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Abstract: The compounds 11,12,13-tri-nor-sesquiterpenes are degraded sesquiterpenoids which have
lost the C3 unit of isopropyl or isopropenyl at C-7 of the sesquiterpene skeleton. The irregular
C-backbone originates from the oxidative removal of a C3 side chain from the C15 sesquiterpene,
which arises from farnesyl diphosphate (FDP). The C12-framework is generated, generally, in all fami-
lies of sesquiterpenes by oxidative cleavage of the C3 substituent, with the simultaneous introduction
of a double bond. This article reviews the isolation, biosynthesis and biological activity of this special
class of sesquiterpenes, the 11,12,13-tri-nor-sesquiterpenes.
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1. Introduction

The terpenoid family of natural products comprises thousands of compounds with
high structural and stereochemical diversity deriving from a small number of linear iso-
prenoid precursors. Terpenes are built up from isopentenyl diphosphate, the universal
precursor of all isoprenoids, and basic C5 isoprene units, which can be obtained either
through mevalonate or 2-methylerythritol 4-phosphate pathways. Terpene structures are
divisible into isoprene units (C5), which are linked in a head-to-tail manner [1]. They are
classified into the following classes or groups based on the number of these isoprene units
they contain: monoterpenoids, C10; sesquiterpenoids, C15; diterpenoids, C20; sesterter-
penoids, C25, triperpenoids, C30; and carotenoids, C40 [2,3].

Among these, sesquiterpenes are the most numerous of the terpenoid compounds
and can be grouped into approximately 30 major skeletal types, but at least 200 less
common skeletal types are known. Sesquiterpene hydrocarbons are common essential oil
components in plants and accumulate in many fungi species. In the sesquiterpene series,
a-, mono-, bi-, tri- and tetra-cyclic compounds are known [4]. Of these, bicyclic and tricyclic
predominate and they occur freely, although glycosides are also known in this series.

Cyclases transform 2-E-6-E-farnesyl diphosphate (FDP) into cyclic sesquiterpenes
via ionization and electrophilic attack of the resultant allylic cation on either the cen-
tral or distal double bond [2], yielding a wide variety of sesquiterpenic skeletons. The
nature of the products eventually formed are a function of the stereochemistry and con-
formation of the intermediates, and the cyclases may serve as rate-controlling enzymes in
sesquiterpene biosynthesis.

However, in the case of skeletons with two or more cycles, the immediate precursor is
not FDP, but typically an intermediate formed from it (germacrene A/B) that undergoes
initial protonation of the double bond. This causes the formation of a carbocation that
triggers a cascade of reactions that explain the formation of skeletons, such as guaiane,
eudesmane and, from the latter, the eremophilane skeleton.
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These sesquiterpene skeletons can become degraded, losing the isopropenyl group
situated at C-7. These compounds receive the name 11,12,13-tri-nor-sesquiterpenes, and
some have exhibited interesting biological activities or played an important role in the
environment or life cycle of different organisms.

In order to carry out the bibliographic search of this study, databases such as Scopus,
Science Direct Elsevier, PubMed, Google Scholar and especially the CAS SciFindern platform
were accessed to retrieve information, using several keywords: “sesquiterpene”, “natural
sesquiterpenoids”, “tri-nor-sesquiterpene”, “trinor-sesquiterpene” and “tri-norsesquiterpene”
to find all tri-nor-sesquiterpenes that were already known. We also included the words
“biosynthesis” and “biological activity” in the search criteria to look for the information about
the biosynthesis of the different families of tri-nor-sequiterpenes. From the search results, those
compounds which presented a trinorsesquiterpene formula (C12HnOn) in the platform CAS
SciFindern were indexed in this study, and articles that referenced that type of compounds
were analyzed. Automatic search tools were used to exclude some of the articles, while others
were screened manually. Papers published in languages other than English were excluded
from the analysis, especially those written in Chinese and Japanese, except when there was an
extensive summary of the article in English.

This review provides an overview of publication trends on structures, occurrences,
isolation, biosynthesis and bioactivity of this degraded class of sesquiterpenes, i.e., the
11,12,13-tri-nor-sesquiterpenes. The information was retrieved up to February 2021 and
303 references were analyzed.

2. Tri-nor-Germacranes and Tri-nor-Elemanes

Germacrane is the basic parent of a family of sesquiterpenes and is characterized
by a cyclodecane ring structure substituted with an isopropyl group and two methyl
groups. These sesquiterpenes are usually found in plant extracts as unsaturated derivatives
with two double bonds at position 1(10) and 4, which are called 1(10),4-germacradienes
(Figure 1). They are typically produced by a number of plant species and have antimicrobial
and insecticidal properties [5].
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Figure 1. Molecular structure of 1(10),4-germacradiene.

Tri-nor-germacranes have the same skeleton as germacranes, except for the oxida-
tive lack of the isopropyl group. Their properties are similar to those of germacranes,
and this is why some tri-nor-germacranes can arouse commercial interest due to their
biological properties.

Many of the 11,12,13-tri-nor-sesquiterpenes identified are products of the secondary
metabolism of many organisms. Most tri-nor-germacranes have been identified as compo-
nents of essential oils (EOs) and some, such as compounds 1, 2 and 4–6, have been extracted
from the essential oils of different plants (Figure 2).

Compound 1, called dihydropregeijerene, is one of the tri-nor-germacranes that is a
component of EO. Dihydropregeijerene (1) has been identified in the EO of Fructus aurantii [6].
A study about conformational isomerism in dihydropregeijerene (1) and hedycaryol has
been reported (Figure 2) [7].

A re-examination of Geijera parviflora leaves, yielding geijerene (3) when worked up
under standard conditions of steam distillation and fractional distillation, was found to
contain a new hydrocarbon that was named pregeijerene (2) [8]. It was postulated to
be a geijerene (3) precursor, as it conserved properties of the two compounds [8]. Hy-
drocarbon 2 formed a crystalline adduct with silver nitrate and rearranged thermally to
yield geijerene (3).
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Pregeijerene (2) has been isolated from the EO of different species of the Rutaceae
family, in which Ruta graveolens is the most common plant and the one from which this
compound has been studied [9–24].

It has also been extracted from Rubus rosifolius [25,26], a Pimpinella species [27–53],
species of Skimmia [19,54–60], Chloroxylon swietenia [61] and other plant species.

Steam distillation of the leaves of Boronia microphylla provides an essential oil which
contains pregeijerene (2) (Figure 2) [62]. This EO is full-bodied and fruity with a strong
fragrance of Vetiveria zizanioides giving it a bitter, woody and grape-like odour. It is used as
a componenet in Boronia perfume which has a fruity and woody note [62]. It has also been
identified as a volatile fragrant component in a mini-core collection of mango germplasms
from seven countries [63].

It has also been reported that compound 2 plays an important role in geosmine
biosynthesis because, as mentioned above, pregeijerene (2) is an intermediate compound in
geosmin biosynthesis [64].

Some essential oils containing pregeijerene (2), such as Pimpinella khayamii oil, exhibit
interesting properties such as antimicrobial activity [49]. Oil samples from Skimmia anquetilia
were tested for their biological properties and exhibited in vitro cytotoxic activity against
four different cancer cell lines: viz MCF-7 (Breast), HeLa (cervix), PC-3 (Prostate) and
Caco-2 (Colon), using a sulforhodamine (SRB) assay [58].

The antimicrobial and antioxidant activities of essential oils from Pimpinella tragium Vill.
subsp. glauca (C. Presl.) (Apiaceae) have also been reported [52]. C-12 nor-sesquiterpenes
were the principal class of metabolites (56.6–70.6%), among which pregeijerene (2) and gei-
jerene (3) were predominant. Oil obtained from the stems exhibits the highest antibacterial
activity, while oil from the flower is the most potent antioxidant [52].

A pregeijerene isomer known as pregeijerene B (4), (E,E,E)-1,7-dimethylcyclodeca-
1,4,7-triene, has been identified in many different plant species. It was extracted for the first
time from Juniperus erectopatent [65] and a common biosynthetic pathway for pregeijerene
B (4), and the germacrene sesquiterpenoid 8-α-acetoxyhedycaryol was inferred from their
co-occurrence in the foliage of 24 Juniperus species [65]. Similarly, in 2004, pregeijerene B (4)
and 8-α-acetoxyelemol was proposed to arise from 8-α-acetoxyhedycaryol, accounting for
their co-occurrence [66].

There was some resemblance of the Mass Spectrometry (MS) of compound 4 to that
of the pregeijerene (2), but in contrast to the latter, which readily undergoes thermal
rearrangement to geijerene (3) [8], pregeijerene B (4) remains stable even at 280 ◦C.
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In addition to the isolation of compound 4 from the EO of Juniperus species [66–72],
pregeijerene B (4) was also isolated from the EO of two endemic Nepeta species, namely
N. nuda and N. cadmea [73]; the EO of Helietta parvifolia, which exhibited anticholinesterase
activity [74]; and from different species of Pimpinella [43]. This compound was also isolated
from the EO of Stachys menthifolia [75], Artemisia annua [76], Calycanthus floridus L. [77] and
Thottea ponmudiana [78].

Regarding biological activity, oils from two Juniperus species have exhibited antifungal
and insecticidal activity, and this bioactivity could be related to some of the properties of
compound 4 as one of the components of the essential oil [71]. Some essential oils from
Juniperous, Nepeta and Artemisa species exhibit antioxidant activity when compound 4 is
one of the most abundant components [74,76,79–81].

Compound 4 has also been identified as the major component of oil extracted from the
fresh leaves of Thottea ponmudiana, as well as Nepeta ucrainica, which was tested against both
Gram-positive and Gram-negative bacteria. The oil showed significant activity against the
Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis in comparison to strepto-
mycin [78,82]. Pregeijerene B (4) also appears in a patent for pharmaceutical compositions
to treat chronic pain and opioid addiction [83].

Lastly, (E,Z,E)-1,7-dimethylcyclodeca-1,4,7-triene (5), isomer of pregeijerene B (4), was
described as a dehydrogeosmin intermediate in its biosynthesis in Cactaceae flowers [64].
Some tri-nor-germacranes, i.e., compound 1,5-dimethylcyclodecane (6), were identified in
the liposoluble constituents of Paphia undulata shell [84].

Geijerene (3) and isomers 7 and 8 are considered thermal artefacts of pregeijerene (2).
Thus, it is known that pregeijerene (2) can be thermally isomerized to yield geijerene (3) by
Cope rearrangement and chemical transformations (Figure 2).

Compound 3 was extracted for the first time from the essential oils of some species of
Geijera [85], and it was isolated in pure form from the linalool-geijerene azeotrope by an
enhanced boratization procedure [86]. A structural study of geijerene, mainly by chemical
degradation, led Sutherland to assign structure 3 for geijerene [87]. Its struture has also
been studied independently by Birch et al., using an array of different physical methods [88].
Their confirmation that geijerene is correctly represented by 3 is especially valuable, since
the occurrence of a plant product with two asymmetric centers in a racemic state is most
unexpected. Further details of the degradations described in the earlier paper [87] and
other confirmatory evidence, including a synthesis of the principal oxidation product of
geijerene, have been analyzed in subsequent studies [89].

Owing to the many plants from which geijerene (3) has been isolated and the wide
range of biological activities exhibited by the essential oils that contain this compound, this
review only included the most significant examples. Geijerene (3) has been extracted from
Chloroxylon swietenia DC leaves. The crude oil, whose principal compounds are germacrene
D, pregeijerene (2) and geijerene (3), had a potent repellent effect on two mosquito species:
Aedes aegypti and Anopheles stephensi [61,90–93]. Similar to pregeijerene (2), compound 3
has also been isolated from many Pimpinella species [42] and exhibits antimicrobial and
antioxidant activity [52]. It has also been found in Momordica charantia [94] and in the essen-
tial oil of Eupatorium odoratum Linn. leaves and was found to be active against E. coli and
B. subtilis [95]. Later, it was isolated from the essential oils of Geijera parviflora and G. salici-
folia, where it exhibited antimicrobial and free radical scavenging activity [96]. It has also
been isolated from the essential oils of two endemic Nepeta species, N. nuda subsp. glandulif-
era and N. cadmea. These essential oils have been shown to reduce metal ions and radicals.
Moreover, both oils have relatively weak but noticeable activity against acetylcholinesterase
and butyrylcholinesterase; they also have weak activity against α-glucosidase, but quite
high activity against α-amylase and significant activity against tyrosinase [73]. Lastly,
the chemical composition and antioxidant potential of essential oil from the seed kernel
of Moringa peregrine were studied. Gas Chromatography (GC) and GC–Mass Spectrom-
etry (MS) analyses of that essential oil revealed that it contains 33 compounds. Of these,
geijerene (3) was identified as the major compound (33.38%). Study of its antioxidant
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activity indicated that M. peregrine essential oil can be considered as an alternative choice
to synthetic antioxidants [97].

Compound 7, known as isogeijerene, has only been detected in Pimpinella species [43]
(Figure 2). The first evidence of the compound isogeijerene C (8) was from the chemical
treatment of geijerene (3) with MeOH-KOH [87]. Birch et al. reported an isogeijerene
prepared by the action of potassamide in liquid ammonia whose structure corresponded
with isogeijerene C (8) [88].

Isogeijerene C (8) has been isolated from different species such as Ruta graveolens [10].
Interestingly, root callus and root organ cultures, whether grown in light or darkness,
produced only geijerene (3) and pregeijerene (2), which are both present in intact roots,
and isogeijerene C (8). Only dark stem callus cultures of R. graveolens predominately
produced the terpenoid hydrocarbons geijerene (3) and pregeijerene (2) [11]. When these
same cultures were changed from light to darkness or vice versa, the composition of the
oils also changed, with isogeijerene C (8) being produced in the latter situation [11].

Some essential oils in which isogeijerene C (8) was detected exhibited anti-larval
activity [98] and antioxidant, antimicrobial, anti-inflammatory and antifungal proper-
ties [95,99,100]. Isogeijerene C (8) has also been detected in the essential oil of Pimpinella
species [41–43,45,50,101], Agathosma species [99], Aspilia africana [102], Hymenocrater longi-
florus [98,100] and Eupatorium odoratum Linn [95].

We would note that there is a great deal of confusion in the literature concerning the
names of compounds 3, 7 and 8 found in different databases (Pubchem and Scifinder). Readers
should, therefore, pay careful attention to references if interested in any of these compounds.

Lastly, orientalol P (9) (Figure 2) was isolated from the rhizome of Alisma orientale
(Sam.) Juzep [103]. The planar structure of 9 was determined to be 2,3-seco-11,12,13-tri-nor-
eudesmane by extensive NMR spectroscopic methods. The relative stereostructure of this
compound was correlated by NOESY experiment and named orientalol P.

3. Tri-nor-Eudesmanes: Geosmin and Derivatives

Many sesquiterpenes that lose the C3 unit at the C-7 position have an eudesmane
skeleton. To help organize this discussion of the many tri-nor-derivatives isolated with an
underlying eudesmane skeleton, in this section, we draw a distinction between derivatives
which, themselves, have a eudesmane skeleton and geosmin derivatives.

3.1. Tri-nor-Eudesmanes: 11,12,13-Tri-nor-Eudesmanes

Interestingly, compound 10a, which is an intermediate in the synthesis of geosmin [104],
has subsequently been isolated from the liverworts Lophocolea bidentata and L. hetero-
phyla [105] and from Taiwanese liverwort Bazzania fauriana [106]. Enantiomeric separation
of synthetic 10a and 10b by preparative GC helped establish a correlation between configu-
ration and optical rotation. GC investigations on a capillary column with the cyclodextrin
derivative proved that the natural olefin 10a was the (+)-enantiomer (Figure 3). Tri-nor-
eudesmanes 11a–11c were isolated from Inula racemosa [107–109]. Compound 11d was
isolated from the roots of Inula helenium [110]. The structures of isolated compounds were
elucidated by extensive spectroscopic methods, including 1D and 2D NMR, and computa-
tional methods. Racemosin A (11a) was identified in Inula racemosa Hook. f [107], and it is
an ingredient in several patented drugs to treat rhinitis [111], to treat or prevent myocardial
ischemia [112], to treat epidemic haemorrhagic fever [113] and to treat or prevent acute
heart failure (Figure 3) [114].

The diastereomers 12a and 12b (Figure 3) were isolated from the essential oils of
Vetiveria zizanioides [115,116], and, therefore, they are components of Haitian vetiver
oil [116]. Compound 12a has been used as a reactant to achieve (−)-geosmin chemical
synthesis [117–121]. It plays an important role in the cosmetic industry due to its scent [122].
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Calamusin I (13a) was isolated from Acorus calamus rhizomes and exhibited weak hep-
atoprotective activity against APAP-induced HepG2 cell damage [123]. Tri-nor-eudesmanes
13b and 13c were isolated from the aqueous extract of Alismatis Rhizoma [124] and 13d
was isolated from Teucrium polium [125] and from Alpinia oxyphylla [126]. The structure of
13d was identified by using standard MS and NMR spectroscopic methods. Its absolute
stereochemistry was determined based on a modified Mosher’s reaction. The degraded
sesquiterpene 13e was isolated from the methanolic extract of the Red Sea soft coral Litophy-
ton arboreum, along with known tri-nor-sesquiterpenoid teuhetenone A (16a) (Figure 3) [127].
Compounds 13e and 16a were assessed for their antimicrobial activity; both exhibiting
weak activity against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus).
Furthermore, Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli were sig-
nificantly inhibited by compounds 13e and 16a at minimum inhibitory concentration (MIC)
values of 1.2 and 1.9 µg/mL, respectively. In particular, of the pure metabolites tested,
only the nor-sesquiterpene 13e was shown to exhibit moderate antifungal activity against
Candida albicans with an MIC value of 3.2 µg/mL (Figure 3). Additionally, 13e showed the
most potent cytotoxic effect against MCF-7 cells with an IC50 value of 6.43 µM.

Compound 14a was extracted from the aerial parts of Teucrium ramosissimum [128]
and from the rhizomes of Homalomena occulta [129]. It exhibited significant in vitro antiplas-
modial activity against Plasmodium falciparum with IC50 values of 3.3 µg/mL. However,
no cytotoxicity was observed against the human diploid lung cell line MRC-5 for these
compounds [128].
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The compound named orientalol O (14b) was extracted from the rhizome of Alisma
orientale (Sam.) Juzep [103]. Its structure and relative stereochemistry were elucidated
by NMR spectroscopy (1H and 13C NMR, HSQC, HMBC and NOESY), electronic circular
dichroism (ECD) and HR-ESI–MS data analyses. The nephrotoxicities of the isolated com-
pounds were evaluated on normal human HK2 cells by high content screening, and neither
the MeOH extract nor the compounds exhibited potential in vitro nephrotoxicity [103].

In a phytochemical study looking into species of the family Labiatae which are endemic
to the Canary Islands, Teucrium heterophyllum L´Her was studied from a phytochemical
point of view. The new 11,12,13-tri-nor-sesquiterpenes teuhetone (15), teuhetenone A
(16a) and teuhetenone B (17) were isolated, and their structures were characterized by
extensive mono- and bi-dimensional NMR techniques [130]. The tri-nor-eudesmanes
16a–16c (Figure 3), were identified from Alpinia oxyphylla extract [131–134] and Laggera
alata [135].

The 3,4-dihydroxy-α,β-unsaturated ketones oxyphyllenone A (18a) and B (18b) were
isolated from the fruit of Alpinia oxyphylla (Figure 3) [136–139]. Compound 18a had in-
hibitory effects on nitric oxide production; however, these compounds did not exhibit signif-
icant inhibitory activity against the release of β-hexosaminidase from RBL-2H3 cells [137].

Compounds 19 and 20 were extracted from liverwort Apomarsupella revolute [140], and
their structures were established unequivocally on the basis of spectroscopic data analysis.
The methoxy derivative 20 was considered an artifact of 19.

Compound 21a was isolated from the essential oils of mosses [141] and liverwort
Lophocolea bidentata [105]. The structure and absolute configuration of 21a was confirmed
by synthesis from the olefin 10a, obtaining the enantiomers 21c and the couple 21b and 21d
(Figure 3) [105].

The 1,4-dihydroxy-7-keto derivative 22a was identified in Alpinia oxyphylla extract [126,134]
and the rhizomes of Homalomena occulta [142] and Teucrium ramosissimum [128]. Structures
and relative stereochemistry were elucidated by extensive spectroscopic studies, including
1D and 2D NMR and mass spectrometry (MS). Moreover, oxyphyllenone C (22b) was
extracted from Rhizoma cyperi [143] (Figure 3).

The degraded eudesmane 23a was obtained from the Tibetan folk medicine Pulicaria
insignis [144,145]. This tri-nor-sesquiterpene exhibited weak inhibitory activity against
the influenza virus H1N1 neuraminidase in an in vitro assay [146]. At a concentration of
200 mg/mL, compound 23a showed 19.5 ± 1.4% inhibition. Unfortunately, 23a proved to
be very toxic against MDCK cells in the MTT assay. Further modification of the compound
will be needed to reduce toxicity while increasing antiviral activity [144]. The structure
of 23a has been revised to structure 23e [145], and the diastereomer 23b was used as a
precursor in the synthesis of cybullol (see geosmin derivative 34) [147].

Compounds 23c [109], 23d and 23e [145] were isolated from the roots of Inula racemose
(Figure 4). The latter showed antiproliferative activity against A549, HepG2 and HT1080
cell lines with IC50 values of 3.71, 5.94 and 3.95 mg/mL, respectively [145].

The novel 11,12,13-tri-nor-3,4-diepicuauhtemone (24a) was isolated and character-
ized in a study of the fresh whole plant Pluchea arguta [148–150]. This compound, along
with the diastereomer 24b, has been described as an intermediate in the synthesis of
cuauhtemone, a dihydroxy ketone sesquiterpene isolated from the Mexican medicinal
shrub “Cuauhtematl” [151].

In addition to the tri-nor-sesquiterpenes 23c–23e, compounds 25 and 26 were also iso-
lated from the roots of Inula racemosa (Figure 4) [145]. All isolates were evaluated for their
antiproliferative activities against three human cancer cell lines, using the CCK-8 cell viabil-
ity assay. Unfortunately, compound 25 and 26 showed no such activity (IC50 > 50 mg/mL)
against the tested cell lines.
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Euphraticanoid D (27) (Figure 4) was isolated from Populus euphratica resins [152]. The
structure of this new compound, including its absolute configuration, was characterized by
spectroscopic, chemical and computational methods. Biological evaluation revealed that
compound 27 exhibited neuroproctective activity in H2O2-induced HT-22 cells, with 27
occurring in a concentration-dependent manner.

Then the neuroprotective property of the isolate was assessed by using glutamate-
induced SH-SY5Y cells, and it was found that compound 27 could dose-dependently
provide protection from neural cell injury in a concentration range of 10–40 µM. A brief
structure–activity relationship was briefly discussed [152].

3.2. Geosmin Derivatives

(−)Geosmin (28) (Figure 5) is a degraded sesquiterpene which has lost the isopropenyl
group at seven position of the eudesmane skeleton, resulting in an 11,12,13-tri-nor-eudesmane.
Its name comes from the Greek “ge”, meaning “earth”, and “osme”, meaning “odour” [153].
Geosmin was first isolated from the actinomycete Streptomyces griseus by Gerber and
Lechevalier. This compound has a strong earthy smell with a low odour threshold of
10–100 parts per trillion that is produced by several microorganisms. It is responsible for
the characteristic odour of freshly turned earth and is associated with unpleasant off-flavors
in water [154–157], wine and fish [158].

It has also been found in fungi [159], including Botrytis cinerea and Erysiphe necator [160].
It is produced by different cyanobacteria [161–164] and myxobacteria, where geosmin (28)
is responsible for the earthy smell of the culture [165]. Geosmin (28) has also been isolated
from a variety of higher plants, such as liverwort and sugar beet [166], and from mosses,
protozoans and insects [64,167].

It has been shown that, in contrast to flies, compound 28 does not repel mosquitoes
(Aedes aegypti) but rather stimulates egg-laying site selection [168]. Environmentally rele-
vant concentrations of geosmin (28) affect the development, oxidative stress, apoptosis and
endocrine disruption of embryo–larval zebrafish [169].
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(−)Geosmin (28) can be found at concentrations greatly exceeding its olfactory percep-
tion threshold in grape juices obtained from rotten grapes and in wine, indicating that it
contributes to their earthy aroma [170].

In addition to compound 28, several stereoisomers of (±)-geosmin have been described
as intermediates in the synthesis of several natural products such as geosmin, dl-telekin
and dl-alantolactone [171–173].

Dehydrogeosmin (29) (Figure 5) has been identified as the dominant olfactory com-
pound in the scent of flowers of the Cactaceae species: Rebutia marsoneri Werd, Dolichothele
longimamma (DC) Br et R., and Sulcorebutia kruegeri (Card) Ritt [174]. It has been identified as
an aroma-active component of Oenanthe javanica and Labisia pumila essential oils [175,176]. It
has also been identified in Verbascum thapsus [177]. Dehydrogeosmin (29) is an ingredient in
pharmaceuticals, including tetrahydrocannabinol and cannabidiol for treatment of chronic
pain and opioid addiction [83].

The sesquiterpenoid origin of dehydrogeosmin (29) has been reported based on the
successful administration of deuterium-labeled farnesol to Cactaceae Rebutia marsoneri
Werd and the metabolic conversion by flower heads of this plant [178].

Argosmin C (30a) has been obtained from different sources, but it was first detected by
GC from the extract of the myxobacterium Nannocystis exedens [165]. Interestingly, it was
obtained from an analysis of volatile organic biogenic substances (VOBSs) in freshwater
phytoplankton populations [179] and algal blooms in South Australian waters [180]. This
compound has also been detected in some moss species (Musci) [141] and identified
by GC–MS from several sequenced actinomycetes (Figure 5) [120]. Its enantiomer 30b
was proposed as an intermediate compound in the photosensitized isomerizations of
10-methyl-1(9)-octalins [181]. Decaline 30c has been described as an intermediate in the
synthesis of artemisin [182]. It has been studied from the point of view of its structure–
activity relationship, and it was found that minor structural changes had a major impact on



Plants 2022, 11, 769 10 of 37

odour. The enantiomer 30d has been described as an important synthetic intermediate in
alantolactone synthesis [171,172].

Compound 31 has been described as a chemical component in Valeriana jatamansi oil
by GC–TOF-MS analysis [183].

Biotransformation of (±)-geosmin by the terpene-degrading bacteria Pseudomonas sp.
SBR3-tpnd and Rhodococcus wratislaviensis DLC-cam yielded several products, with the
major ones being (±)-3-ketogeosmin (32) and (±)-7-ketogeosmin (33) (Figure 5). Results
suggest that the enzymes acting on geosmin enantiomers are not very site-specific and that
compounds (±)-32 and (±)-33 are likely produced from (+)-geosmin [184]. Furthermore,
geosmin’s derivatives, argosmin C (30a) and 3-ketogeosmin (32), were synthesized in an
attempt to develop an ELISA for geosmin [185]. Results indicated that the binding of the
antibody was restricted mainly to the bicyclic structure (A and B rings) of geosmin. The
assay had a sensitivity of 1 µg/mL.

Cybullol (34), a C-8 hydroxyl derivative of geosmin, was isolated during the chemical
study of the fungus Cyathus bullery Brodie, a species of gasteromycetous fungi known as
bird’s nest fungi and widely distributed in nature (Figure 5). The structure was determined
by a combination of chemical and physical methods. Its absolute configuration was deduced
from the circular dichroism spectral of its ketol derivative and by chemical transformation
to yield (−)-geosmin [186]. (±)-Cybullol (34) has been synthesized from 6,10-dimethyl-
4-octal-3-one, and the transformation of 4,10-dimethyl-4-octal-3-one to (±)-geosmin was
described by Ayer et al. [147].

The first total synthesis of 1β-hydroxygeosmin (35a) [187], a metabolite isolated from
a fermentation broth of Streptomyces albolongus [188], was achieved via three different
synthetic approaches from the racemic Wieland–Miescher ketone. The configuration of
the hydroxyl groups at C-1 and C-5 was managed by using the Mitsunobu reaction and
stereo- and regioselective epoxidation. Synthesis of stereoisomers 35b–35e has also been
described (Figure 5) [187]. Compound 35a exhibited strong antifungal activity against
Candida parapsilosis with a MIC value of 3.13 µg/mL. The odoriferous derivatives of geosmin
36 and 37 were also isolated from S. albolongus obtained from Elephas maximus feces [188].
Continuing with the quest for bioactive natural products from actinomycetes associated
with animal feces, tri-nor-eudesmanes 38–40 (Figure 5) were isolated from Streptomyces
anulatus derived from Giraffa camelopardalis feces [189]. The geosmin derivatives were not
bioactive against four human cancer cell lines and did not have an inhibitory effect on
lipopolyssacharide-induced NO production in RAW 264.7 macrophage cells.

4. Tri-nor-Eremophilanes: 11,12,13-Tri-nor-Eremophilanes

The family of eremophilane sesquiterpenes is widely distributed among different natu-
ral sources and has a wide range of biological activity, such as antitumor, anti-inflammatory
and antimicrobial properties, among others. In recent years, new bioactive eremophilane
sesquiterpenes have been discovered from various terrestrial and marine organisms [190].

Tri-nor-eremophilanes were first isolated from plants. The first known compound of
this type was identified as a new C12-ketone, (+)-(1S, 10R)-1, 10-dimethylbicyclo [4.4.0]dec-
6-en-3-one (41), isolated from Reunion vetiver oil from Vetiveria zizanioides (L.) Nash in
1972. The structure and absolute configuration of 41 were established by synthesis from
(+)-isonootkatone [115].

In 2000, Weyerstahl et al. described 155 components in the neutral part of commer-
cial Haitian vetiver oil (Vetiveria zizanioides, Gramineae). Their structures were assigned
mainly by 1H- and 13C-NMR spectra. The tri-nor-eremophilenone 41 was identified and
named 11,12,13-tri-nor-eremophil-1(10)-en-7-one (41), and the new tri-nor-eremophilane,
8α-methyl-11,12,13-tri-nor-eremophil-1(10)-en-7-one (42) was also described (Figure 6). A
sometimes unpleasant earthy off-note odour is typical for vetiver oil. The eremophilane
derivative 42 revealed these unpleasant musty, earthy elements. In addition, 42 has a
woody-camphoraceous odour [116].
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The aerial parts extract of the South African plant Ondetia linearis was studied affording
the two new tri-nor-sesquiterpenes 2α,10β-dihydroxyondetianone (43) and
1α-hydroxyisoondetianone (44), in addition to other known compounds. The structures
were elucidated by high field NMR techniques. Compounds of this type are not common
and are most likely the result of oxidative degradation, as this species appears to be very
rich in oxidizing enzymes [191].

In 2009, Saito et al. reported for the first time the isolation of eremophilane-type
compounds from the genus Cremanthodium, which is especially difficult to harvest, as
it grows in high mountain areas. These authors were able to collect two samples of
Cremanthodium stenactinium (Asteraceae) at different locations in Sichuan Province in China.
The new tri-nor-eremophilane 4S, 5R-trinoreremophil-9-en-8-one (45) was isolated from
the ethyl acetate extract of the roots (Figure 6). Its structure was determined based on
spectroscopic data [192].

The genus Ligularia (Compositae) is widely distributed in China and has long been
used in traditional folk medicine. This genus has antipyretic properties, loosens phlegm,
relieves cough, invigorates blood circulation and sooths pain. Previous phytochemical
studies on the genus Ligularia revealed that it is a rich source of eremophilane deriva-
tives [193,194]. According to Chinese pharmacopoeia, Ligularia has been used to treat
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hemoptysis, rheumatism, pulmonary tuberculosis, urinary tract blockages, asthma, hepati-
tis and bronchitis for hundreds of years. Biological and phytochemical studies have shown
that Ligularia species produce a variety of metabolites which have interesting structures
and unique biological activities [195].

Two new tri-nor-eremophilane sesquiterpenes, (2R,5R,8S,8aR)-1,2,3,5,6,7,8,8a-octahydro-
5-hydroxy-8,8a-dimethyl-3-oxonaphthalen-2-yl acetate (46) and (4aS,5S,8R)-5,6,7,8-tetrahydro-
3,8-dihydroxy-4a,5-dimethylnaphthalen-2(4aH)-one (50), were isolated and identified as part
of a study of the chemical components of the roots of Ligularia sagitta collected from the
Gannan Tibet Autonomous Region in the Gansu Province of China (Figure 6) [196]. This
compound 50 was also identified from the aerial parts of Ligularia sagitta [195].

Another similar derivative, tri-nor-sesquiterpene 47, was isolated from the aerial parts
of Senecio humillimus Sch. Bip. collected in Bolivia. Though its absolute configuration
was not determined, the one proposed is very likely to be accurate as it is the one found
in all of the eremophilane derivatives isolated thus far from members of the Compositae
family [197].

The structure of a new nor-sesquiterpenoid was isolated from the roots of the peren-
nial herb Ligularia fischeri collected in Nanchuan county of Chongqing city in China.
The new compound was determined to be (4aS,5S)-5,6,7,8-tetrahydro-3-hydroxy-4a,5-
dimethylnaphthalen-2(4aH)-one (48), a tri-nor-eremophilane sesquiterpene elucidated with
the aid of key 1H, 1H-COSY and HMBC correlations [193].

The roots of Ligularia przewalskii have traditionally been used to relieve cough and
asthma in Northwest China. Xu and Hu reported the study of this plant collected in
Hefei City, Anhui Province, China, and the study resulted in the isolation of the new
tri-nor-sesquiterpene 3β-(acetyloxy)-7-hydroxynoreremophila-6,9-dien-8-one (49) and three
known eremophilane derivatives [194].

Bicyclic eremophilane-type sesquiterpenoids are mainly distributed in the Ligularia
genus, but they are also present in other genera of the same Compositae family, such as
Senecio. These natural products display multiple bioactivities, such as antisepsis, anti-
inflammatory, anticancer and antineoplastic activity, and have also been used to treat
cardiovascular disease. Not surprisingly, the synthesis of these compounds has attracted
much attention among researchers. In 2018, Meng and Liu presented the successful synthe-
ses of some natural products of this type, including compounds 48 and 50. The syntheses
feature a double Michael addition, Robinson annulation and α-enolization of an unsatu-
rated ketone. The first total syntheses were achieved in three or four steps [198].

Ligulariopsis is a new genus Compositae represented only by Ligulariopsis shichuana,
which is endemic to Western China. Previous studies of this plant have reported ere-
mophilenolides and triterpenes, showing a close relationship between this species and
those of Cacalia and Ligularia (Compositae). The acetone extracts of the whole dried plant
of L. shichuana collected in Shaanxi Province, China, were separated to yield one new
eremophilane with an 8-oxo-6,9-dien unit with no isopropyl group. This compound was
established as 1β,7-dihydroxy-3β-acetoxynoreremophil-6(7),9(10)-dien-8-one (51) by spec-
troscopic methods and 2D NMR techniques [199].

Additionally, an isomer of compound 51 (Figure 6) was identified from the cul-
tured endophytic fungus Guignardia mangiferae, which was isolated from the toxic plant
Gelsemium elegans collected in Guangxi Province, China. This strain yielded the new tri-nor-
sesquiterpene guignarderemophilane A (52). Its absolute configuration was determined
on the basis of circular dichroism. This compound inhibited lipopolysaccharide-induced
NO production in BV2 cells with an IC50 value of 15.2 µM (positive control curcumin,
IC50 = 3.9 µM), showing anti-inflammatory activity [200].

Another genus with pharmacological relevance is Nardostachys. Nardostachys jatamansi
(D.Don) DC. (family Caprifoliaceae, NJ) is commonly used in traditional medicine in China,
India and Japan to cure digestive and mental disorders [201]. The rhizomes and roots
of Nardostachys chinensis Batalin (Valerianaceae) have also been used as a sedative and
analgesic in traditional Korean medicine. Modern pharmacological studies have shown
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that natural products from this plant exhibit bioactivity against depression, arrhythmia,
convulsion, myocardial ischemia and hypertension [202,203].

An analysis of the methanolic extract of roots and rhizomes of Nardostachys chinensis
Batalin led to the isolation of the new tri-nor-sesquiterpenic diketo-alcohol narchinol A
(53), whose stereostructure was deduced on the basis of chemical and physical data [204].
Subsequently, desoxonarchinol A (54) was isolated for the first time from the same species
and exhibited cytotoxic activity against P-388 cells [205].

In the search for new inhibitors of nitric oxide (NO) production from plants, Hwang et al.
found that a methanolic extract of N. chinensis potently inhibited NO production in LPS-
stimulated RAW 264.7 cells, indicating anti-inflammatory activity. Bioassay-guided frac-
tionation of the CH2Cl2-soluble fraction of N. chinensis led to the isolation of two new
sesquiterpenoids, namely narchinol B (55) and narchinol C (56) (Figure 6), along with other
known compounds [202].

The compounds desoxonarchinol A (54) and narchinol B (55) also inhibited exces-
sive production of proinflammatory mediators and pro-inflammatory cytokines in LPS-
stimulated BV2 and primary microglial cells, proving that they are potential candidates
for the development of therapeutically relevant agents to prevent neurodegenerative dis-
ease [206]. Additionally, compounds 53 and 55 had a protective effect on neonatal rat
cardiomyocyte injury induced by hydrogen peroxide [207].

Nardostachys jatamansi contains several types of sesquiterpenes with potential anti-
inflammatory activity. Thus, Yoon et al. studied the methanolic extracts of this plant and iso-
lated the new nardosinone-type compounds kanshone M (57) and 7-methoxydesoxonarchinol
(58), along with the known narchinol A (53) [208]. Compounds desoxonarchinol A (54) and
narchinol B (55) were also isolated from the roots and rhizomes of this species [209].

Chaetopenoid F (59) was identified in the endophytic fungus Periconia sp. F-31, which
was originally isolated from the medicinal plant Annona muricata. Three stereoisomeric
tri-nor-eremophilane sesquiterpenes, periconianones I−K (60–62) (Figure 6), were also
isolated from the same strain. These structures, including absolute configurations, were
elucidated through extensive spectroscopic data analysis and electronic circular dichroism.
Compound 62 exhibited anti-inflammatory activity indirectly by suppressing LPS-induced
NO production in BV2 cells with inhibition rates comparable to those of curcumin, the
positive control. Compound 59 exhibited low cytotoxic activity against the HeLa cancer
cell line, and low anti-HIV activity with an IC50 value of 11.0 µM, whereas the positive
control efavirenz had an IC50 of 1.4 nM [190].

As seen so far in this review, truncated eremophilanes lacking the isopropyl group
have mostly been isolated from terrestrial plants, but in 1988, study of the secondary
metabolism of the marine deuteromycete Dendryphiella salina strain led to the isolation
and characterization of the first tri-nor-eremophilane, dendryphiellin A (63), esterified by a
branched C9 acid, a class of metabolite for which there is no precedent in fungi of marine
origin (Figure 7) [210].

In subsequent work, the same researchers reported the isolation of novel tri-nor-
eremophilanes called dendryphiellin B (64), C (65) and D (66) (Figure 7) with spectral
features that closely resemble those of dendryphiellin A [211]. In addition, dendryphiellin
A1 (67) was subsequently isolated from the same D. salina strain [212].

Dendryphiellin A1 (67) was also identified in the culture broth of the Hawaiian endo-
phytic fungus Chaetoconis sp. FT087 that was isolated from the leaves of Osmoxylon novogu-
ineensis (Scheff.) Becc. This compound exhibited moderate antiproliferative activity against
A2780 and cisplatin resistant A2780CisR cell lines, with IC50 values of 6.6 and 9.1 µg/mL,
respectively [213]. Moreover, two other new tri-nor-eremophilanes were isolated from this
endophytic fungus, namely chaetopenoids D (68) and F (59) (Figures 6 and 7), but none of
them exhibited either anti-proliferative or antibacterial activity [213].
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The plant pathogenic fungus Septoria rudbeckiae Ellis and Halst (Mycosphaerellaceae)
was isolated from the halophyte Karelinia caspia, a perennial shrub collected in the Xinjing
Uyghur Autonomous Region of Western China. The study of this strain afforded 11 ere-
mophilane sesquiterpenoids with a tri-nor-eremophilane skeleton: four known compounds,
dendryphiellin B (64), C (65) and D (66) (Figure 7); and chaetopenoid F (59) (Figure 6),
and seven new ones called septeremophilanes B–H (69–75). Their structures and abso-
lute configurations were established based on spectroscopic data (NMR and HRESIMS),
quantum chemical calculations and electronic circular dichroism (ECD) experiments. All
metabolites were tested for nitric oxide (NO) production inhibition in lipopolysaccharide
(LPS)-activated BV-2 microglial cells, and dendryphiellin D (66), septeremophilane D (71)
and septeremophilane E (72) were found to display significant inhibition. These results
contribute to the development of more effective drugs to treat neuroinflammation [214].

Other compounds with similar structures and the same backbone have been isolated
from other sources. Thus, the trinorsesquiterpenic diketo-alcohol botryosphaeridione (76)
(Figure 7) was identified for the first time from the endophytic fungus Botryosphaeria rhodina
PSU-M35, which was isolated from the leaves of Garcinia mangostana collected in Suratthani
Province, Thailand [215], while compound 76 was isolated from Phoma sp. LN-16, an
endophytic fungus associated with Melia azedarach, growing on the campus of Northwest
A&F University, Yangling, Shaanxi province, China. The first unequivocal assignment of
its absolute configuration, (−)-(5R, 6S)-76, was made by circular dichroism spectra and
was also established by means of X-ray diffraction. Moreover, that was the first report of a
tri-nor-eremophilane sesquiterpene isolated from the Phoma genus.

This compound exhibited a strong inhibiting effect on lettuce seed germination (Lactuca
sativa) [216].
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The study of the phytopathogenic fungus Lasiodiplodia theobromae that was isolated
from infected guava in Brazil resulted in the identification of the new tri-nor-eremophilane-
type sesquiterpene 77. This is the first time that an eremophilane sesquiterpene was
described for the Lasiodiplodia genus [217].

A new chloro-tri-nor-eremophilane sesquiterpene (78) (Figure 7) was obtained from a
fungus identified as Penicillium sp. PR19N-1 from deep-sea sediment collected in Antarctica.
This is the first example of this kind of compound associated with microorganisms in
the past 30 years. This novel tri-nor-eremophilane exhibited moderate cytotoxic activity
against human leukemia HL-60 and lung cancer A-549 cell lines. These results show
that, in the case of deep-sea fungi inhabiting the Antarctic, the extreme conditions lead to
the expression of unusual biosynthetic mechanisms that could lead to unique secondary
metabolites. Undeniably, the exploitation of these peculiar metabolic pathways represents
a new opportunity for the discovery of bioactive secondary metabolites [218].

5. Tri-nor-Guaianes: 11,12,13-Tri-nor-Guaianes

Natural tri-nor-guaianes are rare metabolites that have been isolated from both terres-
trial and marine sources. One of their most representative members is (−)-clavukerin A
(79) (Figure 8), an unstable diene isolated from the Okinawan soft coral Clavularia koellikeri
by Kobayashi et al. [219] during a search for biologically active compounds from marine
sources. Its absolute stereochemistry was determined by spectral methods and by X-ray
analysis of its diepoxide [219].

Bowden et al. reported the isolation of a terpenoid from an Australian soft coral
Cespitularia sp. [220], which was later identified as 79 [221].

The first total synthesis of (−)-clavukerin A (79) was reported by Asaoka in 1991 [221],
and it was then followed by several other racemic [222–226] and enantioselective synthe-
ses [227–234].

Subsequently, in 1992, Kusumi et al. reported the isolation and structure elucidation
of isoclavukerin A (80), an epimer of 79, from the Okinawan soft coral Clavularia species.
Its absolute configuration was established by a combination of CD and modified Mosher’s
methods [235].

Several total syntheses of isoclavukerin A (80) have been reported (Figure 8) [221,223,
224,232,233,236], confirming its structure. Hydroazulenes 79 and 80 have often been used as
a testing ground for novel synthetic methods and strategies [221–225,227,229–233,236,237].

The tri-nor-guaiane (−)-2,3,3a,4,5,6-hexahydro-1,4-dimethylazulen-4-ol (81), a hydrox-
ylated derivative of clavukerin A (79), was first isolated as a trace component of the essential
oil of the liverwort Barbilophozia floerkei collected from the Harz mountains near Altenau,
Germany [238].

Recently, Liu et al. studied the resins secreted by the tree Populus euphratica, which
have been used to treat tuberculous adenitis, throat and duodenal ulcer swelling in China.
In that work, a new tri-nor-guaiane, euphraticanoid C (82), was isolated and characterized
by spectroscopic, chemical, and computational methods. The neuroprotective properties
of this compound were observed in glutamate-induced SH-SY5Y cells and proved that
euphraticanoid C (82) could dose-dependently protect neural cell injury [152].

Trinoranastreptene (83), which was first isolated from the cultured cells of the liv-
erwort Calypogeia granulata Inoue (Figure 8) [239], is a tricyclic tri-nor-sesquiterpene that
has an unprecedented tricyclo[5.3.01,6.0]decane ring system. Its structure was determined
by detailed NMR analysis, and it turned out to be identical or antipodal to the clavuk-
erin B from Okinawan soft coral (stolonifer) Clavularia koellikeri [240,241] and inflatene
from the stoloniferan coral Clavularia inflata var. Luzoniana collected in Palau, Western
Caroline Islands, which exhibits ichthyotoxicity toward the Pacific damselfish Pomacentrus
coeruleus [242]. To confirm its structural assignment, Kang et al. [243] performed a total
synthesis of racemic trinoranastreptene (83), a surprising and interesting carbon skeleton.
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Essential oils of the genus Pimpinella, a plant genus represented by approximately
150 species distributed throughout Europe, Asia and Africa, are complex mixtures that
contain sesquiterpenes, phenolic compounds and alkenes [52]. In characterizing several
Pimpinella species based on the qualitative and quantitative chemical patterns of their
extracts, Kubeczka et al. studied the essential root oil of Pimpinella major [34] and Pimpinella
saxifrage L. [30]. Moreover, Velasco-Negueruela et al. used gas chromatography–mass spec-
trometry to characterize the essential oils from the aerial parts of Pimpinella anagodendron
Bolle and Pimpinella rupicola Svent., two species endemic to the Canary Islands, Spain [39].
Trinoranastreptene (83) was found in all the extracts.

Similarly, extracts from Pimpinella species collected from Turkey [41,43,50] were
analyzed, and trinoranastreptene (83) was identified, along with more than 140 other
different compounds.

Subsequently, Maggio et al. reported on the chemical composition and antioxidant and
antimicrobial activities of the hydrodistilled essential oils from the flowers, leaves and stems
of Pimpinella tragium Vill. subsp. glauca collected from Sicily (Italy). Trinoranastreptene (83)
was found mostly in the flower extract and proved to be the most potent antioxidant [52].

Many research groups have studied liverworts from the Lophoziaceae family, as they
are a rich source of terpenoids. Thus, tri-nor-guaiane 83 was identified in the ether extract
of Lophozia ventricosa [244–246] and of Barbilophozia floerkei [238]. It has also been identified
in tobacco smoke [247].

Clavukerin C (84) (Figure 8), an interesting tri-nor-guaiane with a hydroperoxy func-
tion, was extracted for the first time from C. koellikeri [240,241]. The presence of the
hydroperoxyl function was suggested by the positive reactions with N,N-dimethyl-p-
phenylenediammonium dichloride reagent and ferrous thiocyanate reagent [241]. It is also
an intermediate of the synthesis of clavukerin A (79) [227]. Clavukerin C (84) was obtained
from clavukerin A by photo-oxidation [222].



Plants 2022, 11, 769 17 of 37

Moreover, a new tri-nor-guaiane type sesquiterpene named dictamnol, an active
ingredient in Chinese medicines used for the treatment of various diseases, was first
isolated from the roots of Dictamnus dasycarpus Turcz [248]. These authors later confirmed
the structure of 85 by total synthesis [249].

However, De Groot et al. later performed a total synthesis of cis-dictamnol (85) and,
owing to differences in the spectroscopic data of the synthetic compound and natural
dictamnol, these authors proposed a revised structure for the natural product with a trans-
(86) and not a cis-fused hydroazulene system (85) [250].

Dictamnol (86) features a core ring system common to a wide range of interesting
natural and synthetic compounds. Thus, Wender et al. described its asymmetric synthesis
based on a cycloaddition methodology in order to define the limitations and utility of these
kinds of reactions [251].

Since then, compound 86 has been extracted from several Pimpinella species [42,43,45,
47,52,252–254] and Dictamnus species [255–257].

Essential oil from the shoots of Kochia scoparia (L.) Schrad has traditionally been used
in Chinese medicine to treat skin diseases, diabetes mellitus and rheumatoidal arthritis in
Korea. El-Shamy et al. analyzed the volatile oil, which had a broad antibacterial spectrum
and moderate antifungal activity. Dictamnol (86) was identified in the extract as a major
component [258]. This compound was also found in the essential oil of several Agathosma
species indigenous to South Africa that exhibited antimicrobial, anti-inflammatory and
cytotoxic activities [99].

In 2005, Xiang et al. isolated a new tri-nor-guaienediol from the aerial parts of the plant
Siegesbeckia orientalis L. used in traditional Chinese medicine to treat malaria, rheumatic
arthritis, hypertension and other diseases [259]. Subsequently, Zhao et al. found the same
compound in the extract of Dictamnus radicis root and named it radicol (87) [256]. It was
also identified as a chemical component of the medicinal species Dictamnus dasycarpus [260]
and Dictamnus angustifolius [257].

Similarly, compound 87 was identified in extracts from the aerial parts of Pimpinella
tragium collected from Turkey [253] and was also found for the first time among the
chemical components of the invasive plant Chromolaena odorata (L.) [261].

Recently, Li et al. determined that radicol (87) was highly cytotoxic to temozolomide-
resistant glioblastoma multiforme cell lines and identified the potentially pro-apoptotic
mechanism. These authors considered radicol (87) as a promising agent for the treatment
of malignant gliomas because of its cytotoxicity to multiple targets, low molecular weight
and high lipid solubility [262].

The radicol methoxy derivative, kanalpin (88) (Figure 8), was isolated from the
methanolic extract of Pimpinella cappadocica. Its antioxidant capacity was evaluated, and
kanalpin (88) was found to be inactive [263].

The trans-radicol, the tri-nor-guaiane 4β,10α-dimethyl-1β,5α−bicycle[3,5,0]dec-6-en-
4α,10β-diol (89), was isolated for the first time from Ainsliaea fragrans Champ. [264] and
Ding et al. later confirmed its structure by single crystal X-ray diffraction, identifying it in
extracts from the leaves of Magnolia grandiflora [265].

Previously, in 2001, a tri-nor-guaiane-type sesquiterpene glycoside, dictamnoside
N (90), was isolated from the water-soluble components of the root bark of Dictamnus
dasycarpus [266], a traditional Chinese medicine used to treat jaundice, cough, rheumatism
and some skin diseases. Sugar moiety was determined as β-D-glucose by acid hydrolysis
and comparison with an authentic sample.

In subsequent studies, the structures and absolute configurations of two new tri-
norguaiane sesquiterpenes, claruviridins A (91) and B (92) (Figure 8), were determined
by means of X-ray diffraction analysis. These metabolites were isolated from the Xisha
soft coral Clavularia viridis, which can be found in the waters of the South China Sea [267].
Claruviridin B (92) was evaluated for its antitumoral activity and was found to be mildly
cytotoxic against A549 cell lines.
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In 2015, Hanif et al. reported on a “new” compound with the same structure as
claruviridin B (92) [268]. However, an overall comparison of the NMR data of the two
compounds unexpectedly showed that the structures were different, indicating that the
metabolite isolated by Hanif was a stereoisomer of compound 92 [267]. This metabolite,
whose stereochemistry has yet to be elucidated, was mildly cytotoxic against NBT-T2 rat
bladder epithelial cells [268].

Furthermore, 1,4-dimethylazulenes has the same structure as tri-nor-guaian sesquiter-
penes. Compound (+)-1,2,3,6-tetrahydro-1,4-dimethylazulene (93) was isolated for the first
time from the essential oil of the liverwort Barbilophozia floerkei collected from the Harz
Mountains near Altenau, Germany [238].

In 1966, Meuche et al. isolated the compound identified as 1,4-dimethylazulene (94)
from the lichen Calypogeia trichomanis. Its structure was confirmed by synthesis [269].

Subsequently, this metabolite 94 was identified, together with other compounds,
in many extracts and essential oils. Thus, 1,4-dimethylazulene (94) was produced as
the major volatile metabolite in the cultured cells of Calypogeia granulata Inoue, a leafy
liverwort [239,270]. This novel azulenoid compound had also been obtained from the
aerial parts of Helychrisum acuminatum [271] and from the essential oil of the liverwort
Barbilophozia floerkei collected in Germany [238]. Compound 94 has also been extracted from
the essential root oil of Pimpinella species [30,34,41–43,50], and it has also been identified in
cannabis smoke [247].

Furthermore, 3,10-Dihydro-1,4-dimethylazulene (95), a labile tri-nor-sesquiterpene
biosynthetic precursor of 1,4-dimethylazulene (94), was first isolated from a cell culture of
the liverwort Calypogeia granulata [239,272]. Its absolute stereochemistry was determined
by the theoretical calculation of its circular dichroism spectra and verified by the synthesis
of model compounds [273].

Compound 95 has also been identified in extracts from Pimpinella [30,41,43,50], in Eu-
patorium odoratum species [274] and in the oil of Moroccan chamomile Cladanthus mixtus (L.)
Chevall [275].

An isomer of 95, compound 4,10-dihydro-1,4-dimethylazulene (96) (Figure 8) was
identified by analysis of essential oils from several Pimpinella species [41–43,50].

6. Miscellaneous Tri-nor-Sesquiterpenes

Here we briefly discuss the tri-nor-sesquiterpenes that cannot easily be assigned to a
particular structure class with the typical skeleton of the four families of sesquiterpenes
previously reported: germacranes, eremophilanes, eudesmanes and guaianes. These
types of tri-nor-sesquiterpenes are synthesized by numerous organisms, and some exhibit
pharmaceutical properties attracting commercial interest. However, our knowledge of
them is limited, and some of their properties are still unknown.

Having studied the constituents of a plant from Costa Rica, Calea prunifolia H.B.K.,
Castro et al. reported the isolation of a complex mixture of hydrocarbons. The aerial parts
afforded the tri-nor-sesquiterpene lactone apocalepruna-1,4E-dien-6,9-olide (97) (Figure 9),
a derivative of a hitherto unknown sesquiterpene type. The structure was elucidated by
spectroscopic methods [276].

Later, another tri-nor-sesquiterpene lactone, crocinervolide (98), was first isolated
from the aerial parts of Calea crocinervosa when the plant was in bloom [277]. It has also
been extracted from two Gonospermum species, G. gomerae and G. fruticosum, together
with other known compounds [278], and from of the aerial parts of L. sinense cv. Chax-
iong [279]. This compound was also isolated from the endophytic fungus Umbelopsis
dimorpha SWUKD3.1410 and from its host-plant Kadsura angustifolia [280]. Crocinervolide
(98) (Figure 9) has also been reported as a component of polymers and prepolymers used
for contact lenses. Natural compounds are used in contact-lens polymers to reduce eye
injury, inflammation and allergic reactions associated with long-term use [281].
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Although furanoterpenoids are a class of frequently encountered natural products
in marine invertebrates, this type of metabolite containing butanolide motif was rarely
reported. In particular, tri-nor-sesquiterpenoids bearing both furan and butanolide moieties
are unprecedented. Two rare new furan butanolides, sponalisolides A (99) and B (100)
(Figure 9), were isolated in racemic forms from the marine sponge Spongia officinalis and
are the first examples of such terpenoids found in Nature. Their structure, including the
absolute stereochemistry of the two pairs of enantiomers, were unambiguously established
by biomimetic total synthesis, involving a key Johnson–Claisen rearrangement and a
lactone cyclization. All the sponalisolide enantiomers exhibited Pseudomonas aeruginosa
quorum-sensing inhibitory activity [282].

Two tri-nor-sesquiterpenoids, urechitols A (101) and B (102), were isolated from the
methanolic root extract of Pentalinon andrieuxii, a plant commonly used in Yucatecan tra-
ditional medicine to treat cutaneous eruptions from leishmaniasis, an infectious disease
caused by protozoan parasites of the Leishmania genus [283]. Although urechitol A (101)
itself exhibited no biological activity, its unique tetracyclic structure prompted some sci-
entists to investigate its synthesis [284,285]. Until 2016, no knowledge existed about the
accumulation dynamics of urechitol A (101) in wild plants of P. andrieuxii. However, results
described by Peña-Rodríguez et al. indicated that the content of urechitol A (101) in root
tissue was clearly related to plant development [286].

Several genetic transformation studies were conducted to gain insight into the produc-
tion of this novel tri-nor-sesquiterpenoid, urechitol A (101). The Agrobacterium rhizogenes
strain ATCC 15834 was used to infect leaf and hypocotyl explants of P. andrieuxii to generate
14 transformed plant lines with increased production of urechitol A. These new transgenic
lines are promising tools to further the study and knowledge of the biosynthesis of ter-
penoids in P. andrieuxii, especially regarding the biosynthetic origin of the miscellaneous
sesquiterpene urechitols [287].

7. Biosynthesis of 11,12,13-Tri-nor-Sesquiterpenes
7.1. Biosynthesis of 11,12,13-Tri-nor-Germacranes and Tri-nor-Elemanes

The 11,12,13-tri-nor-sesquiterpenes are irregular sesquiterpenoids which have lost the
C3 unit of dimethylcarbinol at C-7 of the sesquiterpene skeleton. The irregular C-backbone
originates from the oxidative removal of a C3 side chain from the C15 sesquiterpene, which
arises from farnesyl diphosphate (FDP). Generally, in all families of sesquiterpenes, to
generate the C12-framework, an oxidative cleavage of the C3 substituent with simultaneous
introduction of a double bond has to occur [288]. However, some small variations to this
general mechanism can be observed on different substrates or skeletons.
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Tri-nor-germacranes have the same skeleton as germacranes, except for the oxidative
lack of the isopropyl group, via enzymatic oxidation at C-8 or C-6, featuring a 12 carbon
skeleton instead of a normal 15 carbon sesquiterpene skeleton (Figure 10) [8,65].
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elemanes 3, 7 and 8.

Thus, biosynthetically, pregeijerene (2) and isomers of pregeijerene B (4, 5) can be
considered derivatives of hedycaryol, which arise from FDP, via enzymatic oxidation at
C-8 and C-6 [65], followed by an oxidative dealkylation of the dimethylcarbinol group
generating an endocyclic double bond. This reaction strongly resembles the key step of
the oxidative dealkylation of (+)-marmesin to psoralene [289] and, hence, might also be
catalyzed by a cytochrome P450 [64]. Subsequently, tri-nor-germacranes can be isomerized
to yield geijerene derivatives 3, 7 and 8 by Cope rearrangement [27,89].

7.2. Biosynthesis of 11,12,13-Tri-nor-Eudesmanes

Eudesmanes are biosyntheszed by means of mevalonate pathways and involve the cy-
clization of farnesyl diphosphate (FDP) to give germacryl cation which yield the eudesmyl
cation via transannular cyclization [5]. However, the 11,12,13-tri-nor-eudesmanes have
generally been considered degraded sesquiterpenes where the irregular skeleton originates
from oxidative removal of the C3 side chain. Recent studies have shown that, in some cases,
the loss of the C3 unit was catalyzed by a special enzyme [144,290].

Hence, two sesquiterpenes were isolated from Pulicaria insignis, the C12 trinorsesquiter-
pene 23a and sesquiterpene 103, considered the precursor of 23a, whose biosynthetic path-
way is shown in Figure 11. Based on the work of Stanjek et al. [289], the loss of C3 units
was considered to be mediated by a special enzyme [144].

Biosynthetic studies of 11,12,13-tri-nor-eudesmanes conducted in the 2000s have fo-
cused principally on the skeleton of geosmine, compound 28 probably being the most
representative and important of the interesting family of tri-nor-sesquiterpenes. Geosmine
(28) is produced by many bacteria, including actinomycetes, myxobacteria and cyanobac-
teria, as well as a number of eukaryotic organisms, such as fungi, liverworts, insects and
plants [119,158,291,292]. This compound is responsible for the characteristic smell of moist
soil or freshly plowed earth, and it is an important off-flavor contaminant of drinking
water [293,294].

The biosynthetic pathway of this interesting compound remained unresolved for
several decades and has triggered some controversy in the literature [120]. Despite being
approached by various research groups, only recently have key experiments provided
information on the mechanical details [120]. Initially, studies of the incorporation of deuter-
ated precursors into geosmin (28) suggested that this bicyclic C12 metabolite might be a
degraded sesquiterpene [64,295]. An explicit biosynthetic pathway in myxobacteria to
geosmin (28) was proposed from feeding experiments with deuterium-labeled precur-
sors [167]. The biosynthetic pathway to 28 was clarified by feeding small amounts of
labeled leucine, dimethyl acrylate (DMAA) and mevalonic acid (MVA) to Myxococcus
xanthus and Stigmatella aurantiaca that had been cultivated on agar plates. After feeding
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deuterated [2H10] leucine, Dickschat et al. [167] proposed a biosynthetic pathway to 28 with
intermediate A similar in its early steps to the biosynthetic scheme postulated by Pollak
and Berger [296] (Figure 12).
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from Huang et al. 2010 [144]).

The data obtained by Dickschat’s group were consistent with the proposed biosynthe-
sis, but did not prove the intermediacy of A in the formation of 28. The subsequent steps,
namely cyclization to the bicyclic system, loss of acetone and the proton-mediated addition
of water in combination with a 1,2-hydride shift, were consistent with the fragmentation
pattern observed after feeding of the precursors [167].

The pathway proceeds from farnesyl diphosphate (FDP), which is cyclized to hedy-
caryol and further isomerized to (1(10)E,5E)-germacradien-11-ol (A). Protonation initiates
the formation of the bicyclic carbon skeleton to give the C12 intermediate 8,10-dimethyl-1-
octalin (B) that arises by cleavage of acetone.

Interestingly, the biosynthetic pathway to 28 was different from that previously de-
scribed for the liverwort Fossombronia pusilla (sesquiterpenes formed via the mevalonate
(MVA) pathway only) and Streptomyces sp. (sesquiterpenes can arise through the deoxyxy-
lulose (DOX) phosphate pathway, as well as the mevalonate pathway, depending on the
growth phase) [64].
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Dickschat et al. 2005 [167]).

Figure 13 represents the biosynthetic pathways to 28 in the liverwort F. pusilla in which
the last step is characterized by a hydrogen shift of the same hydrogen, but into the left
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ring of 28. The results of the feeding experiment with F. pusilla, employing deuterated
mevalonic acid (MVA), clearly indicated the hydrogen shift into the left ring of 28, giving
strong evidence for the pathway outlined in Figure 13. The same mechanism has been
suggested for Streptomyces sp. JP95 [64]. However, it was not possible to confirm the
pathway operating in Streptomyces sp. or its possible dependence on the MVA or DOX
pathways. Obviously, two independent pathways to 28 were proposed in nature [64,167].
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Figure 13. Biosynthesis of geosmin (28) in the liverwort Fossombronia pusilla.

The first characterized geosmin synthase was isolated from Streptomyces coelicolor
A3(2) [290,292,297]. Expression in Escherichia coli of the SCO6073 and SC9B1.20 genes gave a
726 amino acid protein making up two catalytically active domains. The N-terminal domain
converted FDP into a 85:15 mixture of (4S,7R)-germacra-1(10)E, 5E-diene-11-ol (A) and the
sesquiterpene hydrocarbon (−)-(7S)-germacrene D (C), whereas the C-terminal domain,
previously thought to be catalytically silent, catalyzed the Mg2+-dependent conversion of
germacradienol (A) via the trinoreudesmane (B) to yield geosmin (28) (Figure 14) [119]. The
mechanism of the fragmentation–rearrangement in the conversion of germacradienol (A)
to geosmin (28) was studied by Jiang and Cane. These researchers reported evidence of the
conversion of germacradienol (A) to geosmin (28) by S. coelicolor germacradienol/geosmin
synthase resulting in the release of the three-carbon side chain as acetone and involving a
1,2-hydride shift of the bridgehead hydrogen exclusively into ring B of geosmin (28) [298].
To detect acetone generated in the formation of geosmin (28), the proposed fragmentation
by-product acetone was trapped with cysteamine in an elegant experiment verifying the fate
of the lost C3 unit. GC–MS analysis confirmed the formation of 2,2-dimethylthiazolidine
(104) (Figure 14) [298].
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Figure 14. Cyclization/fragmentation of FDP to Geosmin by geosmin synthase (adapted from Jiang
and Cane 2008 [298]).

Lastly, experiments conducted by Nawrath et al. [119] via synthesis of intermedi-
ate B and 10a (Figure 3) unambiguously proved that both intermediates were formed
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by the geosmin synthase in streptomycetes, with B likely an intermediate and 10a a
shunt metabolite.

Later, the closely related geosmin synthases from Streptomyces avermitilis [299] and
from cyanobacterium Nostoc punctiforme were isolated and shown to catalyze the same
reaction as the S. coelicolor enzyme [120].

7.3. Biosynthesis of 11,12,13-Tri-nor-Eremophilanes

The biosynthesis of the eremophilane skeleton has been elucidated mainly by the
application of stable isotopes and NMR spectroscopy. Synthesis follows the standard
mevalonate pathway and involves cyclization of farnesyl diphosphate (FDP) to give the
(S)-germacrene A, which is protonated in the C-6, C-7 double bond to give the bicyclic
eudesmane cation. Successive 1,2 hydride shift and methyl migration, followed by loss of
HSi on C8, completes the generation of (+)-aristolechene [300].

Formation of the tri-nor-eremophilanes is not known, but it has been proposed that
the elimination of the isopropenyl group to give tri-nor-eremophilanes might occur via
oxidation and subsequent decarboxylation (Figure 15) [190].

Plants 2022, 11, x FOR PEER REVIEW 24 of 40 
 

 

7.3. Biosynthesis of 11,12,13-Tri-nor-Eremophilanes 

The biosynthesis of the eremophilane skeleton has been elucidated mainly by the ap-

plication of stable isotopes and NMR spectroscopy. Synthesis follows the standard meva-

lonate pathway and involves cyclization of farnesyl diphosphate (FDP) to give the (S)-

germacrene A, which is protonated in the C-6, C-7 double bond to give the bicyclic eudes-

mane cation. Successive 1,2 hydride shift and methyl migration, followed by loss of HSi on 

C8, completes the generation of (+)-aristolechene [300].  

Formation of the tri-nor-eremophilanes is not known, but it has been proposed that 

the elimination of the isopropenyl group to give tri-nor-eremophilanes might occur via 

oxidation and subsequent decarboxylation (Figure 15) [190]. 

 
Figure 15. Proposed biosynthetic pathway to tri-nor-eremophilanes (adapted from Liu et al. 2016 

[190]). 

Different authors [190,214,218] have proposed that the tri-nor-eremophilanes (59, 63-

77, etc.) could originate from different precursors 105a, 105b and 105c, which, after differ-

ent types of tailoring reactions, including hydroxylation, oxidation, isomerization, epoxi-

dation, esterification and degradation, might produce diverse structures (Figure 16) 

[190,214]. 

Figure 15. Proposed biosynthetic pathway to tri-nor-eremophilanes (adapted from
Liu et al. 2016 [190]).

Different authors [190,214,218] have proposed that the tri-nor-eremophilanes (59, 63–77,
etc.) could originate from different precursors 105a, 105b and 105c, which, after different
types of tailoring reactions, including hydroxylation, oxidation, isomerization, epoxidation,
esterification and degradation, might produce diverse structures (Figure 16) [190,214].
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7.4. Biosynthesis of 11,12,13-Tri-nor-Guaianes

Natural tri-nor-guaianes are irregular metabolites that have been isolated from ter-
restrial, as well as marine sources [301]. Two of their most representative members are
(−)-clavukerin A (79) and clavukerin C (84) (Figure 8), unstable dienes isolated from the
Okinawan soft coral Clavularia koellikeri (stolonifer) by Kobayashi et al. in 1983 [219] and
1984 [231,241].

The terpenoid origin of tri-nor-guaianes was confirmed by the biosynthesis of 3,10-
dihydro-1,4-dimethylazulene (95) [272] and by Dai et al. [302] in the biosynthesis of 79 in a
Heteroxenia sp.

The terpenoid origin of tri-nor-guaianes, and specifically of 3,10-dihydro-1,4-dimethylazulene
(95), was confirmed by Takeda and Katoh in 1983 [272] via biosynthetic studies em-
ploying 13C-labeled acetate and different 13C NMR techniques of cultured cells of Ca-
lypogeia granulate (liverwort) [272]. The biosynthetic route leading to 3,7-dimethylindene-5-
carboxaldehyde (106) was also clarified by 13C-labeling studies. The indene derivative is a
trinorsesquiterpene which has undergone a skeletal rearrangement, as shown in Figure 17.

Furthermore, from a soft coral specie of genus Heteroxenia, de novo synthesis of the
terpene clavukerin A (79) from sodium [1-14C] acetate and from D,L-[2-14C] mevalolactone
was detected. The labeled acetate was incorporated with the expected selectivity, but
degradation of the labeled mevalonate samples suggested some scrambling of the label,
presumably via acetate incorporation of degraded mevalonate [302].

The FA hypothetical biogenetic pathway to clavukerins A (79), B (83) and C (84)
was proposed by Kobayashi et al. [241]. Their formation is presumably closely related to
guaiane biosynthesis with the loss of the isopropyl side chain at an unknown stage along
the biosynthetic pathway (Figure 18). A similar biosynthetic pathway has been proposed for
the tri-nor-guaiane, 4β,10α-dimethyl-1β,5α-bicyclo [3,5,0] dec-6-en-4α,10β-diol (89) [264].
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Figure 18. Hypothetical biogenetic pathway to clavukerins (adapted from Kobayashi et al.
1984b [241]).

As previously indicated to generate the C12-framework, an oxidative cleavage [288]
of the C3 substituent with simultaneous introduction of a double bond must occur. This
oxidative degradation of isopropyl or the isopropenyl side chain has been confirmed
by synthetic methods [231,303]. De Groot et al. have reported the formation of tri-nor-
guaiane (107) at 20% yield when α-epoxyisoledene was treated with TsOH.H2O in acetone
at room temperature. Its formation was explained by acetone elimination from allylic
carbocation D (Figure 19). A bioinspired approach to the tri-nor-guaianes, clavukerin A (79),
by degradation of the C-7 side chain of related guaia-11-enes, has also been described [231].
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8. Conclusions

This review describes a comprehensive account of all reported sesquiterpenes, which
have lost the C-3 unit of isopropenyl at C-7 position of the sesquiterpene skeleton. A total
of one hundred and thirty-one 11,12,13-tri-nor-sesquiterpenes have been isolated from a
vast number of different organisms.

Based on their skeletons, five tri-nor-germacranes and four tri-nor-elemanes have been
isolated. They displayed a wide range of antimicrobial bioactivity. Tri-nor-germacranes
have been identified as components of essential oils (EO), and some, such as compounds
1, 2, 4–6, have been extracted from the essential oils of different plants. However, gei-
jerene (3) and isomers 7 and 8 are considered thermal artefacts of pregeijerene (2), which
can be thermally isomerized to yield geijerene (3) by Cope rearrangement and chemical
transformations (Figure 2).

The bigger group of tri-nor-sesquiterpenes correspond to those with an underlying
eudesmane skeleton (sixty tri-nor-eudesmanes have been reported, twenty of which are
derived from geosmin (28); see Figures 3–5). Most of tri-nor-eudesmanes have been isolated
from different plant families, although some of them have been isolated from other organ-
isms, such as Red Sea soft coral. All of them displayed a wide range of biological activities.

Geosmin was first isolated from the actinomycete Streptomyces griseus by Gerber and
Lechevalier [158], and it has also been isolated from a variety of higher plants, such as
liverwort and sugar beet [166], and from mosses, protozoans and insects [64,167]. Environ-
mentally relevant concentrations of geosmin (28) affect the development, oxidative stress,
apoptosis and endocrine disruption of embryo–larval zebrafish [169]. Some of their deriva-
tives, such as dehydrogeosmine (29), have been reported as ingredients in pharmaceuticals,
including tetrahydrocannabinol and cannabidiol for the treatment of chronic pain and
opioid addiction [83].

On the other hand, thirty-eight tri-nor-eremophilenes have been isolated—most of
them from terrestrial plants—but in 1988, the study of the secondary metabolism of the
marine deuteromycete Dendryphiella salina led to the isolation and characterization of the
first tri-nor-eremophilane, dendryphiellin A (63), esterified by a branched C9 acid, a class
of metabolite for which there is no precedent in fungi of marine origin. Subsequently,
approximately 12 new derivatives of dendryphiellin A (63–74, 77) were isolated from
different organisms. Although an important range of biological activity has been described,
it is important to emphasize the biological activity shown by compounds 54 and 55, which
were proved as potential candidates for the development of therapeutically relevant agents
to prevent neurodegenerative diseases [206].

Finally, eighteen tri-nor-sesquiterpenes with guaiane skeleton and six with skeletons
not classified in the previous groups complete the set of tri-nor-sesquiterpenes isolated
from nature.

About biosynthesis, in general, the irregular C-backbone originates from the oxidative
removal of a C3 side chain from the C15 sesquiterpene, which arises from farnesyl diphos-
phate (FDP). However, recent studies have shown that, in some cases, such as geosmin (28),
the loss of the C3 unit was catalyzed by a special enzyme. These authors have demonstrated
that geosmin was biosynthesized by geosmin synthase, an enzyme characterized from
Streptomyces avermitilis [299], and from cyanobacterium Nostoc punctiforme, which catalyzes
the same reaction as the S. coelicolor enzyme [144,290]. These studies and conclusions about
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the reported geosmine synthase open new and interesting ways to study the biosynthetic
pathways of other trinorsequiterpenes.
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