-bp TGF-B competitor DNA construct 
and the IL-2 mRNA with the 178-bp IL-2 competitor DNA construct in the competitive PCR. DAG, 10.0 #g/ml; ionomycin, 1.0 #M; CsA, 100 ng/ml. 

linked anti-CD2 and anti-CD3 mAbs. The bioactivity (growth 
inhibition of mink lung epithelial cells) was best observed 
after acidification of the T cell supernatants and was inhibited, 
in each instance, by an avian anti-TGF-/3 antibody (Fig. 3 B). 

Conclusions and Implications. TGF-/3, a potent  inhibitor  
of T cell growth and differentiation, is considered also as a 

fibrogenic cytokine (1, 2). Our observation that CsA enhances 
TGF-B gene expression, thus, suggests a novel and unifying 
mechanism for the immunosuppression as well as for the renal 

fibrosis encountered with CsA usage. Our investigation also 
suggests a new hypothesis for the CsA-mediated inhibition 
of new DNA synthesis by T cells (since TGF-/3 inhibits c-myc 
gene expression and c-myc expression contributes to T-cell 
growth [9]) and for the CsA-associated vasoconstriction and 
hypertension (since TGF-~/enhances the expression of the 
potent vasoconstrictor, endothelin [10]). 

CsA has selective inhibitory effects on the appearance of 
DNA regulatory proteins (11). Thus, prevention by CsA of 
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Figure 2. Differential regulation of 
TGF-3 and IL-2 mRNA in T cells. Serial 
dilutions of the 290-bp TGF-B construct 
or the 178-bp II.-2 construct were 
coamplified with the cDNA from un- 
stimulated T cells (A1 and BI), T cells 
stimulated with anti-CD2 mAb and 
anti-CD3 mAb (A2 and B2), or T cells 
pretreated with CsA (100 ng/ml) and 
stimulated with anti-CD2 mAb and 
anti-CD3 mAb (A3 and B3). The 
mRNA levels, found after 1 h of incu- 
bation of T cells, are shown and are 
provided in the text. M, 123-bp repeat 
ladder. 
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Figure 3. Augmentation of TGF-~ protein production 
by CsA. (.4) TGF-~ protein concentration of T cell su- 
pematants from four consecutive experiments. TGF-/9 bio- 
activity in the supernatants obtained after 40 h of incuba- 
tion of T cells was quantified with the mink lung epithelial 
cell assay. (B) The effect of 12.5/zg of neutralizing anti- 
TGF-/9 antibody on purified 500 pg/ml TGF-B (control) 
or on the TGF-/9 bioactivity found in the supernatants 
ofT cells stimulated in the presence of 100 ng/ml of CsA. 

the emergence of nuclear regulatory factors that bind to the 
negative regulatory sequence of the TGF-/~ gene or the lack 
of inhibition by CsA of DNA regulatory proteins that pro- 
mote TGF-/9 gene expression might be responsible for our 

results. These hypotheses as well as whether CsA differen- 
tially regulates TGF-B and Ib2 gene expression in vivo are 
to be explored in our future studies. 
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