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Abstract

Cells respond to environmental stimuli via specialized signaling
pathways. Concurrent stimuli trigger multiple pathways that
integrate information, predominantly via protein phosphorylation.
Budding yeast responds to NaCl and pheromone via two
mitogen-activated protein kinase cascades, the high osmolarity,
and the mating pathways, respectively. To investigate signal inte-
gration between these pathways, we quantified the time-resolved
phosphorylation site dynamics after pathway co-stimulation.
Using shotgun mass spectrometry, we quantified 2,536 phospho-
peptides across 36 conditions. Our data indicate that NaCl and
pheromone affect phosphorylation events within both pathways,
which thus affect each other at more levels than anticipated,
allowing for information exchange and signal integration. We
observed a pheromone-induced down-regulation of Hog1 phos-
phorylation due to Gpd1, Ste20, Ptp2, Pbs2, and Ptc1. Distinct
Ste20 and Pbs2 phosphosites responded differently to the two
stimuli, suggesting these proteins as key mediators of the infor-
mation exchange. A set of logic models was then used to assess
the role of measured phosphopeptides in the crosstalk. Our
results show that the integration of the response to different
stimuli requires complex interconnections between signaling
pathways.
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Introduction

Cell survival relies on specific and effective adaptations to environ-

mental changes. Stimuli are detected by specialized receptors and

signal transducers that trigger the appropriate responses by activat-

ing specific signaling pathways in the cell. These pathways are often

comprised of proteins with dynamically changing phosphorylation

states that allow for the transmission and integration of information

that eventually leads to a functional, coordinated response to the

stimulus. These signaling cascades are the core processing circuit-

ries in the cell that allow for detection and transmission of a specific

signal. Despite the linear depiction of these signaling cascades in the

literature, molecular information actually flows through a highly

interconnected cell signaling network that enables cells to make crit-

ical decisions based on the overall status of the network. Pathway

interaction has been named crosstalk (Schwartz & Baron, 1999),

and in the last decade, attempts have been made to measure (Binder

& Heinrich, 2004; Komarova et al, 2005; Schaber et al, 2006; Tisch

et al, 2014), numerically model (Papin & Palsson, 2004; Behar et al,

2007; Fey et al, 2012) and mechanistically investigate signaling

crosstalk (Dumont et al, 2001; Somsen et al, 2002; Patterson et al,

2010; Waltermann & Klipp, 2010; Baltanas et al, 2013).

A prototypic experimental model for studying signaling crosstalk

is found in the budding yeast Saccharomyces cerevisiae in two of the

four mitogen-activated protein kinase (MAPK) pathways, specifi-

cally between the high osmolarity glycerol (HOG) and the mating

pheromone response pathways (Fig 1A) (O’Rourke & Herskowitz,

1998; McClean et al, 2007; Westfall et al, 2008; Patterson et al,

2010; Saito, 2010). The HOG pathway is capable of sensing the

increase in extracellular osmolarity by means of two transmem-

brane osmo-sensors, Sln1 and Sho1. These independently activate

two downstream cascades that converge via two different MAPK

kinase kinases (Ste11 and Ssk2/Ssk22) on Pbs2, which are both the

scaffold protein and the MAPK kinase of the HOG pathway. Once
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Figure 1. Model pathways and experimental workflow.

A The pheromone and HOG pathways (PW) of Saccharomyces cerevisiae. In MATa budding yeast cells, the pheromone pathway is activated by a-factor binding to
Ste2, which induces the release of the Ste18–Ste4 complex from Gpa1. Ste4 binds Ste20 and Ste5 to initiate signaling. Active Ste20 phosphorylates the MAPK
kinase kinase Ste11, which phosphorylates the MAPK kinase Ste7, which phosphorylates the MAPK Fus3. Ste11, Ste7, and Fus3 are all bound to the scaffold
protein Ste5. Active Fus3 partially relocates to the nucleus and phosphorylates a number of target proteins (Far1, Ste12, Dig1, Dig2, etc.). The HOG pathway
responds to an increase in the external osmolarity by means of two receptors, Sln1 and Sho1, which initiates the response by separately activating the two
branches of the pathway. Activated Sho1 recruits the MAPK kinase kinase Ste11 which, together with the MAPK Hog1, is bound to the scaffold protein and MAPK
kinase Pbs2. Ste20 phosphorylates Ste11, which phosphorylates Pbs2. Sln1, Ypd1, and Ssk1 constitute a phospho-relay system that inhibits Ssk2 during normal
osmotic conditions. During a hyper-osmotic shock, Sln1 is dephosphorylated, thus interrupting the phospho-relay system, and Ssk1 is therefore prevented from
inhibiting the other MAPK kinase kinase of the HOG pathway, Ssk2. The latter auto-phosphorylates and then phosphorylates Pbs2. Activated by both branches,
Pbs2 phosphorylates Hog1, which partially relocates to the nucleus and phosphorylates several target proteins (Sko1, Hot1, etc.). A set of phosphatases is known
to dephosphorylate Hog1 (Ptp2, Ptp3, Ptc1).

B The stimulation matrix for the NaCl and pheromone co-stimulation time course experiment. The stimulation times, indicated in minutes for both NaCl and
pheromone, correspond to the total application of either stimulation. As an example, the cell cultures (three biological replicates) relative to the square highlighted by
an asterisk were stimulated as follows: NaCl was added to the cultures, which were then placed back in the incubator; 15 min after, pheromone was added to the
same cultures, which were then placed again in the incubator; after another 5 min, the cells were harvested. Total duration of NaCl stimulation: 20 min. Total
duration of pheromone stimulation: 5 min.

C Workflow for the shotgun mass spectrometry-based label-free quantification of phosphoproteome changes induced by NaCl and pheromone co-stimulation. Cdc28-as
budding yeast cells were grown to mid exponential phase. Then, cell cycles were arrested by Cdc28-as inhibition. After 1 h, cells were stimulated by both NaCl and
pheromone according to the stimulation matrix (B). Biological processes were stopped by fast ice-cold TCA precipitation. Cells were lysed by bead-beating. Proteins
were digested overnight by trypsin. Isolated peptides were enriched for phosphorylated peptides (P-peps) by TiO2 resin and then analyzed by an LTQ-Orbitrap XL
mass spectrometer. The retention time (RT) versus mass-to-charge ratio (m/z) intensity maps measured were aligned across samples by OpenMS and annotated by
Sequest. A list of P-peps quantified across the different stimulation time points was obtained.
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activated, Pbs2 activates the MAPK Hog1. Most of the active Hog1

then relocates to the nucleus and phosphorylates several transcrip-

tional regulators (Posas et al, 2000), while a small fraction of the

active Hog1 remains in the cytoplasm and phosphorylates other

enzymes (Mollapour & Piper, 2007; Westfall et al, 2008; Patterson

et al, 2010). The main result of Hog1 response is an increased cyto-

plasmic concentration of glycerol, the most common osmolyte in

budding yeast (Saito & Posas, 2012), allowing cells to quickly

compensate for the increase in extracellular osmotic pressure.

Within the pheromone pathway, the mating response in haploid

budding yeast cells is triggered upon the detection of pheromones

released by cells belonging to the opposite mating type—MATa or

MATa. The mating signal is transmitted to the MAPK cascade via a

G protein-coupled receptor (Ste2 for MATa, Ste3 for MATa) that

activates Ste20, which in turn activates the MAPK cascade compris-

ing Ste11, Ste7 and the MAPK Fus3, which are all bound to Ste5, the

pheromone pathway scaffold protein (Elion, 2000; Bardwell, 2004;

Dohlman & Slessareva, 2006). A fraction of the active Fus3 then

relocates to the nucleus to affect the expression of several genes.

Similar to Hog1, part of the active enzyme remains cytoplasmic to

phosphorylate cytoplasmic targets (Choi et al, 1999; Elion, 2001;

Parnell et al, 2005).

The HOG and the pheromone pathways share several compo-

nents and, as a result, display signaling crosstalk. Specifically, the

upstream pheromone pathway and the Sho1-branch of the HOG

pathway share Cdc42, Ste20, Ste11, and Ste50 (Fig 1A). In particu-

lar, Ste20 activates Ste11 in both pathways. It has been hypothe-

sized that response specificity may be achieved by means of scaffold

proteins (Patterson et al, 2010), kinetic insulation (Behar et al,

2007), protein relocation (Yamamoto et al, 2010), and/or mutual

inhibition (McClean et al, 2007). A set of phosphatases is known to

de-phosphorylate the two MAPKs in order to inhibit their activity,

while another set of proteins, such as Ssk1, Sst2, Dig1, and Dig2, is

known to inhibit the activity of different components of the two

pathways in other ways. These signaling modules are additionally

involved in the complex regulatory mechanisms that generate posi-

tive and negative feedback loops, which are used by pathways to

modulate the duration and the intensity of their own signals

(Hao et al, 2008; Schaber et al, 2012). While it is well established

that the hyper-osmotic stress response inhibits the mating response

(Patterson et al, 2010), it was more recently reported that also a

long pheromone stimulation could reduce Hog1 activation (Yamamoto

et al, 2010). This phenomenon has been hypothesized to be due to

the activity of Ste50—one of the components shared between the

HOG and the pheromone pathways. A recent study also reported

that pheromone stimulation can activate the HOG pathway in

osmo-adapted cells (Baltanas et al, 2013). While all of these studies

support the existence of mutual modulation between these

two pathways, the actual crosstalk mechanisms are still poorly

understood.

To systematically investigate the co-modulatory signaling flux

between the HOG and the pheromone pathways, we used quantita-

tive shotgun mass spectrometry (MS)-based phosphoproteomics to

measure the phosphorylation changes occurring within the cell that

are produced by a matrix of time-dependent co-stimulations. For

this, we used a double time course experiment in which budding

yeast cell cultures were stimulated, both by NaCl and by phero-

mone, for different times ranging between 0 and 45 min. We then

employed label-free quantification MS to measure the phosphoryla-

tion changes across the different stimulation times. Our results offer

unprecedented and time-resolved details of signal integration within

and between these two pathways. In particular, we observed that,

for certain components, different phosphorylation sites (P-sites)

within the same protein responded to NaCl and pheromone stimula-

tion with idiotypic dynamics, a feature that makes these proteins

the key nodes of information exchange and integration. Addition-

ally, our data confirmed that the pheromone pathway is repressed

by the HOG pathway, and offer new details on how this is mediated.

Interestingly, we detected a significant down-regulation of active

Hog1 by pheromone stimulation. By investigating this phenomenon,

we propose a few mechanisms to be acting in concert: Shared

components (Ste20, Ste11, and Ste50), negative feedback loops

(Gpd1), and phosphatases (Ptp2 and Ptc1) are all affecting the time-

resolved behavior of active Hog1. To put these multiple observa-

tions into a common framework, we developed a set of 23 logic

models where each measured phosphopeptide (P-pep) was simu-

lated based on the available prior knowledge of the respective phos-

phoprotein, and the MS measurements. The model aided the

elucidation of the P-peps involved in the crosstalk between the HOG

and the pheromone pathways, and assessed the importance for the

new mechanisms proposed here. While investigating the dynamics

interlacing our two model pathways, we observed a close functional

connection between the HOG, the pheromone, and the Target of

Rapamycin Complex 2 (TORC2) pathways. Our approach therefore

allowed us to predict novel functional interactions between proteins

belonging to two model pathways within the cell signaling network,

the HOG, and the pheromone pathways, and between these and

other components of the network.

Results

Measuring the effects of NaCl and a-factor stimulation on the
yeast phosphoproteome

To investigate signals integration in the cell signaling network, we

studied the response of budding yeast to two stimuli: hyper-osmotic

shock by NaCl and a-factor pheromone. The stimuli were applied in

a double time course schema consisting of a stimulation matrix,

built on two distinct but overlapping stimulation timelines, one rela-

tive to NaCl and the other to pheromone stimulation. Both timelines

consisted of six time points, ranging between 0 and 45 min, for a

total of 36 NaCl_stimulation_period/pheromone_stimulation_period

combinations (Fig 1B). These stimulation conditions were opti-

mized by a set of preliminary time course experiments where cells

were stimulated separately, either by NaCl or by pheromone.

Accordingly, early time points after stimulation were favored over

later ones, as the transient state of the activation of the two MAPK

cascades occurred within 0–10 (salt) or 10–20 (pheromone) min

upon stimulation (Supplementary Fig S1).

We employed a shotgun MS-based label-free analytical strategy

to quantify P-peps across samples. While budding yeast cells are

immediately responsive to osmotic shock, this is not usually the

case for pheromone stimulation. To also make cells immediately

responsive to pheromone stimulation, a 1 h long Cdc28 analog-

sensitive inhibition (Shokat & Velleca, 2002) was employed (Oehlen
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& Cross, 1994; Colman-Lerner et al, 2005; Strickfaden et al, 2007).

0.4 M NaCl and 1 lM a-factor were then concurrently or sequen-

tially added to the cell cultures according to the experimental design

matrix shown in Fig 1B. For each stimulation condition of the

matrix, three biological replicates were generated. For practical

reasons, the whole perturbation experiment was split into six sub-

experiments, one for each row of the matrix, each one correspond-

ing to a NaCl time course at a fixed pheromone stimulation period.

All the P-peps were enriched with titanium dioxide, and the samples

were measured in batch on an LTQ-Orbitrap using a shotgun

approach (Fig 1C).

Dataset validation

To account for both sample and technical variability, and to ensure

a robust quantification across samples, the extracted ion intensities

of each detected P-pep were first integrated and aligned across all

conditions (Sturm et al, 2008) and then normalized by the total ion

current of the corresponding MS run (Supplementary Fig S2).

To assess the reproducibility of the measured dynamic profiles

and their agreement with published data, we performed NaCl-only

and pheromone-only time course experiments in duplicate. The

known P-peps indicating activation of Hog1 and Fus3, the two

MAPKs of the respective pathways, were detectable with a high

degree of reproducibility (Supplementary Fig S1), and their activa-

tion dynamics were in agreement with published data (Yu et al,

2008; Muzzey et al, 2009). In particular, Hog1 was quickly phos-

phorylated at T174 and Y176, reached a maximal phosphorylation

level within the first 50, and was then quickly dephosphorylated.

While the curves obtained from the two experiments slightly differ

in their shape (there is a secondary mild up-regulation of doubly

phosphorylated Hog1), the main spikes are highly reproducible both

in shape and in intensity. Fus3, by contrast, exhibited a slower

dynamic, as it was gradually phosphorylated at T180 and Y182

during the first 150, the level of phosphorylation peaked around 200,
and then, it steadily decreased. Furthermore, whereas Fus3 activa-

tion curves in the two experiments had similar shapes, their overall

intensities differed. This difference may be due to a dissimilar start-

ing amount either of doubly phosphorylated Fus3 or of the activat-

ing kinases upstream to Fus3 (such as Ste7). The phosphorylation

dynamics of further key components of the two MAPK cascades

followed patterns similar to those of their corresponding MAPK

(Fig 2A and B). These results confirm that the conditions used

correctly reproduced the expected dynamics of the measured

P-peps.

Computation of the observed phosphopeptide dynamic profiles
and qualitative exploration of the HOG and pheromone
pathways dataset

Within our normalized dataset, we focused our analyses on those

P-peps that were confidently detected with a false discovery rate

< 1% in at least one of the three biological replicates of at least four

of the six NaCl and pheromone time points (Elias & Gygi, 2007).

These filters produced a final dataset of 2,536 P-peps, belonging to

1,015 unique proteins (Fig 2C), thus covering about 17% of the

budding yeast proteome. Given the complexity of the signaling

network, here we exclusively studied P-peps derived from the

proteins associated with the HOG and/or pheromone pathways,

with the purpose of investigating how these two model intercon-

nected signaling cascades transmit and integrate information within

and between themselves.

A large majority of the known proteins associated with the HOG

(15 out of 20) and pheromone (12 out of 15) pathways were

measured. At least one phosphopeptide of 82% of these proteins

could be detected in at least one of the six sub-experiments.

(Dotted-lined proteins in Fig 1A could not be detected). On average,

we could quantify 4 P-peps for each protein. The protein with the

highest number of P-peps was Ste20 with 21 quantified sites

(Fig 2D). The proteins that we could not detect are from challenging

segments of the proteome, such as membrane-bound, low molecular

weight, or low copy number. The full time course dataset of all the

confidently detected P-peps relative to the HOG and pheromone

pathways is available in Supplementary Table S1 where, for each

P-pep and for each NaCl–pheromone co-stimulation periods, we

indicate the number of detected biological replicates, their average

intensity, and their standard deviation.

Interestingly, 58% of the naked sequences (i.e. backbone

sequences without phosphorylations) that were identified contain

either the SP or the TP motifs (Supplementary Table S1), which

have been identified as the recognition motifs of all yeast MAP

kinases (Mok et al, 2010). This is consistent with many of the

detected P-sites being direct targets of Hog1 and/or Fus3.

To investigate changes in phosphorylation, we represented the

P-peps measured dynamics (Fig 3A) as a 3D graph (Fig 3B) and as a

combination of 2D charts (Fig 3C) representing sections through the

3D graph. In the 2D representation, each curve follows the dynamic

profile of the corresponding P-pep along one of the two stimuli’s

axis (Stimulus_1). Each curve differs from the other superimposed

curves in the same graph by the period of the application of the

second stimulus (Stimulus_2).

We performed hierarchical clustering of the intensities for all the

36 NaCl/pheromone stimulation combinations to obtain a global

view of the regulation of the P-peps that are known to associate

with the HOG and the pheromone pathways, respectively. In Fig 3D,

we highlight the seven main clusters that arose from this analysis.

Clusters 1, 2, and 4 mostly include P-peps of HOG pathway compo-

nents, while clusters 5 and 6 include P-peps that mostly associate

with the pheromone pathway. Clusters 3 and 7 contain P-peps that

either associate with the HOG pathway or are shared with the pher-

omone pathway.

This clustering approach showed that almost all components of

both pathways are affected by both stimuli. This is a surprising find-

ing, given that pathway crosstalk has so far been linked to very few

components. Cluster 2 contains the HOG pathway’s P-peps that

show cross-stimulation dynamics similar to Hog1_T174_Y176

(ppHog1). All these P-peps appear to be affected by pheromone-only

10 after pheromone stimulation: They were all down-regulated when

cells were harvested 10 after pheromone stimulation. In contrast,

P-peps of clusters 1 and 4 were down-regulated by long pheromone

stimulation even though they are associated with HOG pathway

proteins. In contrast, the P-peps belonging to cluster 3 were up-

regulated by long pheromone stimulation. Cluster 6 P-peps were

up-regulated after 5 min of pheromone stimulation, while those

belonging to cluster 5 were up-regulated 100–200 after pheromone

stimulation. Interestingly, cluster 7 consisted of several P-peps from
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components of both pathways, most of which have inhibitory effects

over other pathway components. Ssk1_S110 and Pbs2_S248, which

fall into cluster 7, were found to have similar dynamics and were

also up-regulated by pheromone despite their association with the

HOG pathway. We also observed that Ste20’s P-peps appeared in all

clusters except cluster 4, indicating that P-peps of Ste20 are differen-

tially regulated by the two stimuli, therefore presumably playing

multiple roles in the signal integration within and between the two

pathways.

Overall, this analysis allowed us to identify different classes of

behavior within the pathway components. Interestingly, the major-

ity of the detected P-peps responded to both NaCl and pheromone.

This suggests that the HOG and the pheromone pathways are tightly

interconnected, exchanging information at multiple levels.

A classification of NaCl- or pheromone-induced effects on
dynamic P-pep patterns

To better understand how the co-stimulation affected the dynamic

P-pep patterns, we manually investigated their 2D representations

(Fig 3C) along the time-axes for both stimuli. This analysis showed

that, in the case of some P-peps, the length of the application of

Stimulus_2 (either NaCl or pheromone) significantly changed the

shape of the curves plotted against the time following the applica-

tion of Stimulus_1 (pheromone or NaCl, respectively). In the follow-

ing, we call this the “Shape Effect” of Stimulus_2 (Fig 4A). Most of

the P-pep changes following this pattern occurred in the first

50 following Stimulus_1 application, and they mostly appeared as

changes in curve concavity, as an increase/decrease in the number
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Figure 2. Data overview and validation.

A, B Dynamic curves of a representative set of phosphopeptides (P-peps) of the HOG pathway after NaCl stimulation only (A) and of the pheromone pathway after
a-factor stimulation only (B). The data points of the curves in these two panels correspond, respectively, to the first row and the first column of the matrix in Fig 1B.

C 2,536 P-peps, belonging to 1,015 unique proteins, were quantified in at least one of the three biological replicates, of at least four of the six NaCl and pheromone
time points with a FDR < 1%. In this panel, we highlight the missing values of our dataset in white.

D Number of P-peps detected for each component of the HOG and pheromone pathway. Proteins with blue-coded bars have at least one P-pep with enough
confidently detected values (as explained for C), while proteins with red-coded bars do not.
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of maximums and minimums of the curves (e.g. a biphasic curve

becomes triphasic), or as a change in curve shape with earlier or

later onset. All these patterns suggest that Stimulus_2 significantly

affected the dynamics of these P-peps by altering their behavior

along Stimulus_1 time-axis.

The dynamics of a second group of P-peps, once plotted against

Stimulus_1 time-axis (for instance), while displaying unvarying

curve shapes, exhibited overall significant intensity variability

modulated by Stimulus_2 (Fig 4B). Here, we call this the “Intensity

Effect” of Stimulus_2, as it does not alter the behavior of the P-peps

but it significantly increases or decreases its overall phosphoryla-

tion. Each P-pep was thus classified by a Shape Effect, an Intensity

Effect, or No Effect after co-stimulation with NaCl, pheromone, or

both (Fig 4C).

By analyzing the distribution of the two stimuli’s Effects across

conditions, we observed that many P-peps, which are not presently

known as shared components of the two pathways, were affected by

both stimuli. We also noted some P-peps that were only affected by

the stimulus not previously linked to its own specific pathway. For

example, Ssk1_S673 and Pbs2_S68, both associated with the HOG

pathway, were significantly affected only by pheromone. Interest-

ingly, the majority of the Shape Effects within the pathway compo-

nents can be attributed to pheromone (because for pheromone, 55%

of the P-peps undergo a Shape Effect, 22.5% undergo an Intensity

Effect, and 22.5% are not affected), while the majority of the Inten-

sity Effects are due to NaCl (because for NaCl, 35.5% of the P-peps

undergo an Intensity Effect, 29% undergo a Shape Effect, and 35.5%

are not affected). This finding implies that, while pheromone stimu-

lation qualitatively changes the way the pathway components

respond, NaCl affects pathway components quantitatively.

As most of the Shape Effects and, to a certain extent, also the

Intensity Effects, occurred in the earliest time points (within 50), we

wondered whether these might be induced artifactually by the hand-

ling of the cultures which, in the case of very early time points, was

temporally very close to culture harvesting. We therefore performed

two mock time course experiments. The first was in relation to

row 2 of the matrix: An equivalent volume PBS, instead of

pheromone, was administered to the cultures 1 min before harvesting

(mock_10_Phe time course). The second was in relation to column 2

of the matrix (mock_10_NaCl time course) where, instead of 4M SD

medium, an equivalent volume of NaCl-free SD medium was admin-

istered to the cells 1 min before harvesting. We then compared the

normalized intensities measured in the mock_10_Phe time course

experiment to those of the first row of the matrix, and the intensities

of mock_10_NaCl time course to the first column of the matrix. We

considered the difference between the matrix time course data and

its corresponding mock experiment to be negligible if one value was

< 1.5 times higher/smaller than the other one. Within the HOG and

pheromone pathways components, 83% of the detected P-peps did

not exhibit significant differences between the 00_Pheromone_matrix

time course and the mock_10_Phe time course, and 89% did not

exhibit a significant difference between the 00_NaCl_matrix time

course and the mock_10_NaCl time course. We can therefore

conclude that the detected dynamics are generated by the stimula-

tion rather than by culture handling. All the results of the mock

experiments are reported in Supplementary Table S2.

Stimuli crosstalk is causing Hog1 and Fus3 P-peps
down-regulation

According to the classification introduced above, we analyzed the

behavior of the pathway MAPKs after co-stimulation with the respec-

tive opposite pathway: ppHog1 from pheromone and Fus3_T180_Y182

(ppFus3) from NaCl stimulation (Fig 4C). Surprisingly, ppHog1

underwent an Intensity Effect displayed by a strong and short-lived

down-regulation 10 after pheromone stimulation (Fig 5A), before

recovering its full intensity within the next 4 min (Fig 5B). This brief

inhibitory effect of pheromone on the HOG pathway MAPK is an

unexpected behavior, since the osmotic shock response is of higher

priority for the cell compared to the mating response. ppHog1 maxi-

mum intensity was not reduced when cells were harvested 1 min

after mock pheromone stimulation (Supplementary Fig S3). The

intensity reached by ppHog1 in the mock_10_Phe time course was,

indeed, comparable to those measured for all the time courses of our

matrix experiments, except for the one relative to 10 pheromone

stimulation. When comparing the dynamics of the mock_10_Phe time

course to that of the first row of our matrix, where no pheromone

stimulation was applied, we observed similar curves both reaching

comparable intensities (Supplementary Fig S3). These results suggest

that the down-regulation of ppHog1 observed 10 after pheromone

stimulation is due to the stimulation itself rather than to a stress

response induced by culture handling.

The dynamic profile of ppFus3 did not change along the phero-

mone timeline (Fig 5C) but, as expected (O’Rourke & Herskowitz,

1998; McClean et al, 2007), the maximum intensity reached by the

P-pep was down-regulated by NaCl stimulation (Fig 5D). This

phenomenon does not prevent Fus3 activation, but slightly slows

the initial response. Interestingly, however, when the system was

pre-stimulated by pheromone for at least 100 prior to NaCl stimula-

tion, NaCl transiently further activated ppFus3 (Fig 5C). These data

show that, although both MAPKs influence each other as expected,

the response dynamics during short time spans can vary from the

final pathway output.

We further analyzed whether the observed mutual influence of

the two MAPKs is also carried to their respective downstream

targets. Among Fus3 targets, only Dig2_T225 and Far1_S114 were

influenced by NaCl, while both Ste12_S400 and the Dig1 P-peps

were affected only by pheromone, and all with a Shape Effect

(Fig 4C). The observation that Dig2_T225 was not modulated by

pheromone suggests that this particular P-site is not the one targeted

◀ Figure 3. Data representation and clustering.

A–C For each quantified phosphopeptide (P-pep), a matrix of intensities was computed (A), where missing values were estimated by cubic spline data interpolation. This
can be represented as a 3-dimensional surface (B), and as a set of 2-dimensional curves (C) where each curve, while following the dynamic of the corresponding
P-pep along one of the two stimuli’s timelines on the x-axis (Stimulus_1), differs from the other superimposed curves by the time of the application of the other
stimulus (Stimulus_2).

D Hierarchical clustering with Minkowski distance performed on the intensity data of the quantified P-peps of the HOG and pheromone pathways generated seven
main clusters. Some of the most interesting P-peps of each cluster are reported to the right.
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Figure 4. Classification of phosphopeptides (P-peps) according to how NaCl and pheromone affect the shape of their dynamic curves.

A The “Shape Effect” induced by Stimulus_2 significantly changes the shape of the curves along the timeline of Stimulus_1.
B The “Intensity Effect” induced by Stimulus_2 does not affect the shape (B1) but the intensity (B2) of the curves along the timeline of Stimulus_1. In both (A) and (B),

Stimulus_2 is pheromone and Stimulus_1 is NaCl.
C The most significant results of the Shape and Intensity Effects classification are reported here, for the HOG and pheromone pathway P-peps, using a protein topology

derived from previous knowledge (Fig 1A). For each P-pep, we display two color-coded squares: The top one shows the effect of NaCl on the P-pep pheromone
dynamics, and the bottom one shows the effect of pheromone on the P-pep NaCl dynamics.
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by Fus3. Lastly, Hot1_S153 is the only Hog1 target influenced by

pheromone with a Shape Effect, while NaCl induces an Intensity

Effect over the same P-site.

These data show that the HOG and the pheromone pathway

MAPKs are both affected by the crosstalk induced by the co-

stimulation by NaCl and pheromone. In particular, with specific

stimulation conditions, crosstalk is down-regulating the phosphory-

lation of the activating P-sites of the two MAPKs.

Particular P-sites of upstream components show NaCl or
pheromone idiotypic patterns

Among the components that are upstream of the MAPKs in the

respective pathways, the only ones whose P-peps were influenced

by both signals are Pbs2, Ssk1, and Sln1 from the HOG pathway,

and Ste20, a kinase shared between the two pathways (Fig 4C).

Interestingly, in many cases, several P-peps of the same protein

responded exclusively to one or the other stimulus, while others

were affected by both stimuli.

Ste20, which had the highest number of detected P-peps in our

study, has been reported to be phosphorylated at different sites,

many of which are cell cycle related (Drogen et al, 2000; Gruhler

et al, 2005; Holt et al, 2009). Among the sites detected in our

dataset, Ste20_S195 was affected only by NaCl and Ste20_T573 only

by pheromone, while the majority of the sites were affected by both

stimuli with a Shape Effect following pheromone and an Intensity

Effect following NaCl stimulation (Ste20_T203_T207, Ste20_S418,

and Ste20_T511). Of note, Ste20_S195 was only affected by NaCl

and followed the spike-like behavior typical of Hog1 (Supplemen-

tary Fig S4A), while Ste20_T573 showed a bi-phasic pattern follow-

ing pheromone treatment with peaks at 50 and 200 (Supplementary

Fig S4B). Ste20_T203_T207 was up-regulated by NaCl, and long

pheromone stimulation had the effect of accelerating this up-

regulation (Supplementary Fig S4C). Finally, Ste20_T511 followed

the same behavior of ppFus3 (Fig 5C and D), both along the NaCl

and the pheromone timelines (Supplementary Fig S4D and E).

Similar to ppFus3, Ste20_T511 was first up-regulated and then

immediately down-regulated by NaCl when the pheromone pre-

stimulation lasted minimally 50.
Another interesting case is Pbs2. Among the P-peps we could

detect, Pbs2_68 was twice up-regulated by pheromone, at 10 and at

200, and did not appear to be affected by NaCl (Supplementary

Fig S5A), while Pbs2_S269 was only affected by NaCl and followed

the spike-like dynamics of the main HOG pathway P-peps

(Supplementary Fig S5B). Lastly, Pbs2_S248 was affected by both

signals with a Shape Effect (Supplementary Fig S5C and D).

These data show that different P-sites are reacting to the stimuli

in different ways. How different phosphorylation configurations and

dynamics affect the signal transmission and the crosstalk remains to

be further investigated.

A

C D

B

Figure 5. Hog1 and Fus3 activation sites.

A–D The 2-dimensional dynamic curves (see Fig 3C) of the doubly phosphorylated forms of the activation peptides of the Hog1 and Fus3 MAP kinases: Hog1_T174_Y176
(A, B) and Fus3_T180_Y182 (C, D). Missing values were estimated by cubic spline data interpolation (see Supplementary Table S1 for all details).
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Quantification of the NaCl- or the pheromone-induced influence
on the P-pep behavior

To better understand how and to what extent each stimulus affected

each specific P-pep both within the known pathways and from the

opposite stimulus, we computed the specificity for each stimulus

and each peptide (Schaber et al, 2006). In this context, the term

specificity is defined as the ratio between the response of a P-pep

to Stimulus_1 alone (i.e. the time-resolved dynamic of a P-pep

when only Stimulus_1 is being applied) and the response of the

same P-pep to the combination of Stimulus_1 and Stimulus_2. A

specificity ratio below 1 indicates that Stimulus_2 amplifies the

effect of Stimulus_1. A ratio above 1 indicates that Stimulus_2

inhibits the effect of Stimulus_1. If the ratio is around 1, then

Stimulus_2 has no significant influence on the effect of Stimulus_1

(Fig 6A). For each P-pep, we therefore computed two specificity

matrixes, one for each stimulus (Fig 6B.1). We then collapsed the

specificity matrixes by computing the averages of the specificity

measures column-wise, thus obtaining 2 specificity vectors for

each stimulus (Fig 6B.2). The specificity for NaCl (S_NaCl)

measures the effect of NaCl over a pheromone-induced response,

while the specificity for pheromone (S_Phe) measures the effect of

pheromone over a NaCl-induced response. As specificity vectors

retain the main information provided by the specificity matrices,

we chose to report all the most significant results in Fig 6C as

specificity vectors, while all specificity matrices are reported in

Supplementary Table S3.

The activation of Hog1 is subject to complex modulation by both
pheromone and NaCl

The down-regulation of ppHog1 (Figs 5B and 7A) could have two

sources: Either a Hog1 inhibitory component is activated or an acti-

vating component is down-regulated. Using the specificity matrices,

we could now search our dataset for components that either directly

or inversely follow the ppHog1 dynamic pattern. In the following,

we present two possibilities that account for how pheromone could

inactivate ppHog1.

First, we looked for P-peps among the pathway components

(excluding the Hog1-targeted transcription factors) that display the

same phosphorylation pattern as ppHog1 within the first 100 of pher-
omone stimulation. The only P-peps with similar behavior to

ppHog1 were Ptp2_S258 (Fig 7B), Ste50_202 (Fig 7C), Ste11_S323

(Fig 7D), and Ste20_T511 (Fig 7E and Supplementary Fig S4D and E).

Of these, Ptp2 is a nuclear tyrosine-phosphatase known to

down-regulate Hog1 (Wurgler-Murphy et al, 1997). However, Ptp2

regulation is unknown. We find that NaCl has little if any influence

on Ptp2_S258 phosphorylation, while pheromone down-regulates

this site (Figs 4C and 7B). In particular, a 10 long pheromone

stimulation down-regulates Ptp_S258, following a pattern that is

similar to the one observed for ppHog1. This suggests that

Ptp2_S258 is not targeted by Hog1 but rather by a pheromone-

dependent signal. It is thus possible that the observed pheromone-

induced down-regulation of Ptp2_S258 activates Ptp2, thus leading

to Hog1 dephosphorylation. Among the other P-peps that mimicked

the ppHog1 specificity pattern, Ste50_S202 is most strongly affected

by the 10 pheromone treatment, and Ste20_T511 appears to be

significantly affected by both NaCl and pheromone and might be

therefore the key P-pep, among all the P-peps of Ste20, mediating

the crosstalk between the two stimuli.

We next searched for P-peps that displayed the opposite phos-

phorylation pattern as ppHog1: up-regulated 10 after pheromone

stimulation and then immediately down-regulated. In doing so, we

found that Gpd1_S24_S27 (ppGpd1) displayed this pattern (Fig 7F),

while Pbs2_S68 does so only during the first 50 (Fig 7G).

As Hog1 is the main known mediator of the osmo-sensing

response, we wanted to differentiate Hog1-dependent phosphoryla-

tion events from those independent of Hog1. For this, we performed

a time course experiment in a yeast strain where the gene coding for

Hog1 had been replaced by an inhibitable ATP-analog-sensitive

version, Hog1-as (Shokat & Velleca, 2002). We observed that after

Hog1-as inhibition, ppGpd1 was twofold up-regulated while the

subsequent NaCl stimulation induced a quick down-regulation of

the respective phosphorylation event (Supplementary Fig S6A). This

result indicates that ppHog1 basal activity is necessary to maintain

Gpd1 in a dephosphorylated state and therefore active at a basal

level. NaCl stimulation, however, induces a fast down-regulation of

ppGpd1. This process was shown to be catalyzed by the two

TORC2-dependent kinases, Ypk1 and Ypk2, by Lee et al (2012) who

showed that NaCl inhibits Ypk1/2 phosphorylation thus down-

regulating ppGpd1. In our data, Ypk1_S644_S653 appears to be also

briefly up-regulated 10 after pheromone stimulation and then mildly

down-regulated (Fig 7H). As Ypk1/2 are phosphorylated by TORC2,

we searched for P-peps belonging to this complex that also display

the same S_Phe Matrix as ppGpd1 and Ypk1_S644_S653. Such

behavior was indeed observed for Bit61_S139_S144 (Fig 7I), a P-pep

belonging to Bit61, one of the subunits of TORC2 (De Virgilio &

Loewith, 2006; Cybulski & Hall, 2009). These results indicate that

pheromone promotes an early phosphorylation of certain P-sites of

both Ypk1 and Bit61, while NaCl appears to have the opposite effect

(Fig 7H and I, Supplementary Fig S6B and C).

A similar behavior to ppGpd1 could also be observed for

Pbs2_S68 in our Hog1-as experiment (Fig 7G and Supplementary Fig

S6D), where Pbs2_S68 down-regulation also depended on ppHog1

basal activity, while NaCl down-regulated it in a Hog1-independent

way. To identify P-peps that are functionally connected to Pbs2_S68,

we searched the complete dataset for P-peps that have an S_Phe

Matrix that is similar or opposite to the one of Pbs2_S68, especially

during the first 50–100 after pheromone stimulation. Twenty-five such

P-peps were found, some of which have already been reported in

other osmotic shock studies. Interestingly, among the peptides with

an opposite behavior to Pbs2_S68, we found Nbp2_S196 (Fig 7J).

Nbp2 is an adaptor protein that has been shown to bind Pbs2 and to

recruit Ptc1, a Ser/Thr phosphatase that down-regulates ppHog1

(Warmka et al, 2001; Mapes & Ota, 2004). These results show that

Nbp2_S196 is down-regulated by pheromone 10 and then again 100

after stimulation, while Pbs2_S68 has the opposite behavior. We

therefore suggest that these two P-sites are responsible for the

known Pbs2 and Nbp2 functional connection.

Mathematical modeling of the newly reported mechanisms
captures signal integration dynamics

We next set out to investigate how the above described P-peps and

crosstalk mechanisms are integrated in the global context of the HOG

and pheromone pathways. We thus addressed the question whether
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the dynamic measures of the P-peps we detected are consistent both

with the signaling network known to regulate the response to NaCl

and pheromone (Fig 1A) and with the mechanisms proposed here.

We built a dynamic mathematical model of the pathways and

variations thereof to include the mechanisms proposed above. The

model was implemented as a set of Ordinary Differential Equations

(ODEs). Because our mechanistic understanding of the P-sites measured

in this study is very limited, we used a logic-based model rather than

one based on the underlying biochemical reactions. The resulting

model and its variations were trained to the P-pep intensities

confidently detected here (Fig 2C, and Supplementary Table S1) and

evaluated in terms of how well they explain the data summarized

by its mean squared error (MSE). To test whether a more

complex model fits the data better simply because of the higher

number of parameters, we then computed the Akaike information

criterion (AIC), which takes into account the performance of the

model while penalizing the number of parameters (Burnham &

Anderson, 2002).

A

UP-

DOWN-

1‘  5‘  10‘ 20‘ 45‘
NaCl
Phe

C

B1

B2

Figure 6. Quantification of the NaCl- and the pheromone-induced influence on each phosphopeptide.

A Implementation of the specificity measure (Schaber et al, 2006) for the quantification of the NaCl- and the pheromone-induced effects over the HOG and pheromone
pathway phosphopeptides (P-peps). We named the resulting specificity measures S_NaCl and S_Phe, respectively.

B For each P-pep, we computed both the matrix (B.1) and the vector (B.2) of both S_NaCl and S_Phe. Each value of the matrix was computed as explained in (A). Each
value of a vector corresponds to the average of the values of the corresponding matrix taken column-wise: Each value of the vector S_NaCl, for instance, is the
average of all the matrix values corresponding to a single time after NaCl stimulation.

C Representation of the most significant specificity vectors for the HOG and pheromone pathways. On top, S_NaCl is shown, and on the bottom S_Phe.
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Figure 7. Modulation of Hog1 activation by pheromone and NaCl.

A–J Specificity matrices of the following phosphopeptides: (A) Hog1_T174_Y176, (B) Ptp2_S258, (C) Ste50_S202, (D) Ste11_S323, (E) Ste20_T511, (F) Gpd1_S24_S27,
(G) Pbs2_S68, (H) Ypk1_S644_S653, (I) Bit61_S139_S144, and (J) Nbp2_S196.

K–M Predicted mechanism for the cross-modulation of Hog1 double-phosphorylation by the co-stimulation with NaCl and pheromone. The connections that are known
from already published studies are indicated in black; our predicted connections are in red.
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The application of logic-based modeling to an MS dataset posed

a number of challenges. Specifically, these are related to: (i) the

complexity of the dataset, (ii) the representation of peptides with

unknown biological function, and (iii) the need to develop a model

at the P-pep level instead of the more established protein level. To

build the model, we first selected the P-peps with the most consis-

tent behavior. We computed the coefficient of variation of each

P-pep across experiments, and we selected those with a coefficient

below 25%. Subsequently, the P-peps for which 25% or more of the

data points had not been detected were discarded. Next, we merged

P-peps with very similar trajectories, which may have been wrongly

resolved or have a redundant biological function, as they are indis-

tinguishable to the purpose of modeling. Affinity propagation clus-

tering revealed that a small number of P-peps indeed behaved

similarly. In such cases, the P-pep with previously known function

was selected. If a cluster of similar P-peps consisted exclusively of

previously unknown members, a cluster representative was chosen.

This filtering process rendered a final dataset of 33 P-peps. The full

list of P-peps and the filtering criteria are summarized in Supple-

mentary Tables S4 and S5. Subsequently, the proteins of the starting

signaling network (Fig 1A) were replaced by these P-peps. If two

interacting proteins were replaced by multiple P-peps each, all the

possible combinations of interactions were therefore implemented.

We thus obtained a “state-of-the-art” logic model of 45 nodes, that

is, 33 measured P-peps (mostly with unknown function) and 12

proteins which could not be detected in a high enough number of

time points, and 93 interactions (Supplementary Fig S7A and B).

To test some of the novel mechanisms described above, we then

developed a set of modified versions of our logic model either by

implementing Ste20_T511 as the main Ste20 P-pep mediating cross-

talk (Fig 7E), and/or by introducing the double-negative inhibition

between ppGpd1 and ppHog1. The model including both proposed

mechanisms consisted of 39 nodes and 73 interactions (Fig 8A).

Since a common formalism to build dynamic models is ODEs

(Kholodenko et al, 2010), we next transformed our logic models

into logic ODEs (Wittmann et al, 2009) by means of CellNOpt

(Terfve et al, 2012). For details regarding P-pep modeling, please

see Materials and Methods. We then trained all the resulting models,

within CellNOpt, to the three time course data corresponding to the

stimulation with NaCl only, pheromone only, and both stimuli at

the same time, that is, the first row, the first column, and the diago-

nal of the stimulation matrix (Fig 1B), respectively.

We used our models to assess the likelihood of the proposed

novel mechanisms based on the experimental data. Our results

show that the model, extended with our proposed mechanisms

(Fig 8B), performs better than the prior knowledge-based one

shown in Supplementary Fig S7. Specifically, with respect to the

state-of-the-art model (MSE = 0.06, AIC = �837), by reducing the

crosstalk mediators to only Ste20_T511, we observed no fitness loss

(MSE = 0.059) and a large improvement in AIC (AIC = �955). This

result suggests that Ste20_T511 indeed mediates the crosstalk, while

all the other P-peps of Ste20 are non-essential crosstalk mediators

under these stimulatory conditions. The further addition of the

ppGpd1–ppHog1 reciprocal inhibition mechanism also showed no

significant increase of fitness (MSE = 0.059) and, accordingly, a

slight decrease in AIC (AIC = �937) due to the extra complexity.

Since the analysis of the specificity matrices (Fig 7F) indicates that

ppGpd1 and ppHog1 are involved in each other’s down-regulation,

these two observations suggest that this feedback loop might be

enhancing the signaling integration at the data points excluded from

models training (i.e. co-stimulation by both NaCl and pheromone,

but not simultaneous).

Finally, we assessed whether certain co-stimulated P-peps do not

affect the shape of the dynamic curves. We therefore generated

models where the interactions labeled as “No Effect” upon a specific

stimulation (Fig 4C), if present in the stimulated pathway according

to literature, were removed. This amounts to removing from the

model shown in Fig 8A the interactions that have No Effect upon

NaCl stimulation, namely the interactions between Sho1 and

Ste20_T573, Ssk2_S53_S57 and Pbs2_S68, the Ste11_Ste50_complex

and Pbs2_S269, and the singly and doubly phosphorylated forms of

Hog1 and Ptp2_S258. We tested the effect of removing these four

interactions in all possible combinations, with the model shown in

Fig 8A, by developing four additional models. Compared to the

model shown in Fig 8A, the model exhibited a loss of accuracy

(MSE = 0.099, AIC = �714), indicating that at least one of the

removed interactions indeed played an important role in the

network. We therefore generated a final set of 15 models by remov-

ing all single interactions, one at a time. We observed that in all the

models with a loss of performance, the interactions between Hog1

and Ptp2 had been removed. This indicates that, as previously

known, the regulation of Hog1’s phosphorylation by the phospha-

tase Ptp2 is essential also during NaCl stimulation. We therefore

suggest that, according to our data, the interaction between Hog1

and Ptp2 is mediated by the phosphorylation of Ptp2 at Ser258.

Altogether, we investigated an ensemble of 23 different models

with all possible combinations of our proposed mechanisms. The

ability of the model represented in Fig 8A to reproduce the data

trend for most of the measured P-peps (Fig 8B) suggests that the

signal propagation and crosstalk, upon NaCl and pheromone

stimulation, are indeed mediated by an important number of P-peps.

The performance of the full ensemble of models is summarized in

Supplementary Fig S8 and in Supplementary Table S6. The main

models, processed and filtered data, estimated parameters, and

documented scripts are available online at http://www.cellnopt.org/

data/yeast/.

Discussion

We investigated the mechanisms governing yeast cell signaling

pathway interactions by measuring the phosphorylation dynamics

of two interconnected signal transduction cascades, the HOG and

the pheromone pathways. The method proved robust, reproducible,

and accurate for the P-peps detected by our quantitative label-free

shotgun proteomic strategy. We could confidently detect P-peps

from 82% of proteins in the HOG or the pheromone pathways. We

were also able to identify several additional proteins that, to our

knowledge, have not yet been associated with either of these MAPK

cascades. A fraction of the P-sites of the HOG and pheromone path-

ways that was identified by previous studies was not detected. One

reason for this could be that the protein digestion employed for

sample preparation generated peptides that were either too low or

too high in mass-to-charge ratio to be detected by the mass

spectrometer. Also, the very nature of a shotgun approach is such

that only the most frequently detected peptide ions can be

ª 2014 The Authors Molecular Systems Biology 10: 767 | 2014

Stefania Vaga et al Phosphoproteomics of signaling crosstalk Molecular Systems Biology

13

http://www.cellnopt.org/data/yeast/
http://www.cellnopt.org/data/yeast/


A

B

Figure 8. Hypothesis validation by logic modeling.
Logic modeling shows that the detected phosphopeptides (P-peps) and proposed crosstalk mechanisms orchestrate the response to NaCl and pheromone stimulation. The
protein signal integration network shown in Fig 1A was transformed into a P-pep logic model (Supplementary Fig S8).

A An ensemble of 23 model variants was generated to include the novel mechanisms proposed above, here showing the model including Ste20_T511 as the main Ste20
P-pep regulating crosstalk and the ppHog1–ppGpd1 double inhibition.

B The proposed model accurately simulated the dynamic behavior of a large number of the detected P-peps, thus supporting the proposed mechanisms (normalized
measurements in black, simulations in blue, and MSE disagreement between data and simulation in background color).
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sequenced and therefore annotated. Such shortcoming of this

approach was, however, largely compensated by the measurement

of a large number of novel P-sites that we then showed to be

involved in the signaling integration.

Given the complexity of the system and the dimensions of our

global phosphoproteome dataset, in this work, we restricted our

analyses to those P-peps that are known proteins of either the HOG

or the pheromone pathways. We applied exploratory computational

tools to: (i) identify which P-peps are significantly responding to a

specific stimulus and to (ii) quantify the effect of a stimulus on the

dynamic response of the detected P-peps. These detailed time-

resolved and quantitative data allowed us to connect specific sets of

P-sites that are likely to be involved in signal transmission and inte-

gration within and between the two stimuli response mechanisms.

As a result, we find that the HOG and the pheromone pathways are

much more extensively interconnected than previously thought.

Based on our findings, we were able to generate new hypotheses for

how pathway component interactions allow faithful signal transmis-

sion and integration, which were supported by a mathematical

model of the underlying pathways. Our findings prompt specific

testable questions for follow-up functional analysis.

P-sites within the same protein show distinct and specific
responses to stimulus

Our data highlight how most P-sites play unique roles in the control

of each protein function to convey a specific signal to subsequent

targets. Some proteins with multiple P-sites showed a complex

phosphorylation response when stimulated by NaCl or pheromone

individually, or when co-stimulated. As an example, let us consider

Ste20, a shared component between the HOG and the pheromone

pathways. The majority of the Ste20 P-peps that we could detect

responded to both stimuli, but with varying dynamics. Moreover,

our clustering analysis showed that P-peps of Ste20 fell into clusters

representing distinct response dynamics. These combined results

identify Ste20 as one of the key proteins regulating the cross-

modulation between the two pathways. Another interesting finding

was the unexpected involvement of certain Pbs2 and Ssk1 P-peps in

both the HOG and the pheromone pathways responses. Pbs2 and

Ssk1 have been described as exclusive components of the HOG

pathway, and yet, we observed a significant phosphorylation

response to pheromone stimulation as well. These results suggest

that, besides Ste20, also Pbs2 and Ssk1 may be important links

between the two inputs, thus allowing for pheromone-induced

modulation of the HOG response. Taken together, our data illustrate

how proteins with multiple P-sites that are differentially phosphory-

lated upon varied stimuli are capable of connecting and modulating

two or more converging signals, allowing for signal integration

within the cell signaling network.

ppFus3 has a biphasic response to NaCl stimulation

Since hyper-osmotic shock is a life-threatening condition, cells need

to prioritize the HOG pathway response over less urgent signals. For

example, the activation of the pheromone MAPK, Fus3, is known to

be down-regulated by NaCl (Patterson et al, 2010). With our data,

we could indeed observe a pattern of down-regulation in ppFus3.

However, since our method allows for detailed, quantitative,

time-resolved phosphorylation profiles, we could refine the descrip-

tion of the response. In pheromone pre-stimulated cells, ppFus3

phosphorylation was increased by NaCl stimulation within the first

minute, and then, phosphorylation was down-regulated after 10

(Fig 5C). This biphasic phenomenon is probably due to the NaCl-

induced activation of the shared components. Once the pheromone

pathway’s machinery has been assembled and recruited to the

membrane by pheromone pre-stimulation, NaCl stimulation further

activates Ste20, Ste11, and Ste50, thus boosting Fus3 phosphoryla-

tion before the NaCl-induced ppFus3 down-regulation is triggered.

How ppFus3 is down-regulated by the HOG pathway is still unclear.

However, as ppFus3 down-regulation happens 10 after NaCl stimula-

tion when ppHog1 reaches its maximum intensity, we speculate a

role for ppHog1 enzymatic activity. Indeed, Patterson et al (2010)

showed that Hog1 inhibition, following osmotic shock by 1 M sorbi-

tol stimulation, induces the activation of the pheromone pathway

by crosstalk, which supports our hypothesis.

Hog1 phosphorylation is transiently down-regulated
by pheromone

Surprisingly, we observed that pheromone treatment induces down-

regulation of ppHog1. We are aware of only one report of phero-

mone-induced ppHog1 down-regulation by Yamamoto et al (2010),

who observed that long pheromone pre-stimulation (440) followed

by a 60 0.4 M NaCl stimulation leads to a significantly reduced

ppHog1 up-regulation. While we also observed a down-regulation in

Hog1 phosphorylation in similar conditions (after 450 of pheromone

and 50 of NaCl stimulation (Figs 5B and 7A)), we unexpectedly found

ppHog1 to be strongly and transiently down-regulated after only 10

of pheromone stimulation (Figs 5B and 7A). This down-regulation

is greater than that observed with 450 prolonged pheromone

stimulation. We therefore used our specificity matrices to identify

those P-peps whose behavior can be functionally linked to ppHog1.

Shared pathway components modulate MAPK activation

Several P-peps displayed a phosphorylation response that correlated

with ppHog1, including Ste20_T511, Ste11_S323, and Ste50_S202.

These P-peps are from proteins known to interact and to be shared

between the two pathways. Ste50, for example, has been shown to

play an important role in negative feedback control and in ppHog1

down-regulation (Yamamoto et al, 2010; Nagiec & Dohlman, 2012).

Fus3, Hog1, and Kss1 are known to phosphorylate and inactivate

Ste50, suggesting a molecular link between the HOG and the phero-

mone pathways.

This early pheromone-induced down-regulation of the shared

MAPK cascade components may be important for the cell to priori-

tize responses. Since the HOG pathway activation is much faster,

shorter lived, and for survival purposes more urgent than mating,

pheromone could induce a short-lived down-regulation of

Ste20_T511 and subsequently affect all of the downstream compo-

nents of the pheromone pathway. The resulting delay in the activa-

tion of Fus3 would allow for the HOG pathway response to fully

initiate (Fig 7K). Since Ste20_T511 down-regulation occurs both

with and without NaCl stimulation, we can deduce that pheromone

always delays Fus3 activation without compromising the phero-

mone response. In this study, we included a modeling effort to
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assess how the mechanisms here presented could integrate the

responses to NaCl and pheromone stimulation. While this proved to

be informative when comparing models representing different

variants of those mechanisms, we anticipate that further insight will

be gained by extending the optimization procedure to include the

data measured upon varying combinations of length in NaCl and

pheromone stimulation.

Gpd1 and Hog1 promote their mutual inhibition

The primary and quickest negative feedback mechanism predicted

by Schaber et al (2012) involves the glycerol production machinery

that is available in cells before osmotic shock, which they believe to

be regulated at post-translational level. Such mechanism would

promote a down-regulation of Hog1’s activity that is inversely

proportional to the amount of the already available glycerol-produc-

ing machinery. Gpd1, whose transcription is induced by active

Hog1, catalyzes glycerol production in response to osmotic stress,

and it is inactivated by phosphorylation at S24 and S27 (Oliveira

et al, 2012). Within our specificity matrices dataset, ppGpd1 had a

response opposite to ppHog1 with pheromone stimulation (Fig 7F

S_Phe). Consequently, ppGpd1 may be responsible for the early

ppHog1 down-regulation. We also observed that ppGpd1 is down-

regulated by both NaCl and ppHog1 in two partially independent

ways (Fig 7F S_NaCl and Supplementary Fig S6A), which quickly

boost the activity of the available glycerol production machinery.

Interestingly, the P-pep Ypk1_S644_S653 of a kinase that is known

to phosphorylate Gpd1 also behaves like ppGpd1 during NaCl

and pheromone stimulation and may be functionally linked to

ppHog1.

All together, these observations lead to a few possible

hypotheses. First, ppGpd1 promotes the down-regulation of

ppHog1 by reducing the amount of active Hog1. Second, both

NaCl and ppHog1 promote the dephosphorylation of ppGpd1.

Third, while pheromone promotes an early phosphorylation of

Ypk1, NaCl causes its de-phosphorylation, thus antagonizing the

Ypk1 regulatory effect. Ypk1_S644_S653 is down-regulated by NaCl

so that it cannot inactivate Gpd1 in osmo-stress conditions, whereas

it is up-regulated by pheromone to increase the modulating activity

of Gpd1 over ppHog1. In its doubly phosphorylated form, Gpd1 is

incapable of catalyzing glycerol production, but it may be able to

indirectly promote ppHog1 down-regulation instead. The mecha-

nisms through which this is achieved, specifically the question

which phosphatase(s) perform(s) the actual dephosphorylation,

need to be further investigated. This regulatory mechanism is

summarized in Fig 7L.

The TORC2 pathway modulates Hog1 activity in response to
pheromone stimulation

As Ypk1/2 are known targets of TORC2, we looked within our speci-

ficity matrix dataset for TORC2 subunits that may also be function-

ally linked to ppHOG1 activity based on similarities of their dynamic

phosphorylation patterns. We found that Bit61_S139_S144 is up-

regulated after 10 of pheromone stimulation before being down-

regulated immediately afterward, like Ypk1_S644_S653, and

ppGpd1. Also, Bit61_S139_S144 was found to be down-regulated

by NaCl stimulation in a Hog1-independent way. These results,

together with our observations relative to Ypk1_S644_S653, suggest

a close link between the TORC2, the HOG, and the pheromone

pathways.

The TORC2 pathway is mainly known to regulate actin polariza-

tion (De Virgilio & Loewith, 2006), even though its function is still

not as clear as that of TORC1. As actin polarization is fundamental

for the mating response (Ayscough & Drubin, 1998), it is no surprise

that pheromone may also affect the TORC2 pathway. On the other

hand, the NaCl-induced down-regulation clearly observed only in

our Hog1-as experiment (Supplementary Fig S6) may be due to a

crosstalk between the HOG and the pheromone pathways, which

would have normally been prevented by ppHog1. We therefore

suggest that pheromone affects the activity of the TORC2 pathway

via the upstream components of the pheromone pathway (Fig 7L)

in order to initiate the TORC2-induced actin polymerization neces-

sary for the mating response.

A role for phosphatases in Hog1 down-regulation

The previously discussed mechanisms offer new insights into the

combined NaCl–pheromone regulation of Hog1 activity, but the

components responsible for dephosphorylating this kinase are

unknown. Ptp2, a phospho-Tyr-specific protein phosphatase, is one

of the phosphatases that are known to regulate the MAPK activity

(Wurgler-Murphy et al, 1997). In our study, we measured the activ-

ity of one of its P-peps, Ptp2_S258, which also behaves like ppHog1

(Fig 7B). We therefore suggest that one of the means for ppHog1

down-regulation 10 after pheromone stimulation is the pheromone-

induced short-lived activation of Ptp2 by its dephosphorylation at

S258.

Ptc1 is a phospho-Ser/Thr-specific phosphatase, which is known

to bind Pbs2 through the adaptor protein Nbp2 to down-regulate

ppHog1 and to be regulated by pheromone stimulation (Malleshaiah

et al, 2010). Within the first 50 of pheromone stimulation,

Nbp2_S196 behaves like ppHog1, while Pbs2_S68 shows the oppo-

site behavior. Additionally, our Hog1-as time course shows that

NaCl-dependent down-regulation of Pbs2_S68 depends on Hog1

activity. Even though Ptc1 was not detected in our experiment, the

behavior of Nbp2_S196 and Pbs2_S68, together with the established

knowledge of their interaction with Ptc1, lead us to propose that

pheromone could exert a negative regulation of Hog1 through the

Ptc1 phosphatase (Fig 7M).

Concluding Remarks

Like every known signaling pathway, the HOG and the pheromone

pathways are activated by two specific signals that trigger two

particular responses. Every pathway, however, consists of a set of

components that ultimately belong to the large pool of cell

molecules that, through complex functional interconnections,

comprise the cell signaling network. Pathways operating in such a

complex environment cannot be considered as isolated signaling

units. Aside from the most direct responses to the triggering stimuli,

we can expect pathways to also react in less obvious ways to

multi-stimulations and to stimuli recognized by receptors of other

pathways. Such a scenario is important for cell survival, since all

the cell’s actions must take into account all the available

information regarding their environment (nutrients, oxygen, stress/

Molecular Systems Biology 10: 767 | 2014 ª 2014 The Authors

Molecular Systems Biology Phosphoproteomics of signaling crosstalk Stefania Vaga et al

16



harm conditions, signals sent by other cells, etc.) in order for the

cell to decide on an optimal overall response.

In our study, osmo-stress is a high-priority issue that threatens

survival. Cells need to react fast, also by preventing, delaying, or

just down-regulating other cellular processes that are less urgent or

that require safe conditions to be completed—including DNA

replication during cell budding or pheromone response. Hence, the

core HOG pathway quickly activates or deactivates a set of compo-

nents in order to prevent cell death and, at the same time, to inhibit

or modulate other cellular responses. Pheromone activation, in turn,

also affects several processes of the cell (e.g. progression through

the cell cycle and cytoskeleton reorganization during shmooing)

(Dumont et al, 2001). Since one of the first stages of the mating

response to pheromone signaling is shmooing, which consists in the

formation of a long cellular bulge, the cell wall integrity pathway is

consequently also activated (Buehrer & Errede, 1997; Baltanas et al,

2013), and the cytoskeleton needs to be thoroughly reorganized,

thus demonstrating yet another example of the integration within

the overall cell signaling network.

The framework of defining specific signaling cascades as isolated

pathways has certainly proven to be a useful simplification of the

cell circuitry when studying the response to a particular input stimu-

lus. However, to investigate the complex signaling integration used

by cells to process multi-faceted environmental stimuli, and to

therefore understand the underlying physiological and pathological

mechanisms, we need to extend our analysis to the whole cell

signaling network.

Materials and Methods

Yeast strain, cell cultures, and stimulation

The Saccharomyces cerevisiae strain used for all the double time

course experiments was a BY4741 with a MATa cdc28::KanMX +

pJU1203 (pRS 416; CDC28as1 = F88G) LYS2-met15 genotype, which

is provided with a Cdc28-as allele that can be inhibited by means of

1-NA-PP1, the ATP analog “PP1 analog 8” (D’Aquino et al, 2005).

The efficiency of this inhibitor on Cdc28-as was preliminarily tested

on our cells by halo assay.

Cells were grown in 50 ml SD medium, within 500-ml shaking

flasks, at 30°C, to an OD600 of 0.6 (exponential growth). The ATP

analog 1-NA-PP1 was then added to all cultures to a final concentra-

tion of 10 lM (from a 10 mM stock solution in DMSO). One hour

after inhibition, cells were stimulated according to the stimulation

matrix (Fig 1B): NaCl was added to 0.4 M final concentration (from

a 4 M NaCl stock solution in SD medium), a-factor to a final concen-

tration of 1 lM (from a 5 mg/ml stock solution in DMSO). Cell

biochemical activities were quickly arrested by the addition of ice-

cold 100% (w/v) trichloroacetic acid, to a final concentration of

6.25%, directly into the cell cultures. After 300 of TCA incubation on

ice, cell pellets were washed twice with 10 ml ice-cold acetone and

then stored at �80°C after complete acetone removal.

For every NaCl/pheromone stimulation time point (i.e. for each

square in the matrix shown in Fig 1B), three biological replicates

were prepared. For practical reasons, the complete matrix

experiment was split into six sub-experiments, each one covering

only one row of the matrix.

Protein extraction, enzymatic digestion, and
phosphopeptide enrichment

Cells were lysed by bead-beating. Acid-washed glass beads were

added to the pellet in an amount equal to the pellet itself (about

250 ll). Each cell pellet was then re-suspended into 400 ll of a

buffer consisting of 8 M urea, 50 mM ammonium bicarbonate, and

5 mM EDTA. Bead-beating was performed for 50 at 4°C, for four

times, thus producing 1.6 ml cell lysate.

Protein concentration was measured by BCA assay. For each

biological replicate, 3 mg of total protein was reduced by 5 mM

TCEP (450), alkylated by 12 mM iodoacetamide (1 h), and then

digested overnight by trypsin (1:125 w/w). Peptides were then

cleaned by reverse phase chromatography. P-pep isolation was

performed by titanium dioxide resin (GL Science), 1.25 mg resin for

each sample. P-peps were then again cleaned by reverse phase

chromatography. The detailed procedure has been thoroughly

described by Bodenmiller and Aebersold (2010).

MS analysis

All the P-pep-enriched samples were analyzed on a hybrid LTQ-

Orbitrap XL (Thermo Scientific), a high mass-accuracy, and high

sensitivity mass spectrometer, interfaced with a nano-electrospray

ion source. In order to reduce the effect of physiological variability

on the mass spectrometric measurements, the samples were

analyzed in batch, using the same liquid chromatography (LC)

system so as to ensure a good reproducibility of the chromato-

graphic retention times. A 90-min gradient (starting with 3% and

ending with 23% acetonitrile) was used for liquid chromatography

elution. The four most intense ions detected in each MS1 measure-

ment were selected for MS2 fragmentation.

Data analysis

The acquired data were searched against an SGD target/decoy data-

base (Elias & Gygi, 2007) for yeast proteins using the Sorcerer

Sequest version 4.2.0 search algorithm (Eng et al, 1994; Lundgren

et al, 2009). Search results were evaluated with the Trans Proteomic

Pipeline (Keller et al, 2005) using the Peptide Prophet version 4.5.2

(Keller et al, 2002). Based on a decoy search (Kall et al, 2008),

maximum false discovery rate was set to 1%. OpenMS version 1.9

(Sturm et al, 2008) was used to detect MS1 features (sets of spectra

that OpenMS recognizes as belonging to the same peptide), annotate

them, and align them between the different MS runs. Probability

scores from analysis of peptides by Peptide Prophet were used to

filter OpenMS results at a false discovery rate threshold < 1%. Only

the phosphorylated peptides were considered for further analysis.

P-peps feature with identical sequence and P-sites, but different

charge states, retention times, or mass-to-charge ratios were merged

together (that is, their intensities were summed). P-peps with the

same amino acid sequence and the same number of phosphate

groups were also merged, as the MS2 spectrum of a P-pep does not

always provide the information necessary to assign a phosphate to

its correct P-site. Uncertain P-sites are reported within brackets,

while the actual number of P-sites within each peptide can be

deduced by the P-pep sequence, since only one representative

sequence is reported.
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All the MS intensities were normalized by the total ion current

(TIC) of each MS run. As the TIC is the sum of all the intensities

detected within the linear elution gradient, it accounts both for

sample concentration discrepancies and for LC-MS variability. This

method was chosen as, to our knowledge, it is the most unbiased.

Only P-peps detected in at least one of the three biological replicates

of at least four of the six NaCl and pheromone time points were

further considered for the analysis. Biological replicate values were

averaged to condense the dataset. Missing values were estimated by

cubic spline data interpolation.

The P-peps belonging to the HOG and the pheromone path-

ways have been classified by a hierarchical clustering (Fraley &

Raftery, 2002), using the Minkowski distance (Karakoc et al,

2006). This clustering analysis was performed by means of the

software R (www.r-project.org), while all of the analyses

described in the next section as well as any data (2D and 3D)

representation were performed by means of MatLab version R2013

(www.mathworks.com).

Shape and Intensity Effects

The P-peps NaCl time-curves and pheromone time-curves were

clustered in two separate sessions. We used K-means clustering,

with the Euclidean distance, in order to keep the number of clusters

to a minimum. The number of clusters generated was 6 for the NaCl

time-curves and 8 for the pheromone time-curves. For each P-pep,

we then observed how many different clusters were assigned to its

NaCl and to its pheromone time-curves. When these numbers were

equal or exceeding 3, then we classified the relative behaviors as

Shape Effects.

All of the P-peps whose curves belonged to < 3 clusters were

further analyzed as follows. As their curves were very similar, they

were averaged: For each NaCl (and pheromone, but separately) time

point, the average intensity was computed. Each P-pep was then

scored by subtracting the resulting minimum average intensity from

the maximum one and by dividing the result by the average of all

the intensities. The behavior of P-peps that scored above or equal to

0.7 was classified as an Intensity Effect.

Phosphopeptide selection, data integration, and logic modeling

MS-DAS (https://pypi.python.org/pypi/msdas) was used to process

the MS dataset and enable logic-based modeling with CellNOpt. For

each P-pep, we used only the measurements acquired upon stimula-

tion with NaCl, pheromone, and both stimuli at the same time, for a

total of 16 experiments out of the 36 (Fig 1B). Next, we calculated

the coefficient of variation across replicates for each P-pep, selecting

only those below a 0.25 threshold. P-peps for which 25% or more of

the data points were missing were discarded. In the dataset used for

modeling, two single data points, that is FUS3_T180_Y182 and

HOG1_T174_Y176 where both pheromone and NaCl were absent,

were interpolated using a cubic spline as initial conditions are

necessary for modeling. All P-peps belonging to the same protein

were clustered to identify redundant trajectories using affinity prop-

agation via the scikit python tool (http://scikit-learn.org/stable/), as

described in the main text. To enable modeling using CellNOpt, the

data were saved in MIDAS format (Saez-Rodriguez et al, 2008).

Finally, proteins in the logic model corresponding to Fig 1A

were replaced by the P-peps that passed the filtering process,

and thereby, a model of the state-of-the-art role of the measured

P-peps within the HOG and the pheromone pathways was

assembled.

Next, we implemented a system of equations where each equa-

tion represents the level of one signaling intermediate in the model.

To that end, the logic ODE approach (Wittmann et al, 2009)

allows us to express the change over time in the normalized abun-

dance of each P-pep as a function of its regulatory P-peps, that is,

its inputs. Consider, for example, that Hot1 is phosphorylated at

S153 by Hog1 doubly phosphorylated at T174 and Y176. The

change over time in abundance of Hot1_S153 can be therefore

represented as:

H _ot1 S153 ¼ 1� Hog1 T174 Y176n kn þ Hog1 T174 Y176nð Þ
1 kn þ 1ð Þ

� ��

� Hot1 S153

�
� sHot1 S153

where the level of Hot1_S153 depends on the abundance of

Hog1_T174_Y176 and on a degradation rate that assumes that

dephosphorylation is proportional to the abundance of Hot1_S153.

The parameter s is a time-scale of the activation of Hot1_S153,

and both n and k are the parameters of a Hill function for

normalization.

For logic modeling, the data were normalized between 0 and 1.

We used a nonlinear normalization via a Hill function with a Hill

coefficient of 4. The IC50 coefficient of the Hill function was deter-

mined by selecting the middle point of the cumulative distribution

function using all data points for each P-pep. This normalization

prevents very large values from biasing the model. Finally, each

model described in the text was fit to the normalized data using the

logic ODE formalism of CellNOpt embedded in the CNORode R

package available in bioconductor. As a global optimization proce-

dure, a scatter search algorithm was used, included in the R meigor

package (Egea et al, 2014). Each optimization problem was run for

48 h 50 times. Most cases converged on a very similar fit (Supple-

mentary Fig S8).

For model selection, the AIC (Burnham & Anderson, 2002), a

measure where higher values indicate increased information loss,

was computed using the MSE as accuracy signature. To enable

comparison of models where selected P-peps were removed, the

standard MSE computed by CNORode (Terfve et al, 2012) was

corrected to be calculated only in the performance of the nodes

present in all models. In order to account for model fit and

number of data points while penalizing an increase in the number

of parameters, the AIC was defined as shown in the following

equation:

AIC ¼ n logðMSEÞþ 2k

where k is the number of parameters and n the number of data

points.

The logic models both in SIF Saito & Posas (2012) and in

SBML-qual formats (Chaouiya et al 2013) are available online at

http://www.cellnopt.org/data/yeast/ and in the Supplementary

Model Files. The processed and filtered phosphopeptide measure-

ments in MIDAS format, estimated parameters, and a documented
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script are provided as well and can be used via the CellNOptR and

CNORode R packages. The models including the state-of-the-art and

the mechanisms’ crosstalk, ppGpd1–ppHog1 regulation, and “No

Effect”, as well as the phosphopeptide measurements selected and

normalized as MIDAS, are also provided for modeling using the

CellNOptR and CNOrode R packages.

Data Availability

The matrix mass spectrometry data have been deposited to the

ProteomeXchange Consortium (http://proteomecentral.proteomex-

change.org; Vizcaı́no et al, 2014) via the PRIDE partner repository

with the dataset identifier PXD001445.

Supplementary information for this article is available online:

http://msb.embopress.org
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