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Abstract: Neutrophil granulocytes are the vanguard of innate immunity in response to numerous
pathogens. Their activity drives the clearance of microbe- and damage-associated molecular patterns,
thereby contributing substantially to the resolution of inflammation. However, excessive stimulation
during sepsis leads to cellular unresponsiveness, immunological dysfunction, bacterial expansion,
and subsequent multiple organ dysfunction. During the short lifespan of neutrophils, they can
become significantly activated by complement factors, cytokines, and other inflammatory mediators.
Following stimulation, the cells respond with a defined (electro-)physiological pattern, including
depolarization, calcium influx, and alkalization as well as with increased metabolic activity and
polarization of the actin cytoskeleton. Activity of ion transport proteins and aquaporins is critical
for multiple cellular functions of innate immune cells, including chemotaxis, generation of reactive
oxygen species, and phagocytosis of both pathogens and tissue debris. In this review, we first
describe the ion transport proteins and aquaporins involved in the neutrophil ion–water fluxes in
response to chemoattractants. We then relate ion and water flux to cellular functions with a focus
on danger sensing, chemotaxis, phagocytosis, and oxidative burst and approach the role of altered
ion transport protein expression and activity in impaired cellular functions and cell death during
systemic inflammation as in sepsis.

Keywords: neutrophil granulocytes; calcium; NADPH oxidase; intracellular pH; chemotaxis; cell
death; sepsis; NHE1

1. Introduction

“Water is the driving force in nature”; this quote attributed to Leonardo da Vinci
(1452–1519), the Italian Renaissance man, indicates that water is crucial for life. Input and
output of water and ions, therefore, require tight regulation in organisms. On a cellular
level, various ion and water transport proteins ensure the ion–water balance, which is
involved in any physiological and immune function.

A major function of the innate immune system is to supply the “first line” of the fluid
and cellular defense system, comprising mainly the complement system and neutrophil
granulocytes (neutrophils). The complement cascade becomes activated by numerous mi-
croorganism and microbial-associated molecular patterns (MAMPs) and in turn generates
anaphylatoxins, opsonins, and membrane attack complexes, all of which support bacterial
marking and clearance [1,2]. Neutrophils kill bacteria by a rather dynamic process, includ-
ing pathogen sensing, targeted migration, phagocytosis, formation of an oxidative burst,
generation of proteases, and formation of neutrophil extracellular traps (NETs), all of which
finally help to control invading pathogens [3,4]. However, when the infectious agents
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outnumber the host’s defense capacities, or when the microorganisms are too virulent, or
the host is somehow immune compromised, neutrophils and their associates, macrophages,
may become overwhelmingly activated and finally dysfunctional in their function. Such a
scenario can occur during the systemic inflammatory response in sepsis [3,5–7]. Recently,
this neutrophil dysfunction has been increasingly associated with alterations in cellular
size and intracellular cytosolic pH (henceforth referred to as “intracellular pH”), making
an involvement of an ion–water disbalance likely [8–16].

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host
response to infectious microorganisms and corresponding MAMPs [17]. With an annual
incidence of approximately 50 million, sepsis-related deaths are estimated to represent
almost 20% of all deaths globally [18]. Clinical symptoms consist of impaired consciousness,
lowered blood pressure, and enhanced respiratory rate. Sepsis is frequently associated
with an occult or evident edema. The underlying swelling of the interstitium and cells of
various tissues is eventually induced by altered ion and water transporters [14]. These
changes during sepsis may occur not only in solid organs, including the kidneys and
lungs, where they enhance the distances of the blood-organ barrier with subsequent
functional problems, but also in the cellular line of defense [7,11]. Therefore, changes in
the ion–water homeostasis triggered by excessive inflammation contribute to immune and
organ dysfunctions [4,5,10,14].

In this review, we discuss neutrophil functions, with a focus on ion and water flux
with an emphasis on danger sensing, chemotaxis, phagocytosis, and oxidative burst,
highlight pyroptosis and NETosis as neutrophil-related forms of cell death, and transfer
these findings into the clinically relevant context of sepsis.

2. Extra- and Intracellular Danger Sensing

Danger sensing of harmful MAMPs, but also of damage-associated molecular patterns
(DAMPs), is crucial for any organism, if not a “question of life and death”. Neutrophils,
as the most frequent representatives of the first cellular line of defense, can recognize
molecular danger by pattern recognition receptors (PRPs), including the membrane-bound
formyl-peptide receptors (FPRs), toll-like receptors (TLR; e.g., TLR2 and TLR4), com-
plement receptors (e.g., CR1, CR3, C5aR1/2), and receptor for advanced glycation end
products (RAGE) [4,19,20]. There is also an effective arsenal of intracellular PRRs, such
as TLR3, TLR7, TLR8, and TLR9, which are located in the endoplasmic reticulum. Fur-
ther intracellular defense is provided by cytoplasmic nucleotide-binding oligomerization
domains (NODs), e.g., NOD1, which recognizes a peptidoglycan-related molecules from
most gram-negative and certain gram-positive bacteria, and NOD2, which senses muramyl
dipeptides of all gram-positive and gram-negative bacteria [21]. The consequences of
danger sensing during sepsis are omnifarious. On the one hand, MAMPs and DAMPs
sensing via TLRs is an important pathway for neutrophils to recognize and clear invading
bacteria [22,23]. On the other hand, DAMPs can compromise neutrophil functions. For
example, high mobility group box 1 (HMGB1) is released and functions as both DAMP and
inflammatory factor during both sterile and infectious inflammation, binds to RAGE and
TLR4 on neutrophils, resulting in impairment of nicotinamide adenine dinucleotide phos-
phate oxidase (NOX) activation and bacterial killing. This can exacerbate sepsis-related
organ dysfunction and outcome [5,6,24]. In the context of thromboinflammation and sepsis,
an indirect mechanism for pathogen sensing has been proposed, whereby platelets can
efficiently sense pathogens via various membrane-bound receptors (e.g., TLR4), and then
secrete various platelet-associated molecules such as thrombospondin or platelet-activating
factor (PAF), which can interact with neutrophils and other immune cells and thus transmit
the MAMP or danger signal to neutrophils [25,26].

Multiple mechanisms exist by which microbes or corresponding MAMPs can enter
host cells. For example, lipopolysaccharide (LPS) can enter the cytoplasm by escaping the
bacteria/MAMP-containing vacuole, or via endocytic uptake of LPS encapsulated in outer
membrane vesicles originated from bacteria [27]. Upon intracellular MAMP exposure, the
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innate immune sensor protein NOD-like receptor (NLR) family pyrin domain containing 3
(NLRP3) forms the inflammasome to cleave caspase-1, which in turn leads to interleukin
(IL)-1β generation [28]. Recent studies on macrophages indicated that chloride intracellular
channels (CLIC), a class of highly conserved but rather unconventional ion channels [29,30],
which induce a Cl− efflux, promote NLRP3 inflammasome assembly and subsequent IL-1β
secretion, and thus mediate a proinflammatory response [31,32]. Whether the intracellular
chloride homeostasis also alters the intracellular sensing and inflammatory response in
neutrophils is currently unknown. It is noteworthy that MAMPs from bacteria, like LPS,
can themselves modulate the sensing mechanisms and thereby impair subsequent vital
neutrophil function as an immune evasion strategy [20].

Sensing of N-formylmethionine-containing oligopeptides (which are released by many
invading microorganisms) via FPRs on neutrophils results in an increase in the mitochon-
drial membrane potential. This rapidly leads to a robust release of adenosine triphosphate
(ATP) by the neutrophil. In turn, the excreted ATP subsequently activates purinergic
receptors on the cellular surface in an autocrine manner. The resulting Ca2+-influx finally
triggers functional changes, including morphological polarization, directed chemotaxis,
phagocytosis, and degranulation [33,34].

3. Directed Chemotactic Activity

Cellular migration is a key function of neutrophils, which is induced by MAMPs from
the inflammatory/infectious site (e.g., by N-formyl-methionyl-leucyl-phenylalanine (fMLF,
previously termed fMLP)) and numerous inflammatory mediators, including among others
complement factor 5a (C5a), IL-8, lipid mediators, such as PAF and leukotriene B4 (LTB4),
and ATP [1,4,35–37].

For directional sensing of extracellular danger and the persistent directional migration
towards a chemokine or C5a gradient, the cell division control protein 42 (Cdc42), a small
GTPase of the Rho family, is required in neutrophils [38,39]. Chemotactic movement is
evidently dependent on actin polymerization and cytoskeletal remodeling processes as
well as osmotic conditions for the cell shape and size, respectively. For example, Cdc42
in neutrophils is not only activated by C5a but also by osmotic stress, resulting in actin
polymerization and remodeling as well as subsequent shape changes [11,40,41]. In addition,
acidosis as a sepsis-associated change of the local extracellular microenvironment, altered
the chemotactic features towards enhanced sensitivity and decreased directionality to an
fMLF gradient. In the case of an intracellular acidotic microenvironment, the chemotactic
migratory activity of neutrophils towards fMLF was pH dependently reduced [42,43].
Taken together, there is a gap in the research on the association of ion and water transport
(patho-)physiology with danger sensing and immunological consequences of neutrophils,
particularly in the context of sepsis.

4. Sequential Neutrophil Activation after Chemoattractant Stimulation

In general, neutrophils respond to exposure to chemoattractants with a defined re-
action pattern consisting of a rise in cytosolic Ca2+ [44–47] and depolarization of the
membrane potential within seconds [44–46,48] as well as intracellular alkalization and
increased cellular size within minutes (Figure 1) [10,11,42,49,50]. In this context, alterations
in the response of neutrophils after chemoattractant stimulation are a hallmark of cellular
dysfunction during sepsis.
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Figure 1. Simplified summary of the response of neutrophils upon stimulation with chemoattracttants with a focus
on the well-studied C5a-C5aR1 axis. The anaphylatoxin C5a induces an increase in intracellular Ca2+, depolariza-
tion, and changes in cellular pH and size. fMLF induces similar signaling. AQP9-regulation has hitherto only been
demonstrated for fMLF. SOCE = store-operated calcium entry, STIM1 = stromal interaction molecule 1, ER = endoplas-
mic reticulum, IP3R = inositol 1,4,5-trisphosphate receptor, IL-R = interleukin receptor, C5a = complement factor 5a,
C5aR1 = C5a receptor 1, AQP9 = aquaporin 9, CaM = calmodulin, PKC = protein kinase C, NHE1 = sodium-proton ex-
changer 1, MCT = monocarboxylate transporter, Glu = glucose, GLUT1 = glucose transporter 1, NOX = NADPH oxidase,
Hv1 = voltage-sensing domain only protein, MAMP = microbial-associated molecular pattern, fMLF = N-formylmethionyl-
leucyl-phenylalanine, fMLF-R = fMLF receptor, TLR = toll-like receptor.

4.1. Calcium Signaling

Upon stimulation, neutrophils respond with a rapid and pronounced increase in cellu-
lar Ca2+ levels [44–47,51,52]. Ca2+ signaling can be initiated by G protein-coupled receptors
(GPCRs, e.g., receptors for fMLF or C5a) or in general by other ligand-receptor interac-
tions, including FcG-receptors (antibodies), and the activation of CD11b/CD18 (β2-integrin,
e.g., by iC3b or fibrinogen) as well as by cellular crosstalk, such as platelet–neutrophil
interaction (P-selectin glycoprotein ligand-1 and P-Selectin as well as CD40 and CD40L,
respectively) [35,47]. GPCR activation results in the dissociation of the subunits of the G
protein, which activate members of the phospholipase β and G families, resulting in the
cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate
(IP3), and diacylglycerol (DAG) [47,52–54]. IP3 triggers Ca2+ release from the endoplasmic
reticulum (ER), causing an initial rise in intracellular Ca2+. The decrease in Ca2+ concentra-
tion in the ER induces store-operated calcium entry (SOCE). Stromal interaction molecule
(STIM) 1 and 2 on the ER membrane translocate to defined regions at the plasma membrane,
interacting with Ca2+ release-activated Ca2+ (CRAC) channels (predominantly Orai1 in
neutrophils) to initiate the influx of extracellular Ca2+ [47,52,55–57]. In addition to SOCE-
dependent mechanisms, CD38 (cyclic adenosine diphosphate (ADP) ribose hydrolase) adds
to the elevation in intracellular Ca2+ of fMLF-stimulated neutrophils by the generation of
the nicotinamide adenine dinucleotide (NAD+) metabolites ADP-ribose (ADPr) and to a
lesser extent cyclic ADP-ribose (cADPr) [58], which in turn open transient receptor potential
melastatin 2 (TRPM2) (extracellular Na+/Ca2+-influx) [47,59] and ryanodine receptors-
gated stores (Ca2+-influx from the ER, independent of IP3-SOCE Ca2+-stores) [51,60,61],
respectively. Ultimately, the rise in intracellular Ca2+ activates several kinases as well as ion
channels and cellular functions, as reviewed in [47] and [52]. For example, the increase in
Ca2+ activates various isoforms of protein kinase C (PKC), which phosphorylate among oth-
ers p47 phagocyte oxidase (p47phox, synonym: neutrophil cytosolic factor 1), an important
step in the activation of the multicomponent enzyme NOX [62–65]. In addition, the rapid
increase in intracellular Ca2+ triggers secondary (electro-)physiological changes, including
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cellular depolarization via NOX activation [52,66–68], intracellular alkalization [10], and
cellular shape changes [11], as discussed below.

4.2. Electron and Proton Fluxes Mediate Depolarization and Intracellular Alkalization

Neutrophil stimulation results in the activation of NOX, which transfers two electrons
from nicotinamide adenine dinucleotide phosphate (NADPH) to molecular oxygen (O2),
thereby generating superoxide anions (O2

•−) [64]. In this process, electrons are transported
across the plasma membrane (or into the phagolysosome), which induces cellular depolar-
ization [45,64,69–71]. This depolarization must be compensated, because it otherwise limits
the functionality of the NOX-mediated electron export and affects Ca2+ signaling [64,68,72].
To counterbalance this efflux of negative charge, neutrophil depolarization is accompanied
by a H+ efflux via voltage-gated proton channels (voltage sensing domain only protein
(VSOP) / Hv1 as its respective human homologue) [64,68,73]. The striking relevance
of this mechanism was further demonstrated in Hv1-deficient mice, which responded
to stimulation by the chemoattractant fMIVIL (N-formyl-Met-Ile-Val-Ile-Leu, stimulant
of the murine equivalent of the fMLF receptor) with cellular acidification as well as a
significantly reduced rise in Ca2+ and subsequent impaired actin depolymerization and
cellular migration [68]. Likewise, neutrophils from patients with chronic granulomatous
disease (pathology including several defects in NOX assembly) responded with almost no
detectable depolarization under fMLF stimulation [46].

The rise in intracellular Ca2+ as well as the intracellular accumulation of H+ generated
by NOX initiate H+ extrusion, via Hv1 and the sodium-proton exchanger 1 (NHE1) [10,74–77].
Hv1 is a voltage-dependent H+ channel activated by cellular depolarization [64,72,78]. The stim-
ulation by chemoattractants and subsequent increase in intracellular Ca2+ activate calmodulin
and other kinases, which can phosphorylate and thereby activate NHE1 together with the initial
NOX-mediated increase in intracellular H+ concentration [10,76,79–81]. The chemoattractant-
induced overshooting alkalization is largely NHE1 dependent, as shown by NHE1 inhi-
bition with the NHE1-specific inhibitor ((4-Cyanobenzo[b]thiophene-2-carbonyl)guanidine,
methanesulfonate), while inhibition of the H+/K+-ATPase (by Omeprazole), H+-ATPase (by
Bafilomycin), or the Hv1 channel (by zinc) did not prevent C5a-induced alkalization signifi-
cantly [10].

Following initial stimulation, this intracellular alkalization continues for up to an hour
and modulates various crucial cellular functions, including fMLF-induced IL-8 release
and C5a-induced increase in glucose metabolism [10,49]. This latter mechanism results in
increased lactate generation, which is released in symport with H+ via monocarboxylate
transporters, thereby contributing to extracellular lactate acidosis [10]. It is noteworthy
that the alkalization of fMLF-stimulated neutrophils is increased by the presence of ex-
tracellular HCO3

− [82]. Additionally, the Cl−/HCO3
− exchanger (anion exchanger 1,

AE1) appears to be inhibited by fMLF [82]. Accordingly, it was proposed that in general
a sodium-proton exchange (likely NHE1) is responsible for recovering the intracellular
pH from an acidic load, while a Cl−/HCO3

− exchange mechanism (likely AE1) appears
to mediate the recovery from an alkaline load [82,83]. In this context, many previous
studies of neutrophil alkalization must be interpreted with caution, because HCO3

− has
frequently not been supplemented in culture media, presumably to facilitate the control of
the extracellular pH. Regarding ion fluxes, changes in intracellular pH interact with CRAC-
mediated Ca2+-influx and the release of O2

•−. For example, intracellular alkalosis increases
intracellular Ca2+ and thus cellular function, including migration [84,85]. Additionally,
inhibition of fMLF-induced intracellular alkalization reduced but did not completely in-
hibit O2

•− release [49,79,86]. Besides the frequent lack of HCO3
− and other important

blood ions and proteins in the buffer for neutrophil experiments, it is also noteworthy that
most of the described mechanisms have been demonstrated mainly for fMLF and/or C5a
stimulated neutrophils.

The discussed ion–water fluxes in neutrophils after stimulation with chemoattrac-
tants also interact closely with cellular migration, which has been addressed in other
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reviews [87–89]. Here, we only briefly summarize this, because changes of neutrophil cell
size and shape are also impaired during sepsis as discussed below. Neutrophils stimulated
with chemoattractants respond within minutes with a pronounced change in cellular shape
towards an oval, elongated form as well as a moderate increase in cellular size [11,50,90]. In
general, migration involves cellular polarization, including an influx of osmolytes such as
Na+ as well as water at the protrusive end, active reorganization of the actin cytoskeleton,
and an efflux of ions and water at the retractive pole [13,87–89]. Actin polymerization at
the protruding cell pole is driven by Cdc42 activity, which depends on local intracellular
alkalization by NHE1 and others [91,92]. Additionally, as demonstrated in fibroblast, NHE1
acts as an anchor for actin filaments [93]. In the context of neutrophil migration, the influx
of water contributing to the increase in neutrophil cell size is regulated via Ras-related
C3 botulinum toxin substrate 1 (Rac1)-dependent pathways phosphorylating and thus
activating aquaporin (AQP)9 [94–97]. Of note, this process starts within minutes of neu-
trophil stimulation with fMLF and correlates temporally with actin polymerization [97].
Additionally, AQP1 is involved in neutrophil water flux, as discussed below [98].

5. Sepsis-Induced Neutrophil Dysfunction and Its Correlation with Ion and
Water Flux

In sepsis, neutrophils are exposed to a broad spectrum of inflammatory mediators,
including cytokines, chemokines, and complement fragments as well as to bacterial endo-
toxins, which can possibly impact neutrophil ion and water flux and thereby modulate
neutrophilic functions. In accordance with this, numerous pivotal functions of neutrophils,
including phagocytosis, oxidative burst production, and chemotactic activity, can be im-
paired during severe sepsis [99–101].

In agreement with the proposed alterations of ion transport proteins, an increase
in neutrophil size and cell volume can be observed in murine sepsis [8,11] as well as an
elevated intracellular pH in neutrophils from patients with sepsis [10]. Moreover, NHE1
inhibition with amiloride markedly reduced LPS-induced lung neutrophil infiltration in
murine sepsis, indicating the requirement of NHE1 (or other Na+ transport proteins) for
neutrophil chemotaxis in sepsis [15]. In this in-vivo study, it was not clearly distinguishable
whether the effect could be attributed to the inhibition of neutrophil NHE1 or reduced
production of macrophage- and epithelium-derived cytokines and chemoattractants, be-
cause NHE1 is ubiquitously expressed in the lung tissue. However, in-vitro studies could
demonstrate that NHE1-dependent regulation of intracellular pH is involved in chemotaxis
of human neutrophils under inflammatory conditions [42,102]. In general, targeting ion
transport proteins such as NHE1 during sepsis might be an interesting clinical option in
systemic inflammation [9] or for patients with cancer [103]. However, to our knowledge,
this has not been translated to patients with sepsis.

One consequence of this “metabolic switch” when turned on during sepsis may also
feature shape changes of neutrophils reflected by an increase in the cellular length/width
ratio [11]. Of note, the in-vivo morphological changes of neutrophils during sepsis were
associated with a slight increase in their volume [11]. Other mechanisms may be involved
for sufficient neutrophil functions, such as members of the transient potential receptor (TRP)
channel family which control the Ca2+ currents and thereby modulate any micro-movement
efforts, including during migration, chemotaxis, phagocytosis, and cytokine release [13].

Controlling Ca2+ levels in neutrophils may also constitute a valuable strategy to mod-
ulate neutrophil-drive inflammation and/or to restore neutrophil function [104,105]. For
example, in patients with uncontrolled noninsulin-dependent diabetes mellitus, an increase
in basal Ca2+ was associated with an impairment on phagocytotic activity, which could be
ameliorated with the calcium channel blocker amlodipine [106]. Likewise, an increase in
intracellular Ca2+ is linked with reduced bacterial clearance of pathogens in neutrophils
from individuals with cystic fibrosis, which also was improved by reducing intracellular
Ca2+ [107]. Further studies need to elucidate basal Ca2+ levels and to explore the possibility
to target Ca2+ homeostasis as mediator of neutrophil dysfunction during sepsis.
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In addition to ion transport proteins, AQPs modulate fluid shifts in neutrophils, albeit
their specific function in sepsis remains rather speculative. AQP5 protein expression has
been reported to be downregulated during inflammation as a response to proinflammatory
cytokines [108,109]. Interestingly, modulation of AQP5 expression is associated with altered
neutrophil function, and there is increasing evidence that the AQP5 expression level in
immune cells impacts survival rate in sepsis patients, proposing AQP5 as an interesting
immune-modulatory therapeutic target. For example, high AQP5 mRNA expression in
the blood of patients with sepsis was related to a higher mortality rate that was associated
with greater AQP promotor methylation at a putative nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) binding site [110]. Remarkably, genetic knock out or
loss-of-function single-nucleotide polymorphism in the AQP5 gene promotor resulted in
experimental and clinical improvement of sepsis and adult respiratory distress syndrome
(ARDS) outcome [111,112]. However, the relationship between AQP5 and neutrophils or
neutrophil-mediated inflammation remains to be elucidated. AQP9 has been reported to
be increased during systemic inflammation [97], which could contribute to morphological
changes and functional impairment of neutrophils during sepsis. In addition, elevated
AQP1 expression was observed in leukocytes of patients with sepsis [98]. Though the latter
was accompanied by an increase in mercury sensitive membrane water permeability, the
specific biologic function and impact on neutrophil function needs to be determined further.
In macrophages, AQP1 has been shown to promote cell migration [113]. Therefore, sepsis-
induced AQP1 upregulation may impact neutrophil migration and chemotaxis. Moreover,
because AQP1 does not only provide a water pore but also facilitates bicarbonate diffusion
across biological membranes as concluded by atomistic molecular dynamics simulations,
modulatory effects on intracellular pH adjustment appear possible [114].

Changes in neutrophil ion and water homeostasis, frequently measured by changes
in cell size, have been of increasing interest as diagnostic and prognostic markers in
sepsis and other systemic inflammation conditions. A meta-analysis of the Area Under
the Receiver Operating Characteristic Curve (AUROC) reported that a mean neutrophil
volume of 0.87 (0.83–0.89) was an indicator for sepsis [12]. In accordance, alterations in
neutrophil cell size occurred prior to organ dysfunction after severe injuries [16]. However,
we are only beginning to understand the coherences between the ion–water regulation
of neutrophils and their functions. Particularly during sepsis, the immune response and
pathophysiological reaction may result not only in an immune suppression, but also in
an altered ion–water homeostasis and dysfunctional cellular barriers [14]. Conversely,
inflammation-driven alterations of the ion–water equilibrium may result in insufficient
organ and immune responses, creating a vicious pathophysiological circle (Figure 2).

5.1. Alteration of the Membrane Integrity by MAMPs and DAMPs

Some MAMPs and DAMPs can disrupt the integrity of the leukocyte membrane by
pore-forming molecules. In the case of MAMPs, various bacteria-derived toxins can gener-
ate differently sized pores in neutrophils which in turn lead to ion and water imbalances
and in the worst case to cell death. Some sepsis-relevant microbial toxins are exemplarily
summarized: Panton-Valentine leukocidin (PVL) is a toxin produced by some staphylococ-
cal strains which can interact with the C5aR1 and induce lytic pores in neutrophils [115]
as well as NETosis [116]. An important virulence factor for pseudomonas aeruginosa is
the exolysin A (ExlA) which punctures holes into the plasma membranes and activates
the inflammasome [117]. Furthermore, Escherichia. coli with its toxin α-hemolysin have
been reported to form detrimental pores in neutrophils [118]. Last, Pneumolysin (Ply), an
important virulence factor of Streptococcus pneumoniae, triggers neutrophil activation
including Ca2+ influx, K+ efflux, activation of NF-κB as well as synthesis of IL-1β and
IL-8 [119,120]. Overall, membrane-targeting immune evasion strategies are important
drivers of septic courses. Of note, neutrophils can become resistant against some cytolysins
by reprogramming the membrane cholesterol composition [121].
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Figure 2. During sepsis, microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns
(DAMPs) may alter various homeostatic balances. The resulting electro-physiological changes including alterations of the
intracellular pH (pHi) will affect the inflammatory response of innate immunity and in consequence, vital cell functions.
The mounted immune response including the feed-in of MAMPs and DAMPs will further affect cellular electrophysiology,
which finally may form a vicious circle resulting in cellular dysfunction and death.

Important representatives for DAMPs are histones and extracellular ATP. For example,
histone H4 causes neutrophil membrane depolarization, a rise in intracellular Ca2+ and
the release of myeloperoxidase and IL-8 [122]. Interestingly, histone-induced cell death
of neutrophils is ameliorated in the presence of fibrinogen, providing a potential thera-
peutic rationale reducing the detrimental effects of histones on neutrophils by preventing
fibrinogen depletion during sepsis [123]. ATP, which can reach locally high concentrations,
activates purinergic receptors, including the purinergic P2X7 receptor (P2X7R), which alters
the membrane potential, induces cellular signaling and mounts an oxidative burst [124].
At higher concentrations, ATP-induced activation of P2X7R can lead to formation of macro-
pores (with a molecular passage up to 900 Da) and thus permeabilization of neutrophils
including subsequent cellular swelling [125]. In pyroptosis and septic conditions, ATP
seems to contribute to the loss of membrane integrity by pore formation and the patho-
physiological consequences [126]. However, it needs to be stated, that data on P2X7R
expression and function in neutrophils are ambiguous. While many studies found expres-
sion of P2X7R in neutrophils [125,127–130], others reported an absence of P2X7R [131–133].
Whether these inconsistencies result from differences in research protocols or account for
subpopulations of neutrophils remains to be answered [37].
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5.2. Changes of Phagocytotic Activity

SOCE in neutrophils, regulated by the Ca2+ sensors STIM1 and 2, which activate the
Ca2+ channel Orai1, guarantees sustained Ca2+-influx when activated (e.g., by MAMPs,
STIM1) and thereby generates intracellular “Ca2+ hotspots” which augment phagocy-
tosis [134] and promote reactive oxygen species (ROS) generation during inflammatory
responses [52,57,135,136].

Contradictory reports have been published regarding the phagocytic and oxidative
burst activity of neutrophils during sepsis, which, however, appear mainly dependent
on the timing and severity of sepsis, the maturity of neutrophils, and the local environ-
ment [137,138]. During the early phases of sepsis, for example, the first 48 h after diagnosis,
phagocytic activity of neutrophils has been described to be enhanced [139] and during
advanced stages of sepsis as impaired if not defective [5,140]. One mechanism for sepsis-
caused impairment of phagocytic activity involves enhanced levels of C5a, which leads
to inhibition of RhoA activation and thus prevents actin polymerization and phagocytic
processes [41]. Of note, neutrophils within the bloodstream exhibit minimal phagocytic
activity but rapidly develop this function during their emigration into infected tissue [141].
Therefore, it is likely that ion transport proteins are crucially involved in acquiring the
phagocytic activity. Indeed, neutrophils lacking the anion channel ClC-3 exhibit a reduced
phagocytotic and NOX activity [142]. Furthermore, expression of the cAMP-activated
chloride channel (CFTR) has been demonstrated in neutrophils on mRNA and protein
level, although at rather low levels [143,144]. Involvement of CFTR in bacterial killing
activity of neutrophils via its contribution to the generation of hypochlorite (HOCl) in the
phagolysosome has been discussed [144–147]. However, the exact underlying mechanisms
need further investigation.

5.3. Reduced Oxidative Burst

To kill phagocytized bacteria, effective antimicrobial mechanisms are essential. These
mainly involve an oxidative burst with reactive oxygen species (ROS) generation that can
be oxygen-dependent or -independent [141]. Oxygen-required ROS production mainly
occurs by the NOX complex [148]. For example, upon TLR or C5aR stimulation by mi-
croorganisms and the MAMP-detecting complement system, respectively, intracellular
signaling leads to phosphorylation and translocation of the usually dormant intracellular
key enzyme p47phox to the membrane, where it assembles with other components, includ-
ing p40phox, p67phox, Rac1/2, and flavocytochrome b558, to the NOX complex [149]. The
electron shift within the NOX reduces oxygen to form superoxide anions (O2

•−), which
is subjected to dismutation generating hydrogen peroxide (H2O2) and ultimately HOCl
via the myeloperoxidase [149,150]. The electron transport requires the efflux of protons or
Cl−-conductance for compensation of the electrical charge out of the vacuole [64,151–153].
Of note, during severe sepsis, together with excessive generation of C5a, the NOX activity
is impaired if not abolished. The underlying mechanisms appear to be a C5a-induced inhi-
bition of the phosphorylation and translocation of the key enzyme p47phox and impaired
ROS generation [5,41,154], which, in summary, results in an impaired bacterial clearance
during severe sepsis. In this context, an impairment of the C5a-induced depolarization in
neutrophils has been demonstrated in systemic inflammation after porcine hemorrhagic
shock [48] as well as after exposing neutrophils from healthy volunteers to serum from
patients with trauma and/or patients with trauma-related sepsis [155], but not to date
in non-trauma-related sepsis. By contrast, in-vitro pretreatment with LPS 50 ng/ml for
one hour enhanced fMLF-induced ROS generation, possibly by elevating the intracellular
Ca2+ levels of resting neutrophils [45], which could be explained by a temporal compo-
nent, for example, an initial pronounced ROS generation and a subsequent functional
impairment in prolonged inflammation. Intriguingly, while resting neutrophils have a
normally-distributed membrane potential as assessed by various fluorescent dyes [45,48],
LPS-pretreatment induced a bimodal heterogeneity of resting membrane potential that was
partially unified by fMLF stimulation [45].
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Moreover, extracellular acidification, as present in local and systemic inflammation,
directly inhibits bacterial killing by neutrophils, while in contrast promoting phagocy-
tosis [43]. In accordance, intracellular acidification by short-chain fatty acids, metabolic
by-products of Bacteroides species, inhibited the respiratory burst of neutrophils [156].
By contrast, in-vitro extracellular acidosis enhanced C5a-induced depolarization [48]; this
discrepancy needs further research.

Regarding the oxygen-independent mechanism of bacterial killing, lysosomal en-
zymes are released into the phagosomes, where after an initial alkalization phase the
now phagolysosomes become acidified by activation of the Na+/H+ exchanger [157]. In
addition to NHE1, the murine H+ channel VSOP and its respective human homologue Hv1
are considered essential for the excretion of protons produced by NOX [64,69]. The finding
that neutrophils from Hv1−/− mice had a substantially reduced superoxide production
and impaired bacterial clearance both in-vitro and in-vivo indicates the requirement of
Hv1 for sufficient antibacterial activity in sepsis [158]. Notably, although the discussed
ion transport proteins and mechanisms of intracellular pH regulation are indisputably
essential for the key functions of neutrophils, the question of whether direct alterations
of, for example, NHE1 or VSOP/Hv1 expression or activity actually do contribute to
neutrophil dysfunction in severe sepsis has to date hardly been addressed and requires
further research.

Moreover, Ca2+-homeostasis in neutrophils also appears crucially involved in the
mounting of an oxidative burst and other antimicrobial functions. Several Ca2+-conductive
ion channels are expressed in neutrophils, including the TRP family and store-operated
Ca2+ channels. TRPM2, a Ca2+ permeable, non-selective cation channel, which is activated
by ADPr, temperature, oxidative stress, and Ca2+ [159], has been proposed to play im-
portant roles in modulating Ca2+ mobilization and oxidative stress in neutrophils. For
example, during experimental sepsis in mice infected with Listeria monocytogenes, the
TRPM2 cation channel modulated membrane depolarization, Ca2+ mobilization, and sub-
sequent ROS generation [160]. In this study, a lack of TRPM2 resulted in reduced sepsis
survival, and in neutrophils led to enhanced depolarization, dysregulation of intracellular
Ca2+, and aggravated oxidative burst, all of which might be harmful to the host [160].
Another mechanism involves the ATP-gated purinoceptor P2X1 ion channel, which with
its relatively high Ca2+ permeability could limit the oxidative burst response during LPS-
induced murine sepsis [161]. In this context, it is also noteworthy that ROS exhibit not only
local antimicrobial functions but also can act as signaling molecules for neutrophils in an
autocrine manner. In turn, this can further regulate and drive the inflammatory response
of neutrophils in conditions like sepsis [49,162].

Finally, ion concentrations and pH values of the local inflammatory microenvironment
of the neutrophils will self-evidently to some extent alter the intracellular milieu and
thereby also influence the phagocytic and oxidative burst activity [78,163,164]. However,
this has barely been studied in-vivo at the local site of inflammation during sepsis.

6. Cell Death during Inflammation and Sepsis

A multitude of triggers and signaling pathways have been described in initiating and
regulating neutrophil death [126,165]. Rapid generation and secretion of proinflammatory
mediators, toxic granular substances, or NETs by neutrophils require lytic cell death mecha-
nisms [165]. Neutrophil death pathways involving cell membrane lysis comprise a fail-safe
mechanism designed to eradicate intracellular pathogens that escape pathogen-induced
cell death-mediated anti-inflammatory pathways [166]. In sepsis, cell death is modulated
by certain conditions, for example, a delay of neutrophil apoptosis by extracellular acidosis
or stimulation with C5a [43,167]. By contrast, another study reported that exposure to
Escherichia coli at low pathogen-to-neutrophil ratios resulted in intracellular alkalization
and inhibited apoptosis and vice versa [163]. In addition to apoptosis (less inflammatory),
neutrophils may undergo necroptosis, pyroptosis (both proinflammatory), or NETosis, as
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reviewed by others [126,165]. Here, we will mainly focus on the role of membrane pores
and ion transport proteins in pyroptosis and NETosis.

6.1. Pyroptosis

Pyroptosis is activated by cytosolic inflammasome perturbations. Inflammasome acti-
vation can be induced by intracellular pathogens or by intracellular exposure to LPS that
result in activation of inflammatory caspases that cleave gasdermin D (GSDMD) [140,165].
Interestingly, pyroptosis appears to be restricted to activation of the non-canonical inflam-
masome but not the classical inflammasome, which induces caspase-1 activation [168].
Caspase-1 activation only results in the generation of sublytic pores to enable IL-1β secre-
tion without concomitant cell lysis [168].

Recent findings documented that GSDMD can also be processed by neutrophil elastase.
Cleavage occurs upstream of the canonical caspase cleavage site, but still produces pore-
forming N-terminal fragments [169,170]. However, the functional effects are less clear. It
was proposed that GSDMD cleavage results in the formation of lytic pores and spontaneous
neutrophil death, establishing GSDMD as a negative regulator of innate immunity [169].
By contrast, GSDMD activation by neutrophil elastase was found to drive cell lysis and
NET extrusion, an important antimicrobial defense mechanism [168]. Therefore, it appears
that GSDMD activity in neutrophils can either promote or dampen the host defense [171].

Extracellular ATP can activate inflammasome signaling in neutrophils via activa-
tion of P2X7Rs on neutrophils [172]. P2X7R is a non-selective cation channel that me-
diates rapid Ca2+- and Na+-influx and K+-efflux, which results in NLRP3 inflamma-
some activation [129,173]. Whether this is independent from inflammasome activation
by intracellular pathogens or an amplification mechanism needs to be determined. At
least in macrophages, cytosolic LPS stimulation-induced caspase-11-dependent cleavage
of pannexin-1 resulted in ATP release via pannexin hemichannels, which in turn acti-
vated P2X7Rs. In the absence of P2X7 or pannexin-1, cytosolic LPS-induced pyroptosis
was abrogated [174].

6.2. NETosis

Activated neutrophils can neutralize invaders by releasing NETs [175] in a process
termed NETosis. NETs are webs of neutrophil DNA coated with histones and antimicrobial
proteins [176]. Initially described as a means for neutrophils to neutralize pathogens, NET
release also occurs in sterile inflammation, promotes thrombosis, and can mediate tissue
damage [177]. NETosis involves several distinct and sequential morphological changes in
the neutrophil [176]. Chromatin needs to be decondensed and released from the nucleus
and the cytoskeleton, organelles, and intracellular, nuclear, and plasma membranes must
be remodeled [177]. NETs are extruded in host defense through either lytic (suicidal and
noncanonical NETosis) or vital NETosis. Although all of these ultimately lead to neutrophil
death, NETosis is a distinct cellular program from apoptosis and necroptosis, and true NET
structures are not usually generated during these latter forms of cell death [176,177].

Increases in intracellular Ca2+ mediates ROS production, essential for lytic NETosis.
This is probably a result of NOX activation [178,179], activation of small conductance
calcium-activated potassium channel (SK) member SK3, and production of mitochondrial
ROS [180]. In agreement with this, BAPTA-AM, a potent intracellular Ca2+ chelator, in-
hibited NETosis [181]. However, it remains unclear whether the elevation of cytoplasmic
Ca2+ levels originates from Ca2+ entry [178] or release from intracellular Ca2+ stores [180].
Depending on the experimental conditions, the use of extracellular Ca2+ chelators over a
prolonged period could induce a homeostatic response in which a decrease in extracellular
Ca2+ results in increased Ca2+ release by the ER to maintain intracellular Ca2+. Such a
phenomenon could explain, in part, such a discrepancy between the studies [182]. Activa-
tion of the TRPM2 channel reduced the NET formation, and cell death in neutrophils in a
model of Listeria monocytogenes infection [160]. Interestingly, a HCO3

−-mediated alka-
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lization of neutrophils favored spontaneous and LPS-induced NETosis, possibly because of
modulation of intracellular Ca2+ [84].

In lytic (suicidal and noncanonical) NETosis, NET extrusion occurs via GSDMD
pores [168,170] and/or as a result of entropic chromatin swelling [183] that ultimately
induce plasma membrane rupture to enable NET release. More recently, another type of
NETosis has been identified and termed vital NETosis. In vital NETosis, NETs are rapidly
released from neutrophils via exocytosis. Vital NETosis does not immediately induce cell
death and neutrophils can still perform cellular functions (e.g., migration) [176,184,185].
It is readily conceivable that vital NETosis is thus also dependent on Ca2+ signals that
themselves depend on intracellular or plasma membrane Ca2+ channels.

6.3. Cellular Death Converges in GSDMD

Apoptosis, pyroptosis, and NETosis were traditionally considered to be indepen-
dent of one another, but emerging evidence indicates that there is extensive cross-talk
between them. All three pathways can converge upon the activation of the same cell
death effector—the pore-forming protein GSDMD [171]. Similar to pyroptosis and NETosis,
GSDMD activation has also been related to apoptosis. Activation of apoptotic caspase-8 can
either directly result in GSDMD cleavage [186] or indirectly induce activation of plasma
membrane channels [187], K+ efflux, and NLRP3 inflammasome assembly, which result in
NLRP3-dependent caspase-1 activation and GSDMD cleavage [171].

GSDMD consists of a pore-forming N-terminal domain (GSDMD-N) connected via a
linker to the regulatory C-terminal domain. Cleavage of GSDMD at a conserved site releases
GSDMD-N from the auto-inhibitory C-domain. GSDMD-N has the ability to translocate to
the inner leaflet of the plasma membrane, where it oligomerizes and induces the opening
of membrane pores [171,188–193]. The pores constitute non-selective membrane channels
that allow the passage of ions, cytokines, and other small cytosolic molecules [194]. The
resulting shift in cytoplasmic ion concentrations (in particular the large influx of Na+)
causes an increase in cell volume due to water influx and can result in osmotic cell lysis.
This likely depends on the number of GSDMD pores in the plasma membrane. The
number of GSDMD pores can be limited by a recently discovered mechanism that actively
removes GSDMD pores from the plasma membrane. Ca2+-influx via GSDMD pores recruits
endosomal sorting complexes required for transport (ESCRT) to damaged areas of the
plasma membrane to remove GSDMD pores and to maintain membrane integrity [195].
This is likely a rapid mechanism, curtailing osmotic swelling at an early stage. If few
GSDMD pores are present, the cell can react by initiating compensatory mechanisms to
decrease volume, called regulatory volume decrease (RVD). Among these are swelling-
activated K+, Cl−, and organic osmolyte (e.g., taurine) channels that export these solutes
and their accompanying water [194]. In particular, neutrophils express volume-regulated
anion channels (VRACs). These are sensitive to shifts in cytoplasmic ionic strength and
could constitute such a RVD mechanism [196,197]. A detailed understanding of the specific
RVD mechanisms and their contribution to regulate apoptosis, pyroptosis, and NET-osis
in neutrophils, however, is still elusive. If GSDMD pores are present in high numbers,
exceeding the cell’s compensatory capabilities, cell volume inevitably increases. Once the
volume exceeds membrane capacity, this results in membrane rupture and cell lysis.

7. Conclusions and Outlook

Ion and water fluxes regulate essential neutrophil functions. Their alterations during
sepsis impair vital cellular functions and may thereby contribute to immune and organ
dysfunctions. Fields of particular interest include first, a further elucidation of the ion–
water disbalance upon excessive neutrophil activation, second, an in-depth evaluation of
physiological parameters, including intracellular pH and cellular size of neutrophils as
a diagnostic and/or prognostic marker of immune dysfunction, and third, a meaningful
translation to the bedside by modulating ion–water based alterations, for example, by phar-
macological targeting of perpetrator ion transport proteins, such as NHE1, during sepsis.
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Abbreviations

ADPr ADP-ribose
AE1 anion exchanger 1
AQP Aquaporin
ARDS adult respiratory distress syndrome
ATP adenosine triphosphate
AUROC Area Under the Receiver Operating Characteristic Curve
C5a complement factor 5a
C5aR1 C5a receptor 1
cADPr cyclic ADPr
CaM calmodulin
CFTR cAMP-activated chloride channel
Cdc42 cell division control protein 42
CLIC chloride intracellular channels
CR complement receptor
CRAC Ca2+ release-activated Ca2+

DAG diacylglycerol
DAMP damage-associated molecular pattern
ER endoplasmatic reticulum
ESCRT endosomal sorting complexes required for transport
ExlA exolysin A
fMIVIL N-formyl-Met-Ile-Val-Ile-Leu
fMLF N-formyl-methionyl-leucyl-phenylalanine
FRP formyl-peptide receptor
Glu glucose
GLUT1 glucose transporter 1
GPCR G protein-coupled receptors
GSDMD gasdermin D
HMGB1 high mobility group box 1
Hv1 voltage-sensing domain only protein
IL interleukin
IP3 inositol 1,4,5-trisphosphate
LTB4 leukotriene B4
MAMP microbial-associated molecular pattern
MCT monocarboxylate transporter
NAD+ nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
NET neutrophil extracellular trap
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NHE1 sodium-proton-exchanger 1
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NLR NOD-like receptor
NLRP3 NOD-like receptor family pyrin domain containing 3
NOD nucleotide-binding oligomerization domain
NOX NADPH oxidase
P2X7R purinergic P2X7 receptor
p47phox p47 phagocyte oxidase
PAF platelet-activating factor
PIP2 phosphatidylinositol 4,5-bisphosphate
PKC protein kinase C
Ply pneumolysin
PRP pattern recognition receptor
PVL Panton-Valentine leukocidin
RAC1 Ras-related C3 botulinum toxin substrate 1
RAGE receptor for advanced glycation end products
ROS reactive oxygen species
RVD regulatory volume decrease
SK small conductance calcium-activated potassium channels
SOCE store-operated calcium entry
STIM stromal interaction molecule
TLR toll-like receptor
TRP transient potential receptor
TRPM transient receptor potential melastatin
VRAC volume-regulated anion channel
VSOP voltage sensing domain only protein
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