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Background: Large vessel occlusion (LVO) is the obstruction of large, proximal cerebral

arteries and can account for up to 46% of acute ischaemic stroke (AIS) when both the

A2 and P2 segments are included (from the anterior and posterior cerebral arteries). It is

of paramount importance that LVO is promptly recognised to provide timely and effective

acute stroke management. This review aims to scope recent literature to identify new

emerging detection techniques for LVO. As a good comparator throughout this review,

the commonly used National Institutes of Health Stroke Scale (NIHSS), at a cut-off of

≥11, has been reported to have a sensitivity of 86% and a specificity of 60% for LVO.

Methods: Four electronic databases (Medline via OVID, CINAHL, Scopus, and Web of

Science), and grey literature using OpenGrey, were systematically searched for published

literature investigating developments in detection methods for LVO, reported from 2015

to 2021. The protocol for the search was published with the Open Science Framework

(10.17605/OSF.IO/A98KN). Two independent researchers screened the titles, abstracts,

and full texts of the articles, assessing their eligibility for inclusion.

Results: The search identified 5,082 articles, in which 2,265 articles were screened

to assess their eligibility. Sixty-two studies remained following full-text screening. LVO

detection techniques were categorised into 5 groups: stroke scales (n= 30), imaging and

physiological methods (n = 15), algorithmic and machine learning approaches (n = 9),

physical symptoms (n = 5), and biomarkers (n = 3).

Conclusions: This scoping review has explored literature on novel and advancements in

pre-existing detection methods for LVO. The results of this review highlight LVO detection

techniques, such as stroke scales and biomarkers, with good sensitivity and specificity

performance, whilst also showing advancements to support existing LVO confirmatory

methods, such as neuroimaging.
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INTRODUCTION

Large vessel occlusion (LVO) is the obstruction of large, proximal
cerebral arteries and accounts for 24–46% of acute ischaemic
stroke (AIS), when including both A2 and P2 segments of
the anterior and posterior cerebral arteries (1). Due to the
involvement of proximal vasculature, significant brain regions
are often affected, resulting in large neurological deficits (2).

Over the last decade, LVO care has been extensively researched
and advanced, with strategies to allow earlier diagnosis and
improved occlusion management. Advancements in the use
of mechanical thrombectomy (MT) have played a critical role
in improving LVO care (3). MT is usually performed at a
comprehensive stroke centre (CSC), a hospital with complex
endovascular facilities. Patients brought directly to a CSC for
MT follow the “mothership” paradigm. An alternative pathway
to the mothership is the “drip and ship” pathway, known as
the primary care pathway—here, patients are sent to the nearest
stroke centre that provides intravenous thrombolysis (IVT) as
early as possible. Normal standard of care for LVO patients is
IVT prior to MT (4). However, some LVO patients may require
further transportation to a CSC for MT, increasing the time
between the onset of first symptoms and time to reperfusion (4).
Consequently, to improve patient outcomes and to minimise the
time to reperfusion, early detection and direct transportation to
a CSC via the mothership pathway should be considered. This
was highlighted in recent American Heart Association (AHA)
Guidelines (2019), which also called for research in identifying
effective pre-hospital procedures for triaging patients to the most
appropriate centres, including operational bypass algorithms
(5). Specialised ambulances, known as mobile stroke units, are
now providing rapid evaluation in-field using built-in computed
tomography (CT) scanners for LVO identification, which may
help to decrease the number of unnecessary patient transfers to
hospital (6).

Typically, the detection of stroke initially relies on clinical
presentation and the use of stroke triaging scales, followed by
confirmatory neuroimaging in hospital. Whilst it is generally
agreed that computed tomography (CT) and magnetic resonance
imaging (MRI) are the gold standard for confirmatory stroke
imaging, the consensus on optimal detection and triaging
pathways prior to this neuroimaging is less clear. This was also
discussed in the recent AHA Guidelines (2019), which called for
better pre-hospital stroke identification tools and found no clear
evidence for one tool over another (5).

In addition to the use of established stroke prediction
scales, recent literature has proposed improved scales and
novel detection techniques, including biomarkers, new imaging
modalities, clinical manifestations, and decision-focused
algorithms combining these.

The selection of optimal detection and triaging methods
is critical for supporting the recent advancements in LVO
management. Careful selection of techniques with high
sensitivity will ensure all LVO patients are correctly identified
and triaged to a suitable treatment centre, but may also result
in a significant number of false positives. Favouring a high
specificity may identify all non-LVO patients, preventing them

from being unnecessarily triaged for LVO investigation and
care, hence reducing system burden. However, a high specificity
may also increase the number of false negatives identified.
Ideally, LVO detection methods would have both high sensitivity
and specificity. Nevertheless, it is important to recognise that
sensitivity and specificity exist in balance; an increased sensitivity
often comes at the cost of a reduced specificity, and vice versa.
Detection techniques with sensitivity and specificity values
of <50% could suggest they are worse than chance. As a good
comparator throughout this review, the commonly used National
Institutes of Health Stroke Scale (NIHSS), at a cut-off of ≥11,
has been reported to have a sensitivity of 86% and a specificity of
60% for LVO (7).

This scoping review aims to explore existing literature in LVO
detection techniques to identify any advancements over the last
5 years. This review will then collate relevant records to identify
gaps in the current literature for future work. These aims will be
achieved through describing and categorising relevant records,
evaluating the sensitivity and specificity of detection methods,
and exploring advantages and disadvantages of different
detection methods.

METHODS

This scoping review search was conducted using the preferred
reporting items for systematic reviews and meta-analyses
(PRISMA) extension for scoping reviews and the PRISMA
scoping review (PRISMA-ScR) checklist (8). There is no
expectation for a bias assessment on the scoping PRISMA-ScR, so
no formal risk of bias assessment is included in this review. Prior
to the search, the protocol was registered with the Open Science
Framework (10.17605/OSF.IO/A98KN).

Search Strategy and Eligibility Criteria
A systematic search was conducted on the 22nd March 2021
using a pre-agreed search strategy (see Supplementary Table S1).
This strategy was developed with assistance from a Library
Research Services Consultant, Library Research Services,
University of Leicester, and used truncations to narrow or
expand search terms. The search was conducted using four
electronic databases: MEDLINE via OVID (1946-current),
SCOPUS (1966-current), CINAHL (1961–present), and Web
of Science Core Collection (1970–current). Grey literature was
searched using the OpenGrey database.

Limits applied to the search included human participant
studies and English language manuscripts. No geographical
restrictions were applied. Only records published from January
2015 to the end of February 2021 were included.

Retrieved records were imported into Mendeley (version
1.19.8) and automated duplication removal was applied.
Two reviewers (JKN and JI) independently screened the
titles and abstracts of records to determine their suitability
according to the pre-determined inclusion and exclusion
criteria. Only manuscripts reporting primary research studies
(any study design type) and conference proceedings were
included to identify emerging LVO detection methods. The
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population identified was LVO stroke in clinical and non-clinical
populations, in either clinical or non-clinical environments. Only
records reporting novel techniques developed since 2015 for LVO
detection that had not yet been validated or advancements in pre-
existing detection techniques were kept. Records with no full-text
available were excluded.

Selection of Articles for Inclusion
After initial screening, suitable records underwent full text review
to determine their relevance to the research question. Studies
were assessed for their eligibility based on their objectives, study
design, key findings, and conclusions.

Data Charting
A standardised data charting form (see Supplementary Table S2)
was used to extract key findings from the final retrieved
records. Any uncertainties raised during data charting were
discussed between investigators. Data charting allowed collated
information to be more readily compared for discussion.

Collating, Summarising and Reporting
Findings
A scoping review was performed due to the broad types of
data collected; this meant there was no a-priori plan for data
meta-analysis. Included records were then categorised based on
their investigated detection type, including stroke scales, imaging
and physiological methods, algorithmic and machine learning
approaches, physical symptoms, and biomarkers.

RESULTS

The search identified 5,082 records. Duplicates (n = 2,275)
were automatically removed using Mendeley, resulting in 2,807
retrieved records. Initial title and abstract screening resulted in
2,665 records being excluded due to being outside of the context
of the research question.

One hundred and forty-two records underwent full-text
screening. Of these, 80 did not meet the inclusion criteria
for various reasons, including studies that could only be
retrieved in abstract form (n = 10), records using secondary
research (n = 17), research exploring well-established diagnostic
techniques in a non-novel way (n = 35), and studies that were
irrelevant to the research question (n = 18). Sixty-two relevant
records remained for the scoping review and are illustrated in a
modified version of the PRISMA flowchart (Figure 1) (9).

Retrieved records were categorised into 5 groups based
on their LVO detection method. These included stroke scales
(n = 30), imaging and physiological methods (n = 15),
algorithmic and machine learning approaches (n = 9), physical
symptoms (n= 5), and biomarkers (n= 3).

Geographical influence of studies was assessed by grouping
records by continent of recruitment. Twenty-six records were
based in North America, whilst 17 records were from both
Europe and Australasia, respectively. One record was based in
South America and one record was from mixed countries.

Most included records featured retrospective, single-centre
experiences (n = 36), followed by 16 records which reported

retrospective, multicentre experiences. Four records used
prospective, single-centre recruitment, whilst 3 were prospective,
multicentre studies. Finally, 3 records included a mix of
retrospective and prospective multicentre experiences.

Fifty-four out of the 62 included articles provided sensitivity
and specificity values.

Stroke Scales
Pre-existing Scales
Thirty records investigating stroke scales were included in this
review, including 10 records which adapted pre-existing scales
for use in LVO (10–19). Stroke scale studies were based on a
combination of physical and clinical findings.

The Los Angeles Motor Scale (LAMS) is a popular stroke
detection scale, often used in the pre-hospital environment.
Three records applied LAMS to a LVO population. Firstly, the
standard LAMS scale was validated for LVO and demonstrated
good sensitivity (76%) and lower specificity (65%), for a cut-
off of ≥4, indicating its use in identifying patients requiring
transportation to a CSC (10). Modifications to the LAMS was
also used but performed less well, with one record trialling the
addition of atrial fibrillation (AF) as a scoring criterion, and
another adding speech abnormalities (11, 12).

The Cincinnati Prehospital Stroke Scale (CPSS) was trialled
for LVO use, with performance reportedly matching more
complex severity scales for a cut-off score of 3 (specificity
88%) (13). The CPSS was commended for its simplicity and
ease to teach, allowing rapid LVO detection in the pre-hospital
environment and triage to a CSC, although its low sensitivity
of 41% and low positive predictive value of 29% limits its use.
The CPSS was also investigated by Nehme et al. to determine if a
high CPSS score could identify LVO; however, this study did not
report sensitivity or specificity values (14).

Another popular LVO stroke scale investigated was the Rapid
Arterial oCclusion Evaluation (RACE) scale which was developed
in 2013 (15, 16). Approaches were made to simplify the scale,
such as omitting certain items from the original RACE scale,
including head and gaze deviation and aphasia or agnosia (15),
and modifying the scale to create the modified Rapid Arterial
oCclusion Evaluation (mRACE) (15). However, performance was
worse than the standard RACE scale (20), so modifications of this
scale are unlikely to be of benefit.

The remaining records each explored different commonly
used scales. Simplification of the existing NIHSS (sNIHSS-
EMS) combined severity, LVO prediction, and parallel stroke
recognition, resulting in a sensitivity of 70% and a specificity
of 81%, for a LVO prediction cut-off score of ≥6 (17). An
assessment of various NIHSS subitems and published stroke
scores to predict LVO on CT or magnetic resonance angiography
found an optimal NIHSS cut-off score of 7 to predict LVO, with
81% sensitivity and 77% specificity (18). Finally, application of
the Glasgow Coma scale (GCS) for use in LVO detection was
found to have high sensitivity (94%) and specificity (90%), for
a cut-off score of <15, and a high negative predictive value
(98%) (19).
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FIGURE 1 | Modified version of the PRISMA 2020 flowchart (9) to summarise record retrieval.

Novel Scales
This scoping review identified 20 novel stroke scores
developed since 2015 for LVO detection which had yet to
be validated (21–40), each with varying performance (see
Supplementary Table S3).

Of the proposed novel scales, 3 scales showed greatest
promise. Firstly, the Vision, Aphasia, and Neglect (VAN) score
identified LVO patients with 100% sensitivity and 90% specificity,
based on patients experiencing weakness, and one of the
following symptoms of visual disturbances, aphasia, neglect,
and an NIHSS score of ≥6 (21). Next, the Ventura Emergent
LVO Score (VES) was tested in a sample of 62 pre-hospital
patients, with a sensitivity for LVO of 95% and a specificity of
82% (22). Again, this performance is promising as it exceeds
that of the currently used NIHSS score and may support the
correct triaging of patients. Finally, the Large ARtery Intracranial
Occlusion (LARIO) scale evaluated facial palsy, arm weakness,
grip strength, language, and neglect in a simple 5-item scale and
was found to have a sensitivity and specificity of 100 and 82%, for
a cut-off of >3 (23).

Other scales of note include the Field Assessment Stroke
Triage for Emergency Destination (FAST-ED) scale, which has
comparable predictive performance to more complex scales, such
as the NIHSS, with a sensitivity of 60% and specificity of 89%,
for a cut-off score of≥4 (24). FAST-ED also outcompeted known
published scales CPSS (56% sensitivity and 85% specificity for a
cut-off of ≥2) and RACE (55% sensitivity and 85% specificity for

a cut-off of ≥5). The Prehospital Acute Stroke Severity (PASS)
scale should also be noted for its simplicity and 66 and 83%
sensitivity and specificity scores across a sample of over 3,000
patients, for a cut-off of ≥2 (25).

LVO may be present in patients with low NIHSS scores
(26). The LVO scale developed by do Martins-Filho et al. (26)
is a sensitive scale for LVO detection (sensitivity of 85% and
specificity of 82%, for a LVO score threshold of ≥63), based on
NIHSS at admission andmiddle cerebral artery vessel attenuation
on non-contrast computed tomography (NCCT) (26).

The FAST-PLUS stroke score is another proposed scale which
is simple to apply to the clinical environment and displays good
sensitivity (93%). However, its low specificity (47%) suggests this
is of limited use due to the risk of overwhelming CSCs with
false-positives (28).

The Conveniently-Grasped Field Assessment Stroke Triage
(CG-FAST) scale could prove to be an effective triaging tool
due to its sensitivity of 62% and specificity of 81%, for an
optimal cut-off of ≥4 (29). The accuracy of CG-FAST was
higher than pre-existing triaging scales, such as FAST-ED and
RACE (29).

A further novel scale, the Cincinnati Prehospital Stroke
Severity Scale (CPSSS), was designed with the aim of being simple
for EMS to perform in-field (31). However, the CPSSS had a
sensitivity of 83%, at the expense of a reduced specificity (40%),
for a cut-off of ≥2, for AIS patients with LVO (31). Further work
is warranted for the CPSSS to determine its clinical value.
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New scale Gaze Palsy, Aphasia, Inattention, Arm Paresis,
and Atrial Fibrillation (GAI2AA) was derived using hemispheric
symptoms; when set at an optimal cut-off of ≥3, performance
included sensitivity of 88% and specificity of 81% (35). The
scale also significantly reduced door-to-puncture time, making
it a good in-hospital triaging tool (35). A further scale, the
Finnish Prehospital Stroke Scale (FPSS), combined conjugate eye
deviation with common stroke signs for identifying the presence
of both LVO and stroke (36). The FPSS predicted LVO with a low
sensitivity (54%) but with a high specificity (91%) (36).

Imaging and Physiological Monitoring
Methods
Fifteen imaging and physiological monitoring methods were
identified, of which 5 were advancements in computed
tomography angiography (CTA) (41–45) and 2 used MRI
methods (46, 47). The remaining records explored different
modalities, including standard CT (48), a triage model
combining transcranial ultrasound with clinical assessment
(49), cranial accelerometery (50), volumetric impedance phase
shift spectroscopy (VIPS) (51), and intraoperative neurological
monitoring (IONM) (52). The final 3 studies observed cerebral
blood flow velocity (CBFV) waveforms using transcranial
Doppler ultrasound (TCD) (53–55).

Whilst CTA is commonly used by some centres, novel
applications of this method were trialled with good effect. As a
gold standard comparator, sensitivity and specificity values for
CTA in acute stroke were previously reported at 96 and 87%
(56). For example, Boyd et al. (41) trialled CTA with grayscale
inversion for LVO detection distal toM2 andM3MCA segments,
resulting in a sensitivity value of 97% and a specificity value of
97% across different radiologist training levels for LVO detection
(41). Thick maximum intensity projection in CTA (a 3D imaging
technique for viewing CTA data) was also trialled, with up to 83%
sensitivity and 99% specificity for LVO detection (42). Yang et al.
(43) further tested CTA using a time-resolved C-arm set-up with
a sample of 17 patients with LVO. Between two observers, they
reported a sensitivity of 100% and specificity between 94–100%,
indicating great advancements on previous work (43). However,
the image quality of small cerebral arteries at present may not be
sufficient for diagnosis (43).

Alongside novel CTA applications, retrieved records also
identified studies altering the way that CTA scans are interpreted.
Firstly, Hidlay et al. (44) used a smartphone-based evaluation of
scans for detecting LVO, with sensitivity and specificity of 100%
across 80 LVO patients, in a retrospective multicentre study.
Next, automated attenuation analysis was trialled by Reidler
et al. (45) with sensitivity values between 91 and 96% and
specificity values between 77 and 83%, for a specificity cut-
off of ≥0.70 when applied to their cohort of patients (79 with
LVO) (45). The CT-defined hyperdense arterial sign marker
for LVO demonstrated reasonably high sensitivity (67%) and
specificity (82%) for identifying LVO in ischaemic stroke patients
on thin and thick NCCT serial images (48). However, its utility is
currently limited as thick and thin CT image slices are not readily
available in many hospitals (48).

One imaging modality in particular demonstrated high
diagnostic accuracy and reliability (46). 3D black-blood MRI
(an imaging technique where the signal from blood flow is
suppressed) confidently diagnosed LVO with 100% sensitivity
and 100% specificity with both contrast and non-contrast scans,
observed with intraluminal T1 hyperintensity and contrast-
enhancement imaging criteria (46). A further application of MRI,
Fluid Attenuated Inversion Recovery Vascular Hyperintensity,
demonstrated excellent diagnostic performance for identifying
LVO and good-to-excellent reproducibility, with sensitivity and
specificity scores of 98 and 86% (47).

The effectiveness of a triage model combining transcranial
ultrasound and clinical assessment was assessed to help select
patients for intravenous thrombolysis or MT (49). This approach
had excellent specificity (97%) but lacked the ability to identify
55% of patients with potential LVOs (49).

Cranial accelerometery, a headset which measures small
head movements created by venous inflow to the brain during
cardiac contraction using sensitive accelerometers, was combined
with asymmetric arm weakness to assess if diagnostic accuracy
was improved compared to each of these detection techniques
alone (50). This approach increased sensitivity and specificity
scores from 65 and 91% to 91 and 93%, compared to cranial
accelerometery alone (50). Another non-invasive LVO detection
device, volumetric impedance phase shift spectroscopy (VIPS),
is a tool placed on the head like a visor and measures the
bioimpedance of each brain hemisphere. VIPS demonstrated
excellent sensitivity and specificity (93% and 92% among all
stroke patients), suggesting it may be a suitable tool for
triage (51).

IONM is a novel parameter currently used for detecting
the onset of neurological dysfunction in anaesthetised patients,
using modalities such as somatosensory evoked potentials and
electroencephalography to precisely define the time of last
electrically well (52). The IONM study did not provide sensitivity
or specificity values and had a small sample size of 5, so its
feasibility is still unclear (52).

Recent extensions to TCD cerebral blood flow monitoring
include waveform categorisation by Thorpe et al. (53) who
categorised CBFV waveforms into clusters (LVO vs. non-
LVO) for assessment using an unsupervised machine learning
method. This method may help differentiate between stroke
types and could be a useful tool for EMS before a patient
arrives at hospital (53). This study did not report sensitivity or
specificity values.

A further TCD feasibility study retrospectively compared
two metrics for LVO detection: velocity curvature index (VCI),
computed from CBFV waveforms, and velocity asymmetry
index (VAI), which quantifies differences in CBFV between
hemispheres (54). VCI proved superior to VAI and was trialled
in a separate further study for detecting LVO, distinguishing
between LVO patients and a clinical control group collected in-
hospital (55). VCI had an estimated sensitivity of 91% and an
88% specificity for identifying LVO patients for further LVO
investigation (55). However, high post-enrolment drop out of
subjects in the LVO patient group may have introduced bias
into the study.
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Algorithmic and Machine Learning
Approaches
Nine studies evaluated the viability of using algorithmic and
machine learning methods to predict LVO (57–65). Five of
these studies used algorithms to accurately predict LVO from
imaging methods, such as CT images (57, 60, 62–64). One study
established an automated evaluation system which contained
three hierarchical models based on patients’ demographic data
(model 1), clinical data (model 2), and NCCT scans obtained
from a deep learning model (model 3). This approach had high
sensitivity (95%) but much lower specificity (68%) using the
eXtreme Gradient Boosting (XGboost) algorithm (57).

A study published by Sugimura et al. (58) created a
hierarchical algorithm to detect highly likely and unlikely LVO
stroke during emergency helicopter transport to hospital; the
algorithm combined several LVO-suggestive clinical factors
(including eye deviation, AF, and a systolic blood pressure of
≥180 mmHg) and non-suggestive clinical factors (including no
eye deviation or limb paresis) to help appropriately select patients
presenting with LVO for transportation to CSCs (58). This study
did not specify sensitivity or specificity values, so its accuracy
is unknown.

In 2017, Nogueira et al. developed a new smartphone
application based on a built-in automated decision-making
algorithm and the FAST-ED stroke scale developed in 2016
by Lima et al. (24), to assist EMS in triaging patients in pre-
hospital settings (59). Another machine learning algorithm,
MeThinksLVO, aimed to identify LVO on NCCT, demonstrating
good sensitivity (83%) and specificity (71%). MeThinksLVO was
improved following the addition of the NIHSS and time from
onset to the model (60).

Chen et al. (61) successfully developed an artificial neural
network algorithm to predict LVO in the pre-hospital triage
stage using pre-hospital accessible data, including patient
demographics, NIHSS scores, and vascular risk factors. This
artificial neural network would be an effective pre-hospital
tool for identifying LVO as its diagnostic parameters (mean
Youden index, sensitivity, specificity, and accuracy) were higher
than previously established pre-hospital prediction scales, with
sensitivity and specificity values of 81 and 83% (61).

Due to the success of deep learning applications in other brain
pathology, a deep convolutional neural network was trialled to
assess the feasibility of detecting acute LVOs on multiphase CTA,
with sensitivity of 96% and specificity of 81% (62).

To detect anterior circulation LVOs, Amukotuwa et al. (63)
retrospectively evaluated the accuracy and speed of a new
automated tool, RAPID CTA, by analysing raw CTA patient
data for the presence and location of a LVO. To determine
the sensitivity and specificity for RAPID CTA, interpretation by
experienced neuroradiologists acted as a reference standard (63).
RAPID CTA demonstrated high sensitivity (92%) and specificity
(81%), making it a suitable tool for formal diagnosis (63). A
further study by Amukotuwa et al. (63) evaluated the diagnostic
accuracy of an algorithm from experienced neuroradiologists in a
multicentre study against a reference standard of reads, achieving
excellent diagnostic sensitivity (95%) and good specificity (79%)
for LVO. This fast automated detection method draws the

radiographer’s attention to positive findings on CTA, making
this a feasible detection approach for LVO in a clinical
setting (64).

The final study in this category was a 3-step triage tool
for pre-hospital use to reduce assessment time for patients
who do not have LVO, named the Ambulance Clinical
Triage for Acute Stroke Treatment (ACT-FAST) (65). This
study provided high sensitivity and specificity values following
retrospective and prospective validation, with a statistically
significant improvement on diagnostic performance of the FAST-
ED stroke scale and higher accuracy, specificity, and positive
predictive value than current LVO stroke scales (65).

Physical Symptoms
Out of the 5 studies observing stand-alone physical symptoms
included in this review, 2 studies focused on eye deviation
(66, 67), 1 study focused on cortical symptoms (68), 1 study
focused on complete hemiplegia (69), and 1 study focused on
neurological symptoms for predicting LVO (70).

Of the 2 studies focusing on eye deviation (66, 67), 1
study observed for conjugate eye deviation (DeyeCOM sign)
on CTA and NCCT (66), which may help to identify stroke
patients with cortical deficits. Gaze deviation is identified in
the NIHSS score and has shown good specificity in a previous
study for AIS (71). The DeyeCOM sign study noted a specificity
of 100% and sensitivity of 80% for DeyeCOM(++) patients
(patients with conjugate gaze deviation on both NCCT and
CTA images) and a specificity of 100% and sensitivity of 86%
for DeyeCOM(–) patients (absence of DeyeCOM sign on both
scans) (66). These results suggest that sustained DeyeCOM(++)
and DeyeCOM(–) are strong predictors of anterior LVO stroke
presence and absence. DeyeCOM(–) patients often had lower
mean NIHSS scores than LVO patients, suggesting DeyeCOM
sign can accurately identify LVO stroke from stroke mimics (66).

Radiological eye deviation predicted LVO in patients with
stroke-like symptoms with sensitivity and specificity scores of 71
and 78% (67). However, CTA scans were not performed for every
patient in the study’s cohort, so patient selection bias cannot be
excluded (67). There may have also been other underlying causes
of eye deviation, such as seizures, which may have increased the
incidence rate of LVO being detected (67).

Cortical symptoms, such as aphasia and neglect, in the absence
of motor symptoms, are sensitive indicators for LVO stroke (68).
Beume et al. (68) observed cortical symptoms to determine LVO
presence. The authors’ ratings system was optimised to have a
low false positive rate so that patients with low NIHSS scores at
initial presentation were not missed (68). Complete hemiplegia
demonstrated high specificity for predicting LVO (94%) but
lacked sensitivity in both derivation and validation cohorts (69).

Pollard et al. (70) screened for LVOs using a clinical paradigm
to classify neurologic symptoms (patients not presenting with
focal objective neurologic symptoms would be unlikely to have
LVO), achieving high sensitivity (100%) but a low specificity
(36%). However, with a positive predictive value of 8% and a
low specificity score, this system’s strength is limited in clinical
settings (70).

Frontiers in Neurology | www.frontiersin.org 6 January 2022 | Volume 12 | Article 780324

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Nicholls et al. Large Vessel Occlusion Detection Techniques

Biomarkers
Three studies demonstrating an association between different
biomarkers and LVO presence were identified in this review
(72–74). Previous studies have indicated an association between
cardiac biomarkers and ischaemic stroke, and AF with LVO,
but there is little known about the association of other cardiac
biomarkers with LVO (72). One retrospective, single-centre
study evaluated the association between biomarkers of cardiac
dysfunction (serum troponin levels) and left atrial diameter with
LVO on transthoracic echocardiograms in AIS patients, adjusting
for risk factors of stroke, AF, and demographic factors (72). An
association between serum troponin levels and LVO persisted
even after adjustment for AF, but no association was noted
between the left atrial diameter and LVO following the addition
of AF to a multivariate model (72). This indicates an association
between the left atrial diameter and troponin positivity with LVO
patients (72). A study published in 2018 by Inoue et al. noted
a significant correlation between AF and mean systolic blood
pressure >170 mmHg in the presence of LVO (73).

Proteomic profiling of plasma biomarkers exhibited high
accuracy for detecting AIS due to LVO and the upregulation of
4 proteins (IGF2, LYVE1, PPBP and THBS1) in LVO patients
(74). All 4 biomarkers play a role in blood haemostasis and
have excellent predictive values for identifying LVO. This study
found elevated levels of IGF2 (an insulin-like growth factor) and
LYVE1 (a cell surface receptor on lymphatic endothelial cells),
and lower THBS1 levels (a regulator of angiogenesis), to all be
independent predictors of a favourable outcome 3 months after
suffering from AIS due to LVO (74). Similarly to Inoue et al. (74),
higher systolic and diastolic blood pressure were noted in the AIS
group compared to a control group.

DISCUSSION

Data were extracted from 62 studies and categorised into 5
different LVO detection groups (stroke scales, imaging and
physiological measurement systems, algorithmic and machine
learning approaches, physical symptoms, and biomarkers),
highlighting new detection techniques not yet validated
or developments in previously known techniques for LVO
identification from 2015–2021. This scoping review aimed
to review published literature and map recent advancements
in LVO detection methods, updating current knowledge in
the field.

Improvements in clinical support tools would impact LVO
detection and patient triage, providing the opportunity for earlier
initial treatment and the potential for reductions in secondary
transfers, which has been shown to improve patient outcomes
(75). As previously described by Heldner et al. (76), the balance
of sensitivity and specificity requirements may change depending
on the geographical location of the patient. For example, in a
remote pre-hospital environment, a high specificity stroke scale
at the expense of a reduced sensitivity may be favoured to reduce
unnecessary transfers to CSCs. A high sensitivity stroke scale,
at the compromise of a reduced specificity, may be selected in
areas close to stroke centres to minimise over triaging (76). Both
high sensitivity and specificity are necessary at stroke centres to

confirm LVO. Consequently, the environment a patient is in may
determine whether sensitivity or specificity is to be favoured,
which may influence the LVO detection method selected. It is
important to note that this compromise between sensitivity and
specificity is just one measure of success for influencing patient
outcome and that other measures of success do exist.

LVO Detection
This scoping review has highlighted several methods for initial
LVO detection which could be applicable to a variety of
environments, including the pre-hospital environment. These
methods primarily include stroke scales, but could include the
addition of physical symptoms, physiological measurements,
and biomarkers.

Whilst there is an unclear consensus on the optimal stroke
scale, scales with high sensitivity could be an ideal initial
detection method in patients with suspected LVO. Favouring a
higher sensitivity over specificity ensures all patients with LVO
are identified for transportation to a stroke facility. Based on
the findings of this review, the RACE scale and the GCS could
be favourable scales due to their high sensitivity and accuracy
for predicting LVO, ease of use, and minimal training required
(15, 19). Another scale of note not investigated in this review was
the Gaze-Face-Arms-Speech-Time (G-FAST) score which also
had a high sensitivity (89%) for identifying LVO, for a cut-off of
≥3 (77). Consequently, G-FAST may help to determine which
patients require referral to a CSC for cerebrovascular imaging
(77). A study performed by Duvekot et al. (78) compared 8
pre-hospital stroke scales for detecting LVO, noting RACE, G-
FAST, and CG-FAST as the best performing scales; all three scales
neared similar performance to the NIHSS.

Whilst aiming for high sensitivity for LVO detection is
beneficial, there is also a counter argument for an alternative
pre-hospital focus of high specificity, particularly in rural areas
(76). This would result in fewer false-positive patients being
transported to CSCs, helping to reduce the demand on CSCs. As
a result, in rural areas, scales such as the novel FPSS could be
used for both stroke screening and LVO detection due to its high
specificity score of 91% (36), although further EMS validation
studies are still required. Schlemm et al. (75) recently calculated
multiple centre scenarios for optimal additional delay to IVT for
both the “mothership” and “drip and ship” pathways in urban
and rural environments, using mathematical modelling. The
results of this study suggest that AIS-suspecting LVO patients
should be redirected to a CSC if the additional waiting time to
IVT is 50 mins in rural environments (75). This differs to urban
environments where redirection to a CSC should occur if the
additional delay to IVT is <30 mins (75).

In addition to the use of stroke scales, this scoping review has
identified that routinely performed physiological measurements
may also support detection of LVO. For example, Inoue et al.
(73) demonstrated that systolic blood pressure of >170 mmHg
and the presence of AF on electrocardiograms could be useful
markers for LVO. Ongoing work is required to evaluate the
performance of adding these routinely performed physiological
measurements to existing stroke scales to validate their addition,
but also to ensure investigation does not delay LVO care.
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There is also an ever-increasing interest in emerging
techniques using non-invasive, portable measurement devices.
These devices target a variety of physiological measures,
and whilst early in development, could prove critical in
enhancing LVO detection. This scoping review highlighted
cranial accelerometery which, when combined with the presence
of asymmetric arm weakness, was found to outperform
numerous LVO prediction scales with a specificity score of 93%
(50). In addition to the methods highlighted by this review,
the field is also expanding with novel devices investigating the
use of ultrasound to detect stroke, with a recent application of
transcranial tissue Doppler ultrasound to detect ischaemic stroke
(79). As these emerging techniques are further investigated,
future work is required to validate them as part of the LVO
detection pathway. Whilst they may support LVO detection, it
is also important to highlight that confirmatory imaging and
these detection methods serve different purposes. Confirmatory
imaging is used to provide detailed anatomical images and can
also be used to exclude differential diagnoses.

Finally, the simple ambulance triage tool (the ACT-FAST
algorithm) shows great potential for use in both urban and
rural pre-hospital environments due to its high sensitivity and
specificity (65). The algorithm identifies one-sided arm weakness
in step 1 and determines which arm is experiencing the weakness
in step 2 (65). If a patient has a positive result in step 3
(deficits experienced are not pre-existing, the time of onset is
<6 h, the patient was living independently, and the patient is
not experiencing a stroke mimic), transfer of the patient to
a CSC for LVO investigation is recommended (65). Like the
stroke scales, this simplistic detection tool could prove useful
in the pre-hospital environment, assisting in LVO detection and
early triaging.

LVO Confirmation
Following admission to a stroke facility, both high sensitivity
and specificity are necessary to correctly diagnose LVO.
As stated by the AHA Stroke Guidelines (2019), cerebral
imaging is recommended for identifying LVO (5). Despite
this, high demand and long wait times can place pressure on
resources and delay time-to-treatment. As a result, emerging
techniques to support diagnosis using confirmatory imaging
could prove useful.

To relieve the burden on scan reporting, automated
algorithms applied to CTA scans, taken at the time of initial
presentation, could be useful in LVO detection due to their high
sensitivity scores (62–64, 80, 81). The introduction of machine
learning algorithms has been offered as an aid for LVO diagnosis,
particularly for less experienced stroke practitioners (81). RAPID
CTA is one of the recommended raw data analysis methods due
to its high sensitivity and specificity value (63). Alternatives not
explored in this scoping review include Viz.ai and Brainomix,
which are commonly used systems that interpret stroke imaging
using convolutional neural networks (82).

In addition to speeding up image analysis, this scoping review
has also identified findings to assist in diagnosis. For example,
DeyeCOM sign (eye deviation on CT) has been associated with
LVO and could support prompt diagnosis.

Alongside confirmatory imaging, this scoping review has
highlighted the potential for proteomic profiling of plasma
biomarkers (74). Detecting for upregulation of proteins which
play a role in blood haemostasis could be used to indicate LVO
presence, allowing for earlier intervention (74). Furthermore,
it has also been suggested that elevated levels of IGF2 and
LYVE1, and reduced levels of THBS1, could all independently
predict a favourable patient outcome at 3 months following LVO
(74). Whilst these emerging biomarker techniques have potential
clinical applications, their use is less likely of value due to the
availability of rapid neuroimaging and lack of rapid testing for
biomarkers. Moreover, the use of biomarkers is time-dependant
and the time point of measurement, with respect to stroke onset,
is of the utmost relevance, due to biomarkers being strongly
influenced by the degree and severity of the blood-brain barrier
breakdown. The time to reach maximum concentration will
vary between biomarkers, and significant latency in stroke onset
and changes in serum biomarkers may become troublesome
when the stroke onset time is unknown, meaning the maximum
concentration of a biomarker may be missed.

Strengths and Limitations of the Review
A major strength of this review was the prospectively registered
comprehensive search of the literature based on a well-developed
search strategy. The results of this study are limited by small
cohort sizes and retrospective study designs whichmay introduce
selection bias. Some studies only assessed findings from one
ethnicity which may not be representative of a more diverse
global population. The definition of LVO varies across the
literature, so some studies included in this review did not
include M2 middle cerebral artery segments in their definition
of LVO or exclude posterior circulation findings, such as the
posterior cerebral artery, making direct comparison between
studies difficult. This review did not include a formal risk of
bias assessment which could also be noted as a limitation.
Moreover, the reference group of each study is of the utmost
importance when reporting values for sensitivity and specificity
(all LVO or LVO in the anterior cerebral circulation only).
Direct comparison between studies in this scoping review proved
difficult due to the different gold standards used for delineating
“true LVO”, suggesting heterogeneity between studies. Studies
including Purrucker et al. (17) and Antipova et al. (49) referred to
the patient’s hospital discharge diagnosis as the “gold standard”
(17, 49). However, some stroke scale studies, such as Noorian
et al. (10), Lawner et al. (16), and Brandler et al. (12), noted the
NIHSS as the “gold standard” stroke scale for LVO stroke severity
assessment and diagnosis. In addition to this, only 54 out of the
62 studies included sensitivity and specificity values, once again
rendering direct comparison between studies more difficult.

Future Work
Future work in this field should aim to increase cohort sizes,
include a representative sample of the whole population, with
varying ethnicities, and prospectively validate findings in-field
and in clinical settings if possible. Furthermore, heterogeneity
between study protocols and populations may be influencing
the reported sensitivities and specificities, rendering comparisons
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between LVO detection methods more difficult. As a result, all
future LVO detection studies should aim to compare to a single
gold standard of LVO diagnosis, have the same LVO definition,
and ensure that sensitivity and specificity values are reported
on. Reporting of additional variables in future work could also
support comparisons between methods, including all studies
reporting the number of occlusions, any previous infarctions
or brain scarring, any variations in the vasculature and brain
areas supplied in an individual, and any variation in other brain
anatomy. All of these variables may alter study outcomes, and
therefore clear reporting is required.

CONCLUSION

Early recognition and management of LVO can improve
patient outcome. This scoping review has explored literature
on novel and advancements in pre-existing detection methods
for LVO. This review highlights LVO detection methods with
good sensitivity and specificity performance, with a discussion
regarding favouring sensitivity or specificity depending on
the environment a patient is in. Furthermore, this review
presents recent advancements used to support current LVO
confirmatory imaging, including the use of artificial intelligence
and algorithms.
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