
polymers

Article

Transformation of H-Aggregates and J-Dimers of
Water-Soluble Tetrakis (4-carboxyphenyl) Porphyrin
in Polyion Complex Micelles

Shuai Liu 1,*, Cun Hu 1, Ying Wei 2, Ming Duan 1,*, Xin Chen 1 ID and Yue Hu 1

1 College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China;
201621000202@stu.swpu.edu.cn (C.H.); chenxin830107@pku.edu.cn (X.C.);
201721000233@stu.swpu.edu.cn (Y.H.)

2 Beijing National Laboratory for Molecular Sciences, Institution College of Chemistry and Molecular Engineering,
Peking University, Beijing 100871, China; 1601110376@pku.edu.cn

* Correspondence: 201599010093@swpu.edu.cn (S.L.); mduan@swpu.edu.cn (M.D.);
Tel.: +86-028-8303-7346 (S.L. & M.D.)

Received: 4 April 2018; Accepted: 28 April 2018; Published: 3 May 2018
����������
�������

Abstract: Tetrakis (4-carboxyphenyl) porphyrin (TCPP) and polyelectrolyte poly(N-methyl-2-
vinylpyridinium iodide)-b-poly(ethylene oxide) (PMVP41-b-PEO205) can self-aggregate into polyion
complex (PIC) micelles in alkaline aqueous solution. UV-vis spectroscopy, fluorescence spectroscopy,
transmission electron microscope, and dynamic light scattering were carried out to study PIC micelles.
Density functional theory (DFT) calculation method was applied to study the interaction of TCPP
and PMVP41-b-PEO205. We found that the H-aggregates and J-dimers of anionic TCPP transformed
in PIC micelles. H-aggregates of TCPP formed at the charge ratio of TCPP/PMVP41-b-PEO205 1:2 and
J-dimer species at the charge ratio above 1:4, respectively. It is worth noting that the transformation
from H-aggregates to J-dimer species of TCPP occurred just by adjusting the ratio of polymer and
TCPP rather than by changing other factors such as pH, temperature, and ions.
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1. Introduction

Water-soluble porphyrins have stimulated tremendous research attention owing to their
potential applications in medical science, electronic equipment, biomimetic chemistry, and materials
chemistry [1–4]. Since the relevant applications of water-soluble porphyrins are closely related
with their aggregates, great efforts have been devoted to studying the aggregates of water-soluble
porphyrins in recent years [5–9]. For example, Shi and co-workers have reported that the dimer and
monomer of FeIII-tetra(4-sulfonatophenyl)-porphyrin (FeIIITPPS) aggregated to form complex micelles
when they adjusted the pH value [10]. Tetrakis (4-carboxyphenyl) porphyrin is a well-researched
dye due to its ability to self-aggregate into dimer species, J-aggregates (side-by-side arrangement),
or H-aggregates (face-to-face arrangement) driven by non-covalently interactions. Some factors, such as
a certain pH, changeable ionic strength, different solvents, temperature, and polymer template [11–17],
have been reported to exert significant effects on the transformation of TCPP aggregates.

On the other hand, polyion complex (PIC) micelles have drawn increasing interest in the field of
supermolecular self-assembly since they have great potential applications in controlled release [18],
transduction of genes [19], delivery of biomolecules [20], nanoreactors [21], and sensors [22]. One of
the characteristics of PIC micelles is that they often have core-shell structures, where the micellar core
is deeply buried in the forest of the corona [23]. Thus, it is difficult for small molecules to diffuse into
the core of micelles. On the contrary, the component that is incorporated in the micellar core is well
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protected [24]. The aggregates of porphyrin in the core of PIC micelles have also triggered strong
interest since they may help further humanity’s understanding of biochemical processes. For instance,
Shi et al. studied the aggregation and optical properties of the water-soluble 5, 10, 15, 20-tetrakis
(4-sulfonatophenyl) porphyrin (TPPS) in acidic aqueous solution. They found that TPPS still retains the
ability to form pH-dependent H- and J-aggregates in the PIC micellar core formed with PEG–P4VP [6].
Porphyrin self-assembly, modulated by pH onto polylysine and a dendrimer template, has been
reported [25]. Polystyrene sulfonate–porphyrin assemblies were prepared by Ruthard et al. [26].
They unveiled the influence of linear and cylindrical brushes polystyrene sulfonates and porphyrin
structures on the aggregates of porphyrin. However, the interconversion of porphyrin aggregates in
PIC micelles just by adjusting the charge ratio of polymer and porphyrin has rarely been reported.

Inspired by these works, we first show the formation of PIC micelles with TCPP and
PMVP41-b-PEO205 block co-polymer in alkaline aqueous media, and then report the influence of
PIC micelles on the aggregation of TCPP. We report evidence that the TCPP aggregates undergo a
transformation as the charge ratio of TCPP and diblock polyelectrolyte increases in an alkaline aqueous
solution. The TCPP/PMVP41-b-PEO205 complex micelles were characterized by transmission electron
microscope (TEM) and dynamic light scattering (DLS). Formation of J-dimer species and H-aggregates,
and the transformation between these two forms were investigated by UV-vis spectroscopy and
fluorescence spectra. This is a promising strategy for controlling the aggregates of TCPP in an aqueous
solution just by adjusting the polymer concentration and thus may guide the application of TCPP as a
fluorescent probe in the self-assembly of aqueous polymer solutions.

2. Materials and Methods

2.1. Materials

Tetrakis (4-carboxyphenyl) porphyrin (TCPP) was purchased from TCI (Shanghai, China). Diblock
polyelectrolyte poly(N-methyl-2-vinylpyridinium iodide)-b-poly(ethylene oxide) (PMVP41-b-PEO205,
Mw = 19 K, PDI = 1.05, about 90% quaternized) used in this work was prepared according to previously
reported procedures [27–29]. Molecular structures of TCPP and PMVP41-b-PEO205 are shown in
Scheme 1. All other chemicals were purchased from Kelong Chem. Reagents Co. (Chengdu, China)
and were used without any treatment. Wahaha purified water (Hangzhou, China) was used to prepare
solutions and throughout the experiments. The other reagents were of A.R. grade.
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Scheme 1. The molecular structures of tetrakis (4-carboxyphenyl) porphyrin (TCPP) and
poly(N-methyl-2-vinylpyridinium iodide)-b-poly(ethylene oxide) (PMVP41-b-PEO205).

2.2. Methods

Aqueous solutions of TCPP were initially prepared by dissolving a certain amount of
TCPP powder in 0.01 M NaOH aqueous solutions. The desired amount of TCPP solution and
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PMVP41-b-PEO205 aqueous solutions were fully mixed to obtain a solution with a charge ratio between
TCPP and PMVP41-b-PEO205 is 1:0, 1:1, 1:2, 1:5 and 1:8. The charge ratio ƒ is defined as follows:
f = [−]

[+]
, where [−] refers to the concentration of negative charges carried by TCPP and [+] refers to

the concentration of positive charges carried by the PMVP41 block. The final concentration of TCPP is
20 µM, the pH of all above solutions at 10.0 ± 0.2. When the concentration of TCPP is 5 µM, the TCPP/
PMVP41-b-PEO205 solutions were prepared in the same way. All experiments were carried out at room
temperature unless otherwise specified.

A UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan) operating in the range of 200~800 nm
was used to measure the absorption of solution samples.

A LS55 Fluorescence Spectrometer (PerkinElmer, Waltham, MA, USA) was employed to measure
the fluorescence (FL) emission of solution samples. According to the absorption, excitation, and
emission spectra (shown in Figure S1), the excitation wavelength was set at 400 nm. Emission spectra
were recorded in the range of 570~800 nm.

An ALV/DLS/SLS5022F light-scattering apparatus (Alv-Laser Vertriebsgesellschaft M-B.H., Langen,
Germany) was applied to conduct dynamic light scattering (DLS) measurements. The apparatus was
equipped with a 22 mW He−Ne laser (632.8 nm wavelength) with a refractive index matching bath of
filtered toluene surrounding the cylindrical scattering cell. The samples were filtered through a 450 nm
membrane filter. The scattering angle was set at 90◦.

A JEOL-100CX II transmission electron microscope (TEM, JEOL, Tokyo, Japan) was used to
observe the morphology of the self-assembled micelles. Typically, a drop of sample was placed onto
230 mesh copper grids coated with Formvar film and negatively stained. Then, the sample was allowed
to dry naturally for TEM observation.

A steady-state spectrometer FLS920 was applied to determine the decay times of the
TCPP/PMVP41-b-PEO205 systems, the excitation wavelength was 400 nm. The fluorescence decays
were analyzed using DAS6 software. The experimental time-resolved fluorescence decays can be
analyzed using a reported formula [30]:

R(t) = b + ∑n
i αi exp

(
− t

τi

)
,

where b is the baseline correction, n is the number of discrete emissive species, and αi and τi
are the pre-exponential factors and excited-state fluorescence lifetimes associated with the ith
component, respectively.

The calculations were performed within the spin-unrestricted density functional theory (DFT)
framework implemented in the DMol3 code [31–33]. The generalized gradient approximation (GGA)
with the BLYP functional [34,35], together with double numeric quality basis set (DNP), was used in
all calculations. The convergence tolerance for energy change, max displacement, and max force were
2 × 10−5 Ha, 0.005 Å, and 0.004 Ha Å−1, respectively.

3. Results and Discussion

3.1. Aggregation Behavior of TCPP at Various Concentrations

UV-vis spectroscopy was used to measure the critical aggregation concentration of TCPP.
Figure 1a shows that the absorption intensity increases as the concentration of TCPP increases.
The maximum absorption peak of TCPP is 414.5 nm when the concentration is less than 6 µM.
At the range of 1.0~5.0 µM, the intensity of maximum absorption peak increased in a linear fashion,
as shown in Figure 1b, which fits the Lambert–Beer Law. In an alkaline aqueous solution and low
concentration, TCPP molecules exist in the form of a monomeric free base (TCPP4−) due to electrostatic
repulsion between TCPP4−. Meanwhile, the deviations from Beer’s law at high concentrations (above
5.0 µM) have been well documented and this phenomenon is usually ascribed to the formation of
aggregates [36–38]. The strongest absorption peak shifted from 414.5 nm to 416.5 nm (Table S1) and
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split into two peaks when the concentration of TCPP is above 6.0 µM (detailed spectra shown in
Figure S2). The slight blue shift of max absorption and its split are considered to be due to the
formation of J-dimers rather than J-aggregates under these conditions [39] since the concentration of
TCPP > 5 µM is consistent with that previously reported to yield dimerization behavior [40].
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Figure 1. (a) UV-vis absorption spectra and (b) maximum absorption at ~414.5 nm of TCPP solutions
at various concentrations. Red line fits the Lambert–Beer Law, R = 0.993. Black line deviates from
Beer’s law.

3.2. PIC Micelles Formed by TCPP and PMVP41-b-PEO205

At a concentration of 20 µM, TCPP molecules mainly exist in the form of J-dimers in alkaline
aqueous solution. Upon mixing with the positively charged double hydrophilic block copolymer
PMVP41-b-PEO205, a strong Tyndall effect was observed, suggesting the formation of polyion complex
micelles (PIC). TEM observations (Figure 2) confirmed the formation of PIC. As can be seen, the
average diameter of the micelles are about 20–30 nm, 90–100 nm, 100–130 nm, and 200 nm at charge
ratios of TCPP and PMVP41-b-PEO205 of 1:1, 1:2, 1:5, and 1:8, respectively, which are larger than those
of micelles (9 nm, Figure 3f) formed with PMVP41-b-PEO205.
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PMVP41-b-PEO205.

In addition, the overall hydrodynamic radius of the micelles was also measured with dynamic
light scattering (DLS) as shown in Figure 3. In the absence of polymers, no micelles of TCPP were found,
which also proves that TCPP exists in the form of J-dimers instead of J-aggregates. The aggregates
of PMVP41-b-PEO205 (20 nm) and TCPP/PMVP41-b-PEO205 (500 nm, not observed under TEM) exist
at the same time at the charge ratio is 1:1. As the charge ratio is increased to 1:2, the TCPP and
PMVP41-b-PEO205 co-assemble into large aggregates and coexist with the small micelles in the solution.
At 1:5, the average hydrodynamic radius of the particles and their polydispersity were observed to
strongly increase, which is ascribed to the aggregation of the micelles into large micelles or clusters
(Figure 2c,d). For a 1:8 system, the clusters are dominant, which can be observed under TEM, and the
dispersion is narrowed.

3.3. H-Aggregates and J-Dimers’ Transformation of TCPP in PIC Micelles

The formation of PIC micelles leads to a significant change in the UV-vis absorption of TCPP.
Figure 4 displays the UV-vis spectrum of TCPP in aqueous solution when it is mixed with the polymer
PMVP41-b-PEO205. The black line reveals the characteristic features of TCPP, an intense Soret band at
416.5 nm and four weak Q bands at 517.0, 554.5, 580.5 and 635.0 nm. Upon the formation of micelles,
the Soret band of TCPP was blue shifted from 416.5 nm to 406.5 as the charge ratio of TCPP and
PMVP41-b-PEO205 at 1:2 and the intensity did not change significantly. The blue shift of sharp and
narrow absorption bands indicate the formation of H-aggregates [41]. Moreover, the Q bands appear
to exhibit an etio pattern [40] along with decreasing intensities and increasing wavelengths. The red
shift of TCPP on the Q band is attributed to the process of TCPP interacting with other components.
The red shift of the Q band is caused by the reduction of the energy gap between the highest occupied
molecular orbital and the lowest unoccupied molecular orbital [42]. These results suggest that the
interaction between TCPP and the polymer in PIC micelles has changed the local environment of
TCPP [43].

However, as the concentration of PMVP41-b-PEO205 increased further, the strongest peak moved
back to 416.5 nm (Table S2). From this phenomenon, it can be inferred that H-aggregates disappeared
and the TCPP molecules exist in the form of J-dimers again. These results are similar to the behaviors
in acidic TCPP solutions [44]. The TCPP molecules in the core of PIC micelles exist in the form of
H-aggregates at a ratio < 1:4, but still exist in the form of J-dimers at a ratio > 1:4. Moreover, the
formation of J-dimers is considered to be due to the formation of PIC micelles rather than ionic
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strengths, since these experiments are performed at ionic strengths (<50 mM) well below those that
correlate with dimerization [45]. In addition, the absorption of TCPP at a concentration of 5 µM
was also tested. The absorption spectra are similar to the above results. Detailed data are shown in
Figure S3.
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Figure 4. (a) UV-vis absorption spectra of TCPP (black line) and TCPP/PMVP-PEO with different
charge ratios of 1:0 (black line), 1:1 (red line), 1:2 (blue line), 1:5 (pink line) and 1:8 (green line),
respectively; (b) Magnified absorption spectra of TCPP and TCPP/PMVP-PEO at the charge ratio of
1:2. [TCPP] = 0.02 mM, pH = 10.0. PMVP-PEO is the abbreviation of PMVP41-b-PEO205.

The fluorescence spectra of the TCPP and PMVP41-b-PEO205 aggregates at different charge ratios
in alkaline aqueous solution are shown in Figure 5. As can be seen, TCPP shows two intense emission
bands at 645 nm and 702 nm. With the addition of PMVP41-b-PEO205, fluorescence intensity decreases
when the charge ratios are 1:1 and 1:2. At the charge ratio 1:2, the fluorescence intensity is the lowest
and the peak position is red-shifted, which is ascribed to the formation of H-aggregates among TCPP.
As the charge ratio is greater than 1:2, the fluorescence intensity increases and the peak position
exhibits a blue shift. This phenomenon is ascribed to the transformation from H-aggregates to J-dimers
of TCPP [46]. The fluorescence spectra are similar to the above results when the concentration of TCPP
is 5 µM. Detailed data are shown in Figure S4.
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of 1:1 (red line), 1:2 (blue line), 1:5 (pink line) and 1:8 (green line). [TCPP] = 0.02 mM, pH = 10.0,
λex = 400 nm. PMVP-PEO is an abbreviation of PMVP41-b-PEO205.

To understand the aggregates transformation of TCPP in the PIC micelles, we carried out
fluorescence lifetime measurements. The fluorescence decay curves of the TCPP/PMVP41-b–PEO205

systems in alkaline aqueous solution are shown in Figure 6. As can be seen, the TCPP afforded a
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monoexponential fluorescence decay curve with a characteristic lifetime around 9.65 ns. Meanwhile,
the other decay curves are fitted biexponentialy. At a charge ratio of 1:2, the decay components are 8.2 ns
and 10.3 ns and the average decay time is 9.25 ns. The shortening of decay time of TCPP aggregates
from TCPP–dimer unambiguously confirms the H-type aggregation of the TCPP molecules [47].
As the charge ratio reaches 1:5, the decay components are 9.25 ns and 10.2 ns and the average decay
time is 9.72 ns. The decay time gradually returned to the dimer state as the concentration of the
PMVP41-b-PEO205 increased, which unambiguously confirms the transformation of H-aggregates
and J-dimers.
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and 1:5. PMVP-PEO is an abbreviation of PMVP41-b-PEO205.

In order to investigate the influence of PIC micelle formation on the local environment of TCPP, the
spin-unrestricted DFT method was employed to understand the effect of PIC on the energy distribution
of TCPP. The structure of PMVP41-b-PEO205 was simplified and only one of the monomer units was
applied in the calculation, labeled (PMVP-PEO)1. Figure 7 shows the HOMO and LUMO of the TCPP
before and after interacting with one unit of PMVP41-b–PEO205. As revealed, the energy gap between
the HOMO and LUMO of TCPP is 1.76 eV, and it is reduced to 0.85 eV when it interacts with one unit
of PMVP41-b-PEO205. This result is supported by the comparison of absorption spectra of TCPP before
and after introduction of PMVP41-b–PEO205 (Figure 4). The addition of PMVP41-b-PEO205 induces red
shift of the Q band of TCPP.
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With the integration of information indicated by TEM, DLS, UV-vis, FL and DFT analyses, it can
be speculated that TCPP and PMVP41-b-PEO205 can self-aggregate into PIC micelles, which might be
the reason for the H-aggregates and J-dimers’ transformation of TCPP. The complete scenario for the
aggregate transformation of TCPP is graphically depicted in Scheme 2 to facilitate comprehension of
this process.
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Scheme 2. Illustration of the self-assembly of the TCPP/PMVP41-b–PEO205 complex micelles and the
transformation of H-aggregates and J-dimers of TCPP in PIC micelles.

4. Conclusions

The transformation from J-dimers to H-aggregates and further to J-dimers represents an interesting
model to investigate the assembly, structure, and applications of a wide variety of fluorescent molecules
aggregated in PIC micelles. In exploratory experiments, we have shown that a change of various
forms can be achieved by adjusting the charge ratio of TCPP and PMVP41-b-PEO205. This result is of
particular interest due to there being different advantages of different aggregates ranging from light
harvesting capability to catalytic activity. Moreover, the versatility of various aggregates’ formation
through controlling the charge ratios of polymer and porphyrins may build a valuable basis for the
use of PIC micelles in medicine and catalysis.
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