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miR-622 is a novel potential biomarker of breast carcinoma
and impairs motility of breast cancer cells through targeting
NUAK1 kinase
Francesca Maria Orlandella1, Raffaela Mariarosaria Mariniello2,3, Peppino Mirabelli1, Anna Elisa De Stefano2,3,
Paola Lucia Chiara Iervolino3,4, Vito Alessandro Lasorsa3,5, Mario Capasso1,3,5, Rosa Giannatiempo6, Maria Rongo1,
Mariarosaria Incoronato1, Francesco Messina6, Marco Salvatore1, Andrea Soricelli1,2 and Giuliana Salvatore1,2,3

BACKGROUND: Aberrant expression of microRNAs (miR) has been proposed as non-invasive biomarkers for breast cancers. The aim
of this study was to analyse the miR-622 level in the plasma and in tissues of breast cancer patients and to explore the role of miR-
622 and its target, the NUAK1 kinase, in this context.
METHODS: miR-622 expression was analysed in plasma and in tissues samples of breast cancer patients by q-RT-PCR.
Bioinformatics programs, luciferase assay, public dataset analysis and functional experiments were used to uncover the role of miR-
622 and its target in breast cancer cells.
RESULTS: miR-622 is downregulated in plasma and in tissues of breast cancer patients respect to healthy controls and its
downregulation is significantly associated with advanced grade and high Ki67 level. Modulation of miR-622 affects the motility
phenotype of breast cancer cells. NUAK1 kinase is a functional target of miR-622, it is associated with poor clinical outcomes of
breast cancer patients and is inversely correlated with miR-622 level.
CONCLUSIONS: miR-622/NUAK1 axis is deregulated in breast cancer patients and affects the motility phenotype of breast cancer
cells. Importantly, miR-622 and NUAK1 hold promises as biomarkers and as targets for breast cancers.
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BACKGROUND
Breast cancer is the most commonly diagnosed cancer and the
second leading cause of cancer death among women.1 Many
factors are able to affect the development and progression of
breast cancer, such as age, lifestyle, genetic factors, mammo-
graphic breast density, therapeutic radiation, age at menarche and
at menopause, proliferative breast lesions, diabetes and obesity.2,3

The two most common morphological types of breast cancer
are ductal and lobular carcinoma, while medullary breast
carcinoma is a rare subtype of invasive breast carcinoma.4

Moreover, breast cancer is a highly heterogeneous disease further
classified on the basis of different gene expression patterns, into
different subtypes such as: basal-like, claudin-low, human
epidermal growth factor receptor 2 (HER2)-enriched, luminal A,
luminal B and normal-like.5 The triple-negative breast cancer
(TNBC), characterised by negativity for oestrogen receptor (ER),
progesterone receptor (PR) and HER2 expression, represents the
most aggressive form and is associated with low survival,
metastasis, recurrence, and development of chemo-resistance.6,7

Given the wide variety of molecular and pathologic diversity,
breast cancer patients have different clinical outcomes and

sensitivity to tumour therapies.8 For these reasons, further studies
are still needed to explore novel molecular biomarkers and
therapeutic targets for these patients. In particular, analysis of new
prognostic non-invasive biomarkers is important to discriminate
patients with different prognoses and to identify new anti-cancer
treatment strategy. In recent decades, several studies unveil that
microRNAs (miR) are stable and consequently detectable in the
plasma of patients. Consequently, the analysis of circulating
miRNAs could be important to uncover novel biomarkers for
breast cancer.9

Increasing evidence suggests that miR-622 acts as a tumour
suppressor in several types of human cancer such as glioma,10,11

gastric,12,13 pancreatic,14 hepatocellular15 thyroid16 and oesopha-
geal squamous cell carcinomas,17 where it affects cell proliferation,
migration and metastasis. Additionally, miR-622 suppresses
migration and invasion of colorectal cancer cells by targeting K-
RAS18 and DYRK2.19 In lung cancer, miR-622 is able to inhibit
cancer metastasis by suppressing HIF-1α.20 In glioma miR-622
targets YAP11 and in breast cancer targets RNF8.21 Finally, a recent
paper reported that in renal cell carcinoma, miR-622 suppressed
cancer progression by targeting CCL18.22
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Despite the accumulating evidence on miR-622 role in human
tumorigenesis, its role in breast cancer remains, to our knowledge,
not fully understood.
Here, we showed that miR-622 is downregulated in the plasma

and in tissue samples of breast cancer patients where it acts as a
tumour suppressor by reducing cell migration and invasion
through targeting NUAK1 kinase. In conclusions, our findings
provide evidence that miR-622 and NUAK1 are potential novel
biomarkers and targets for breast cancer.

METHODS
Clinical samples
Plasma samples were obtained from n= 17 age and race-matched
healthy controls (HS) and n= 39 ductal invasive breast cancer
patients, of which luminal A (n= 11), luminal B (n= 17), HER2-
enriched (n= 2) and TNBC (n= 9). Moreover, from 20 patients we
also collected breast cancer tissues and their adjacent normal
tissues. For this study, we selected a group of naïve breast cancer
patients that did not receive neoadjuvant therapy before blood
sampling and surgery. All subjects were enrolled at the Ospedale
Evangelico Betania (Naples, Italy). Samples processing started
within 1 h from the collection, and all aliquots were stored at the
SDN biobank (Naples, Italy) until use.23 This study was approved
by the Ethics Committee of IRCCS Pascale (Naples, Italy) (Protocol
n. 1/16 OSS SDN). Written informed consent was obtained from all
subjects. This retrospective study was conducted anonymously
and conforms to the principles of the Helsinki Declaration.

Cell cultures
The breast cancer cell lines, MCF-7 and MDA-MB-231 were
purchased from Leibniz-Institut DSMZ-Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH (Braunschweig Germany).
MCF-7 cell line was maintained in culture with Roswell Park

Memorial Institute Medium (RPMI) (Thermo Fisher Scientific,
Waltham, USA) supplemented with 10% of foetal bovine serum
(FBS), L-glutamine, pyruvate sodium and human recombinant
insulin (Thermo Fisher Scientific). MDA-MB-231 cells were main-
tained in culture in Dulbecco’s Modified Eagle Medium (DMEM)
(Thermo Fisher Scientific) with 20 % of FBS and L-glutamine
(Thermo Fisher Scientific).

RNA extraction and q-RT-PCR
From plasma and from formalin-fixed paraffin-embedded (FFPE)
tissue sections, total RNA was extracted using the miRNeasy
Serum/Plasma and RNeasy FFPE Kits, respectively (Qiagen,
Crawley, West Sussex, UK). During plasma extraction, Spike-in
control (C. elegans miR-39 miRNA mimic, Qiagen) was added as an
internal control according to the manufacturer’s protocol.
For reverse transcription of total RNA containing miRNA, cDNA

was synthesised using a miScript II RT kit (catalogue number
218161) together with miScript HiSpec Buffer (for mature miRNA
detection only) purchased from Qiagen.
Quantitative real-time PCR (q-RT-PCR) was performed using

miScript Primer Assays (catalogue number 218300) specific for
miR-622 expression (ID MS00005117) with the miScript SYBR
Green PCR Kit (catalogue number 218073) (Qiagen).
The Ct-value of miR-622 was technically normalised with miR-

16-5p (ID MS00031493, Qiagen)24,25 or with the snU6 (ID
MS00029204, Qiagen) used as endogenous controls for plasma
and FFPE tissue sections, respectively.
For the calculation of circulating level of miR-622, the

fold changes of miR-622 were calculated with the formula:
2−(sample 1 ΔCt− sample 2 ΔCt),26 where sample 1 represents each
single plasma of breast cancer patient and sample 2 is the average
of all (n= 17) healthy subjects controls.
From cell culture, total RNA was extracted using the mirVanaTM

miRNA Isolation kit (Thermo Fisher Scientific) according to the

manufacturer. RNA quantity was determined through NanoDrop
spectrophotometer (Thermo Fisher Scientific). NUAK1
(Hs00934234_m1) and the endogenous control Human ACTB (β-
ACTIN) (Hs01060665_g1) were evaluated with TaqMan assay kit
(Thermo Fisher Scientific). The Ct values of each gene were
performed in triplicate and the gene expression levels were
calculated using the formula 2−(sample 1 ΔCt− control ΔCt) 26 where
the control ΔCt is represented by the cell lines transfected with
the control plasmid (miR-Null or Anti-miR-Null) placed equal
to one.

Transfection
Breast cancer cell lines were stably transfected with a plasmid
expressing pre-miR-622 (pEP-hsa-miR-622) and the corresponding
empty vector (pEP-miR, named miR-Null) or with the hsa-miR-622
inhibitor (named Anti-miR-622) and the control vector (named
Anti-miR-Null) purchased from GeneCopoeia (Nivelles, Belgium).
Forty-eight hours after transfection, cells were selected in
puromycin (Sigma-Aldrich, St. Louis, MO, USA) and miR-622
expression was evaluated by q-RT-PCR. One mass population for
each cell line was selected on the basis of the miR-622 level and
used for all experiments.
For transient transfection, NUAK1 plasmid, expressing NUAK1

mRNA without the 3′UTR, the relative control (Empty vector) and
YAP plasmid were purchased from GeneCopoeia.
All transfections were performed using Lipofectamine 2000

(Thermo Fisher Scientific) according to the manufacturer’s
instructions.

Luciferase assay
MDA-MB-231/miR-622 and MDA-MB-231/miR-Null cells were
plated in 96-well plates and transfected using FuGENE reagent
with the pLightSwitch-NUAK1-3′UTR plasmid (catalogue number
S814085) in which the 3′ untranslated region (UTR) of NUAK1,
containing the putative binding site for miR-622, was cloned
downstream of luciferase reporter gene. After 24 h, luciferase
activity was measured according to the manufacturer’s protocol.
All the reagents and appropriate control plasmids were purchased
from Switchgear Genomics (La Hulpe, Belgium).
Deletion of the 3′-untranslated region (UTR) of NUAK1 was

introduced into wild type plasmid using the QuikChange site-
directed mutagenesis kit (Agilent Technologies, Santa Clara, CA)
and the following oligonucleotides:
NUAK1-3′UTR-del Forward: 5′-ctctttgctggctgtgacagactgaaaaag-

gattgg-3′;
NUAK1-3′UTR-del Reverse: 5’-ccaatcctttttcagtctcacagccagcaaa-

gag-3′.

Migration assays
Wound healing and Transwell assays were performed to evaluate
the effect of miR-622 on cell migration ability as previously
described.27

Briefly, for wound healing assay, 3 × 105 cells were seeded in 6-
well plates, a wound was inflicted on confluent cell monolayer and
closure was monitored at different time point. The wound area
was measured through CellA software (Olympus Biosystem GmbH)
and expressed as relative wound closure respect to control cells.
For Transwell assay, 1 × 105 cells were seeded into the upper

chamber containing polycarbonate membrane filter (Costar,
Cambridge, MA, USA). Into the lower well, 500 μl of DMEM 20 %
FBS was added as a chemo-attractant. After 24 h, migrated cells
were fixed and quantified at optical density (O.D.) with the
Microplate Reader (Model 550, Ultramar Microplate Reader, Bio-
Rad).

Matrigel invasion assay
Invasion assay was performed according to standard protocols.
Briefly, 1 × 105 cells were plated on a reconstituted extracellular
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matrix (Matrigel, BD Biosciences, San Jose, CA) on the upper
chamber of Transwell (Costar). After 24 h, invaded cells were
coloured with crystal violet and quantified at O.D. 550 nm.

Matrigel 3D assay
Briefly, 150 μl of Basement Membrane Matrix (BD Biosciences) was
plated on chambered coverglass (Nunc Lab-Tek, Sigma-Aldrich)
according to the manufacturer’s instruction and, after 30 min, 5 ×
104 cells were plated and photographed at different time point.

Proliferation assay
The number of viable cells was determined through tetrazolium
compound [3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) reagent (CellTiter
96® AQueous One Solution Assay, Promega, WI, USA). Briefly, 1 ×
103 cells were plated in triplicate into 96-well culture plates; 20 µl
of MTS was added to each well at different time points and then
the absorbance at O.D. 490 nm was recorded.

Western blot
Protein studies were carried out according to standard proce-
dures. Anti-NUAK1 (#4458) and anti-YAP (#14074) antibodies were
purchased from Cell Signaling Technology (Beverly, USA) while
anti-α-TUBULIN (T9026) monoclonal antibody was purchased from
Sigma-Aldrich. Secondary anti-mouse and anti-rabbit antibodies
coupled to horseradish peroxidase were obtained from Bio-Rad.
Enhanced chemiluminescent visualisation was obtained with
enhanced chemiluminescence detection kit (Thermo Fisher
Scientific).

Analysis of public data sets
To assess the relationships between NUAK1 and miR-622
expression levels we used public data sets deposited in Gene
Expression Omnibus (GEO) database. Public data were also used to
investigate relapse-free survival (RFS) and disease-free survival
probabilities.
NUAK1-dependent RFS in breast cancer subtypes was per-

formed with the web-tool “Kaplan Meier Plotter”28 a data
repository and analysis portal, which allows meta-analysis based
biomarker assessments by merging and normalising gene
expression and clinical data of numerous data sets.
GSE21653 dataset29 containing 266 medullary breast cancers

was used to correlate NUAK1 and miR-622 expression and to
perform disease-free survival analysis based on NUAK1 gene
expression.
We used the GSE1456 dataset30 containing 159 breast cancers,

to evaluate the correlations between NUAK1 and miR-622
expression in different breast cancer subtypes (basal, n= 25;
ERBB2, n= 15; luminal-A, n= 39; luminal-B, n= 23; no subtype, n
= 20; normal-like, n= 37). With the same purpose, we implemen-
ted the 17 normal breast tissues in GSE42568.31

All the GEO data sets we queried were obtained on an
Affymetrix U133P2 chip. The R2 web platform (http://r2.amc.nl)
was used to retrieve and download gene expression and
associated clinical data.
All the analyses were performed within the R environment for

statistical computing R Core Team (2016). (R: A language and
environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL: https://www.R-project.org/). For
survival analysis, we used the “survival” package, which imple-
ments a log-rank test to assess statistical significance that was set
at 5 %. Patients were split in “Low” and “High” based on NUAK1
median gene expression level.
In addition, The Cancer Genome Atlas (TCGA) repositories were

screened for the survival analysis in different breast cancer
subtypes characterised by low or high miR-622 expression levels.
To this aim, Kaplan Meier survival plots, hazard rates with 95 %
confidence interval and log-rank p-values were calculated to

validate the prognostic value of miR-622 using the http://kmplot.
com/analysis.28

Statistical analyses
Statistical analyses were carried out using GraphPad Prism
6 software (La Jolla, CA). The Mann–Whitney non-parametric test
was performed to analyse miR-622 expression level between two
different groups. Kruskal–Wallis test was used to assess the
association between miR-622 expression level and multiple
comparisons. P values were determined by Student’s Unpaired t-
test (two-tailed) and considered to be statistically significant when
p < 0.05.
For power calculation, the sample size of 48 samples is

sufficient. It was calculated considering a comparison between
the averages of the measurements in the patient groups with a
Mann–Whitney test, with an “effect size” d= 0.75, a power of 80%
and α equal to 0.05 (Supplementary Fig. 1).

RESULTS
miR-622 is downregulated in plasma and in tissues of breast
cancer patients
Since the differential expression of specific miRNAs in plasma of
breast cancer patients could be used a diagnostic biomarker,32,33

we collected plasma of 39 females affected by ductal breast
carcinoma and of 17 normal healthy subjects used as controls and
performed q-RT-PCR to determine miR-622 level. As shown in
Fig. 1a, miR-622 expression was significantly lower in the plasma
of all breast cancer patients in comparison to the plasma obtained
from healthy control subjects. In detail, by analysing specific
breast cancer subtype in this dataset, we found that the plasma
level of miR-622 was significantly decreased in the TNBC and in
the luminal A subtypes (Fig. 1b). Furthermore, to investigate a
possible role of miR-622 in the aggressive behaviour of breast
cancer pathogenesis, we looked for the correlation between miR-
622 plasma levels and clinicopathological features (summarised in
Supplementary Table 1) of the patients analysed and we found
that miR-622 expression inversely correlated with advanced
tumour grade (G3) and high Ki67 level (30%) (Fig. 1c, d).
To determine if it’s downregulation occurs also in tissues, we

measured miR-622 expression level in 20 FFPE breast cancer
tissues and in their pair-matched adjacent normal tissues collected
from the same patients in which we analysed miR-622 plasma
level. As shown in Fig. 1e, miR-622 was significantly lower in FFPE
tissues of breast cancer patients respect to adjacent normal
tissues, suggesting that miR-622 downregulation could be related
to breast cancer cells and not to the stromal cells of the tumour
microenvironment.
In addition, TCGA data collection were used to assess the

prognostic value of miR-622 in different breast cancer subtypes.
As shown in Fig. 1f, Kaplan–Meier survival plot, reporting the
hazard ratios (HRs) and p-values (log-rank test) showed that in the
two patient cohorts (with high or low miR-622 level), high level of
miR-622 is significantly correlated with overall survival in TNBC
(n= 97; p= 0.031), in ER-negative (n= 139; p= 0.014), in HER2-
positive (n= 105; p= 0.0076) and in luminal B (n= 77; p= 0.019)
patients.
Collectively, our results suggest a role of miR-622 down-

regulation in the clinical outcome of breast cancer patients.

miR-622 induces a reduction of NUAK1 expression by direct
targeting its 3’UTR
We interrogated several combined computational algorithms to
predict the putative targets of miR-622. Using MicroTv4, MiRanda,
miRDB, miRmap, PITA, RNA22, RNAhybrid and TargetScan, we
unveil that the human 3′ untranslated region (UTR) of NUAK1
mRNA contains the sequences complementary to miR-622 (Fig. 2a).
NUAK1 is a serine/threonine-protein kinase involved in various
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physiological and pathological processes34 and associated with the
invasive and metastatic potential of human breast cancer cells.35

Based on the data accumulated, we explored whether miR-622
affected NUAK1 expression in the MDA-MB-231 breast cancer cell
line. To achieve this goal, MDA-MB-231 cells were stably
transfected with miR-622 or with miR-Null plasmids and the
transfection efficiency was analysed by q-RT-PCR (Fig. 2b, left). As
shown in Fig. 2b the expression of NUAK1 mRNA (2b, centre), and
protein (2b, right) was decreased in MDA-MB-231/miR-622 respect
to control cells (miR-Null).
In an opposite manner, when MDA-MB-231 were stably

transfected with the inhibitor of miR-622 (named Anti-miR-622)
(Fig. 2c, left), an increase of NUAK1 at mRNA and protein levels
occurred (Fig. 2c, centre and right respectively).
To formally prove that miR-622 induces a reduction of NUAK1

expression by direct targeting its 3′UTR, we performed a luciferase
activity assay. Thus, MDA-MB-231/miR-622 and MDA-MB-231/miR-
Null cells were transiently transfected with a construct in which
the 3’UTR of NUAK1 was inserted downstream of a luciferase
reporter gene. We also transfect MDA-MB-231/miR-622 and MDA-
MB-231/miR-Null cells with a plasmid in which the binding site for
miR-622 in the 3’UTR was deleted (3’UTR-del).

The sequences of 3′UTR -wt and -del are reported in Fig. 2a. As
shown in Fig. 2d, 24 h after transfection, relative luciferase activity
was significantly lower in MDA-MB-231 co-transfected with miR-
622 and with the 3’UTR -wt of NUAK1 respect to MDA-MB-231/
miR-Null. Moreover, there was no significant difference in relative
luciferase activity between MDA-MB-231/miR-622 and MDA-MB-
231/miR-Null cells after transfection with a mutant version of this
plasmid (NUAK1 3’UTR-del).
Taken together, our novel findings demonstrated that NUAK1 is

a direct target of miR-622 in breast cancer cells.

Insight in miR-622/NUAK1 axis
Since NUAK1 is a key component of the antioxidant stress
response pathway,36,37 we investigated if the induction of
oxidative stress modulates miR-622/NUAK1 axis in breast cancer.
To this aim, we treated MDA-MB-231 cells with different doses of
hydrogen peroxide (H2O2) and q-RT-PCR was performed to
analyse the miR-622 expression level. As reported in Fig. 2e (left),
H2O2 treatment significantly reduced the expression of miR-622 in
a dose-dependent manner in comparison to untreated cells.
Accordingly, the identified target of miR-622, NUAK1, is slightly
increased in treated cells (Fig. 2e right).
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Fig. 1 miR-622 is downregulated in plasma and in tissues of breast cancer patients. Relative miR-622 expression level was analysed by q-
RT-PCR in the plasma of healthy controls (n= 17) compared to the plasma of all breast cancer patients (n= 39) (a) or of breast cancer specific
subtypes (b). Correlations between plasma miR-622 expression levels and tumour grade (c), and Ki67 expression (low <30%; high ≥30%) (d) in
breast cancer patients. e Relative expression level of miR-622 in breast tumour formalin-fixed paraffin-embedded tissues compared to
respective adjacent non-tumour tissues (n= 20). Each experiment was performed twice in triplicate and data are expressed as median with
interquartile range. f Kaplan–Meier survival plot of miR-622 in the triple-negative breast cancer (TNBC), in oestrogen receptor (ER)-negative,
epidermal growth factor receptor 2 (HER2 pos) and in luminal B samples using the TCGA dataset. Hazard ratio (HR) values for miR-622 and
overall survival (OS Probability) and log-rank p values are reported. *p < 0.05; **p < 0.01.
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Additionally, we examined a possible connection between YAP,
miR-622 and NUAK1 in breast cancer cells, given recent studies
linking NUAK family to Hippo pathway.38 To this aim, MDA-MB-231
cell line was transiently transfected with YAP plasmid or with

empty vector and the expression of miR-622 and NUAK1 was
analysed after 48 h. As shown in Supplementary Fig. 2, forced
expression of YAP induced a reduction of miR-622 and an increase
of NUAK1 levels.
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western blot, TUBULIN protein level was used as an endogenous control. d Luciferase activity was performed in MDA-MB-231/miR-622 and
control cells co-transfected with NUAK1 3′UTR-wt or with 3′UTR-del. e MDA-MB-231 was treated with different doses of H2O2 and after 24 h, q-
RT-PCR was performed to analyse miR-622 (left) and NUAK1 (right) expression levels. Each bar represents the mean ± SD of independent
experiments. *p < 0.05; **p < 0.01; ***p < 0.001.
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Finally, Supplementary Fig. 3 shows the direct and indirect
interactors of NUAK1 identified with three different public
available programs: SIGNOR (https://signor.uniroma2.it),39 STRING
(https://string-db.org)40,41 and Genemania (https://genemania.
org).42

NUAK1 is inversely correlated with miR-622 expression and with
clinical outcomes of breast cancer patients
To uncover the association between miR-622 and NUAK1
expression in breast cancer patients, we consulted several public
data sets, available from the Gene Expression Omnibus (GEO)
database.
First, we consulted the GSE1456 dataset that includes the gene

expression profiles of 159 population-derived breast cancer
patients.30 As shown in Fig. 3a, correlation analysis unveils in this
dataset a significant inverse correlation (r=−0.167; p= 0.04)
between miR-622 and NUAK1 in breast cancer patients. Moreover,
analysing miR-622 and NUAK1 expression in each breast tumour
subtype of this dataset, we found that this inverse correlation
occurs specifically in the normal-like subtype (r=−0.332; p=
0.04) (Fig. 3b).
Next, to improve our understanding of miR-622/NUAK1 axis, we

consulted another dataset repository (GSE42568)31 and we found
a significant inverse correlation (r=−0.50; p= 0.04) between miR-
622 and NUAK1 also in 17 normal breast tissues (Fig. 3c)

suggesting that miR-622 plays an important role in the
maintenance of physiological NUAK1 expression in normal breast
tissues.
Finally, survival meta-analysis was performed to estimate the

overall- and relapse-free survival probabilities respect to NUAK1
expression. We found that low NUAK1 expression levels sig-
nificantly correlates with better prognosis and relapse-free survival
in some tumour subtypes: ER-negative (p= 0.00033), HER2-
positive (p= 0.004) and luminal B (p= 0.003) subtypes (Fig. 4a).
Thus, our data provide evidence to support the role of NUAK1 in
predicting survival rate in breast cancer patients.
Analysing the GSE21653 database,29 we investigated NUAK1

and miR-622 expression also in medullary breast cancer patients,
and Kaplan–Meier disease-free survival curve showed that low
level of NUAK1 is significantly correlated with disease-free survival
(p= 0.02) (Fig. 4b, right). However, in this dataset the inverse
correlation between miR-622 and NUAK1 (r= -0.077), was not
statistically significant (p= 0.21) (Fig. 4b, left).

miR-622 modulates the migration ability of breast cancer cells
Next, we sought to investigate whether miR-622 has a tumour
suppressor role in breast cancer cell lines. To this aim, we analyse
the biological effects of miR-622 on cell migration ability
performing wound healing and Transwell migration assays. As
shown in Fig. 5a, b, forced expression of miR-622 in MDA-MB-231
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cells induced a reduction of migration ability into the wound and
into the Transwell inserts respect to control cells. In the opposite
manner, when we stably silenced the expression of miR-622 in
MDA-MB-231 cells, an increase of cell migration capability
occurred (Fig. 5c).
To further confirm the effects of miR-622 on breast cancer cells

migration, we also stably transfected the miR-622 precursor or its
inhibitor (Anti-miR-622) into human breast adenocarcinoma cell
line, MCF-7 (Fig. 5d, respectively left and right). In the generated
cell lines, we examined the motility phenotype. As shown in
Fig. 5e (left), miR-622 significantly reduced migration ability into
the Transwell respect to control cells (MCF-7/ miR-Null). Con-
versely, stable silencing of miR-622 enhanced the migration ability
respect to MCF-7/ Anti-miR-Null cells (Fig. 5e, right).
The stable modulation of miR-622 expression did not signifi-

cantly affect the proliferation rate determined by MTS assays
(Supplementary Figure 4).
Collectively, our data demonstrate that miR-622 is able to

suppress the ability of breast cancer cells to migrate.

miR-622 modulates the invasion ability of breast cancer cells
Next, to underscore the contribution of miR-622 on breast cancer
invasion ability, Matrigel-coated membranes were used for
invasion assays. As shown in Fig. 6a (left), the invasion ability of
MDA-MB-231 was significantly lower when these cells were stably
transfected with miR-622 compared to miR-Null. By contrast,
depleting endogenous expression of miR-622 by stable transfec-
tion with Anti-miR-622 plasmid, increased the invasion ability of
MDA-MB-231 cells (Fig. 6a, right). Coherently, also the modulation

of miR-622 expression in MCF-7 cell line affected the invasion
ability after stable transfection (Fig. 6b).
Finally, we also observed that after 4 days seeded in Matrigel

3D, MDA-MB-231/miR-622 cells appeared smaller respect to MDA-
MB-231/miR-Null cells (Fig. 6c). However, apparently at 16 days,
the spheroids appear to recover, suggesting that miR-622 slow-
down and not halted the grow in Matrigel 3D.
Overall, these results demonstrate that miR-622 impairs tumour

cell invasion and the aggressive behaviour of breast cancer
cell lines.

NUAK1 rescues the miR-622 induced phenotype in MDA-MB-231
cells
Having demonstrated that miR-622 is able to inhibit the motility
phenotype of breast cancer cells, we next sought to determine
whether the restoration of NUAK1 expression is able to revert the
functions of miR-622. To this aim, we performed a wound closure
assay in MDA-MB-231/miR-622 and in MDA-MB-231/miR-Null cells
transiently transfected with a plasmid encoding NUAK1 mRNA
deprived of its 3′UTR or with an Empty vector, used as a control.
Figure 6d showed that NUAK1 increased the migration ability of
MDA-MB-231/miR-Null cells. Importantly, NUAK1 deprived of its 3′
UTR is able to revert the motile phenotype induced by miR-622,
demonstrating that NUAK1 is also a functional target of miR-622.

DISCUSSION
Breast cancer represents the most common cancer among women
and despite the significant advances in the early diagnosis, the
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development of more accurate prognostic biomarkers and of
novel therapeutic strategies, still represents the main goal in
cancer research.43

MicroRNAs (miRNAs) are non-coding molecules that negatively
regulate gene expression by binding the complementary
sequences of the 3′UTR of specific mRNA target.44

The aberrant expression of miRNAs is correlated with tumour
progression and drug resistance in several human diseases
including breast cancers.45,46 Moreover, several studies reported
that intrinsic breast cancers subtypes are characterised by
different molecular miRNA signatures.47,48

All these data and the evidence that miRNAs can be extracted
and quantified in the plasma from cancer patients without
degradation, suggest that miRNAs have a potential role as ideal
biomarkers for diagnosis and prognosis of breast cancer
patients.9,49

Furthermore, undoubtedly, miRNA-based therapies hold great
promise, delivering antagomiRs or miRNA mimics specifically into
the target cells by nanocarriers.50–52

Recently, it has been also indicated that specific set of miRNAs
have important roles in endocrine resistance and in hormonal
therapies contributing to the clinical benefits of breast cancer
patients.53

The two most common types of breast cancer are ductal and
lobular carcinoma. Since about 80% of all breast cancers are ductal
carcinomas, we collected plasma from healthy controls and from
ductal breast cancer patients at the time of diagnosis and we have
shown that the expression of miR-622 is decreased in the plasma
of these patients. Moreover, we also reported that miR-622
expression was inversely correlated with aggressive

clinicopathological features as advanced tumour grade and high
levels of Ki67, identifying the low expression level of miR-622 as a
novel prognostic factor in patients with aggressive breast cancer.
Recently, many deregulated miRNAs have been identified in the

stroma cells of tumour microenvironment where they regulate
multiple signalling pathways modulating cancer development and
progression.54 Here, we provided evidence that the low level of
miR-622 in the plasma of breast cancer patients is likely due to its
downregulation in breast cancer cells and not to stromal cells of
the tumour microenvironment.
Furthermore, we showed that miR-622 tumour suppressor

activity in breast cancer cells is mediated by direct targeting the
NUAK1 kinase. The AMPK-related kinase family members, includ-
ing NUAK1 (aka ARK5) and NUAK2 (aka SNARK),55 have been
implicated in several physiological processes such as regulation of
cell proliferation and gene transcription. Since NUAK1 and NUAK2
genes encodes for two proteins with the similar structural
organisation in the catalytic domain,56 we verified if NUAK2 is
also a predicted target of miR-622. However, by interrogating the
several algorithms within the miRWalk program (http://zmf.umm.
uni-heidelberg.de/apps/zmf/mirwalk2/), we found that the 3′UTR
of NUAK2 is not one of the high score putative predicted target of
miR-622.
NUAK1 is a serine/threonine kinase involved in cell adhesion,

polarity and in epithelial-mesenchymal transition.57 NUAK1 over-
expression is correlated with poor clinical outcome in various
types of cancers.34,58,59

In this scenario, previous studies provided evidence that NUAK1
is closely involved in tumour progression of colon cancer,60

glioma,61 gastric,62 ovarian63 and nasopharyngeal carcinoma.64
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Consistent with our study on breast cancer, Chang reported,
through in vitro and in vivo experiments, that NUAK1 enhanced
the invasive and metastatic potential of MDA-MB-231 cell line
mediating AKT signalling.35

In the C-terminal catalytic domain of NUAK1 there is a site for
liver kinase B1 (LKB1) phosphorylation and activation.65 After the
activation, NUAK1 is able to control cell motility through the
assembly and disassembly of cytoskeletal proteins.66 Importantly,
LKB1 is a tumour suppressor kinase and its loss promotes breast
cancer metastasis and invasion.67,68

Another important mechanism of regulation of NUAK1,
described in cancer, is the oxidative stress pathway.36,37 Coher-
ently, also in this study we have obtained evidence that this
mechanism could be involved in the regulation of miR-622 and
NUAK1 in breast cancer cells.
Additionally, we have examined a possible connection between

YAP expression and miR-622 in breast cancer cells and found that
YAP overexpression induced a reduction of miR-622 and an increase
of NUAK1 levels. Interestingly, in a recent paper, Xu demonstrated
that YAP is a direct target of miR-622 in glioma cells.11

Breast cancer is classified into several intrinsic subtypes on the
basis of histological and molecular characteristics and distinct
clinical outcomes.7,69 It is very interesting that we found an inverse
correlation between miR-622 and NUAK1 in the normal-like
subtype, characterised by the same status of the normal breast
profiling but with poor clinical outcome.5,69 Consistent with our

data, Riaz and colleagues analysed the difference in gene
expression profiles between basal-like and normal-like/claudin-
low breast cancer cell lines, and found the lower expression of
miR-622 in normal-like subtype.70

Recently, Liu reported, from in silico analysis, that in all breast
cancer patients of the TCGA dataset, survival rate was negatively
correlated with high level of miR-622.21 However, we found that
by analysing specific subtypes of breast cancers, high levels of
miR-622 positively correlated with overall survival in the TNBC, ER-
neg, HER2-pos and luminal B subtypes. These different results
could be explained by the fact that breast cancer is an extremely
heterogenous disease.
Given the importance of ER, PR and HER2 status as prognostic

factors for breast cancer outcomes, we also studied the correlation
between NUAK1 and RFS in each cancer subtype. Kaplan–Meier
curves showed that NUAK1 represents a predictor factor of greater
RFS, not in whole population of breast cancer patients, but only
into specific subtypes: ER- negative, HER2-positive and luminal B
subtypes. In addition, analysing the GSE21653 database, we also
found that in medullary breast carcinoma low level of
NUAK1 significantly correlated with a higher disease-free survival
probability. Thus, our data provide evidence to support the role of
NUAK1 as novel prognostic biomarker in predicting survival rate of
specific subtypes of breast cancer patients.
Interestingly, the inverse correlation between miR-622 and

NUAK1 in 17 normal breast tissues suggests that miR-622 key an
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important role in the maintenance of physiological NUAK1
expression level in normal tissues.
The 3’UTR of NUAK1 is a target of multiple miRNAs deregulated

in different types of human cancers. In non-small cell lung
carcinoma (NSCLC) and in hepatocellular cancer, NUAK1 is
negatively regulated by miR-204,71,72 in pancreatic cancer NUAK1
is regulated by miR-9673; while miR-203 suppresses cell invasive-
ness through targeting NUAK1 both in head and neck cancer74

and in squamous cell carcinoma.75 Recently, NUAK1 expression
results enhanced following the downregulation of miR-145a-5p
and of miR-30b-5p respectively in nasopharyngeal and prostate
cancer.76,77 In intrahepatic cholangiocarcinoma NUAK1 is directly
targeted by two different miRNAs: miR-14578 and miR-424-5p.79

In the Supplementary Table 2 is reported a list of all published
miRNAs that regulates NUAK1 in human cancer along with their
binding sequences and position. In addition, by using miRanda
alghorithm (www.microrna.org) it is worth to note that miR-622
binding site in the 3′UTR of NUAK1 does not overlap with others
miRNAs.
It has been demonstrated that NUAK1 could represent an

attractive target for treatment of MYC-driven cancers.80–82

Deregulated level of the transcription factor MYC is also reported
in breast cancer83 thus it is possible that MYC could influence the
miR-622/NUAK1 pathway in breast cancers, providing a rationale
for target therapy.
Moreover, it is described that WZ4003 (a dual inhibitor of

NUAK1 and NUAK2) and HTH-01-015 (a selective inhibitor of
NUAK1) are able to inhibit the phosphorylation at serine of myosin
phosphate-targeting subunit 1 (MYPT1) induced by NUAK1.84

Banerjee also reported that WZ4003 and HTH-01-015 are able to
inhibit migration and proliferation of mouse embryonic fibro-
blasts. These data suggest that further researches using specific
NUAK1 inhibitors should be carried out to better characterise the
biological roles and therapeutic potentials of the NUAK1 kinase in
breast cancer.
Additionally, a recent paper reported that the inhibition of

NUAK1 enhances cisplatin cytotoxicity in NSCLC cells suggesting
that also in breast cancer NUAK1 could represent a novel target
against drug resistance.85

In conclusion, we proposed that the miR-622/NUAK1 axis
controls tumour cell migration and invasion of breast cancer cell
lines and, relevantly, our results support the notion that miR-622
and NUAK1 kinase could have clinical utility both as predictive
biomarkers and as therapeutic targets in breast cancer patients.
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