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Abstract

HPV16 accounts for 50–70% of cervical cancer cases worldwide. Characterization of HPV16 variants previously indicated that
they differ in risks for viral persistence, progression to cervical precancer and malignant cancer. The aim of this study was to
examine the association of severity of disease with HPV16 variants identified in specimens (n = 281) obtained from a Cervical
Pathology and Colposcopy outpatient clinic in the University Hospital of Espı́rito Santo State, Southeastern Brazil, from April
2010 to November 2011. All cytologic and histologic diagnoses were determined prior to definitive treatment. The DNA was
isolated using QIAamp DNA Mini Kit and HPV was detected by amplification with PGMY09/11 primers and positive samples
were genotyped by RFLP analyses and reverse line blot. The genomes of the HPV16 positive samples were sequenced, from
which variant lineages were determined. Chi2 statistics was performed to test the association of HPV16 variants between
case and control groups. The prevalence of HR-HPV types in ,CIN1, CIN2 and CIN3+ were 33.7%, 84.4% and 91.6%,
respectively. Thirty-eight of 49 (78%) HPV16 positive samples yielded HPV16 sequence information; of which, 32 complete
genomes were sequenced and an additional 6 samples were partially sequenced. Phylogenetic analysis and patterns of
variations identified 65.8% (n = 25) as HPV16 European (E) and 34.2% (n = 13) as non-European (NE) variants. Classification of
disease into CIN3+ vs. ,CIN3 indicated that NE types were associated with high-grade disease with an OR = 4.6 (1.07–20.2,
p = 0.05). The association of HPV16 NE variants with an increased risk of CIN3+ is consistent with an HPV16 genetically
determined enhanced oncogenicity. The prevalence of genetic variants of HPV16 is distributed across different geographical
areas and with recent population admixture, only empiric data will provide information on the highest risk HPV16 variants
within a given population.
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Introduction

Human Papillomaviruses (HPVs) are double stranded DNA

viruses with an 8 Kb episomal genome. The organization of the

genome is divided into three functional regions: an upstream

regulatory region (URR) that regulates the transcriptional and

replication events; an early region that expresses the non-structural

proteins (e.g., E1, E2, E4, E5, E6, E7), and a late region that

encodes the structural proteins L1 and L2 [1].

HPV belongs to the Papillomaviridae family, which includes more

than 170 different types of characterized and designated viruses

[2–4] (for review see www.hpvcenter.se/html/refclones.html). The

papillomavirus members are classified into types based on the

DNA sequence of the ORF of the major capsid protein, L1. A new

viral type is assigned if the complete genome is cloned and the

difference in the L1 nucleotide sequence is at least 10% different

than all other classified HPV types [2,3]. Around 40 genotypes can

be identified in the anogenital region, and are associated with

warts, cervical intraepithelial neoplasia (CIN) and cervical cancer

(CC) [1,5–8].

According to the prevalence of specific HPV DNA types in cases

of cervical cancers, the anogenital HPVs have been classified into

low and high risk types [9–13]. Although the etiology of CC is well

established, HPV infection alone is not sufficient for the cancer’s

development. Additional risk factors are in part related to the

progression of HPV infections to carcinoma in situ and cancer

including smoking, hormonal contraceptive use, multiple preg-

nancies and possibly other factors [14–18]. Factors related to the

virus also contribute to progression of the infection to cancer, such

as HPV type involved in the infection, viral variants, persistence
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and viral load [5,10,19,20]. Of the high-risk HPV (HR-HPV)

types associated with cervical cancer, HPV16 is the most prevalent

and it is found in approximately half of all cancers [10,12,21].

Within the PV research community, isolates of the same HPV type

are referred to as variants or subtypes when the nucleotide

sequences of the L1 ORF differ by less than 10% [22]. Significant

differences in pathogenicity exist between variants within a single

HPV genotype and have been elucidated most clearly for HPV16,

whose variants differ in their association with CC, viral persistence

and frequency of recurrence of cervical disease [22,23–35].

The description and understanding of HPV genome variants is

an important area for molecular pathogenesis and for the

development of molecular diagnostics for HPV, vaccines and

other therapeutic approaches to control and/or eliminate virus-

induced diseases. The tumorigenicity of the HPV variants could be

different among geographical areas because of population history

and host genetics, such as the difference in the distribution of HLA

in the population [27,36]. However, few studies from Brazil have

reported on the prevalence of HPV DNA in the genital tract and

natural history of infections, especially associating phylogenetic

variants in the population with the severity of intraepithelial lesions

[37–43].

As has been demonstrated by biochemical and biological

differences of HPV16 variants and their oncogenic potential

changes [22,37,44,45], the description of oncogenic variants of

HPV types should contribute to understanding the genetic

determinants related to the development of high-grade lesions

and the incidence of CC in specific populations.

Materials and Methods

Cervical smears (n = 281) were obtained during gynecological

visits at the Colposcopy outpatient clinic in the University Hospital

‘‘Cassiano Antonio Moraes’’ (HUCAM) in Vitória, Southeastern

Brazil, from April 2010 to November 2011. This research

obtained approval by the Ethical Research Council of the Center

of Health Sciences of the Federal University of Espı́rito Santo,

Brazil, in November 2009; all the participants signed an informed

consent.

All cytologic and histologic diagnoses were determined prior to

definitive treatment and were classified as ,CIN3 (normal, CIN 1,

2), n = 257, used as the comparison or control group, and CIN3+
(CIN3 or worse), n = 24, the case group for this study. The

classification in control (,CIN3) or case (CIN3+) group was used

in the context of the HPV16 variants results. The DNA was

isolated using QIAamp DNA Mini Kit (Qiagen, Valencia, CA)

according to the manufacturer’s instructions. The HPV DNA was

detected by amplification with PGMY09/11 primers [46]. HPV

positive samples were genotyped by Restriction Fragment Length

Polymorphism (RFLP) from gel analyses [47] and by Reverse Line

Blot Hybridization (RLB) [48]. The genomes of the HPV16

positive samples were further characterized for the current study

by amplifying the complete genome (,8 Kb) using nested PCR of

3 or 4 overlapping fragments employing type-specific primer sets

(available from authors) as described [49]. For overlapping PCR,

an equal mixture of AmpliTaq Gold DNA polymerase (Applied

Biosystems, Carlsbad, CA) and Platinum Taq DNA Polymerase

(Invitrogen, Carlsbad, CA) were utilized as previously described

[50].

The PCR product sizes were confirmed by gel electrophoresis,

purified using the QuickStep 2 PCR Purification kit (Edge

BioSystems, Gaithersburg, MD) or QIAquick Gel Extraction kit

(Qiagen, Valencia, CA). The amplified fragments were directly

sequenced on an ABI Prism Model 377 automated sequencer

(Perkin-Elmer Applied Biosystems) in the Einstein DNA Sequenc-

ing Core Facility (Bronx, NY). The sequences of the fragments

obtained were assembled using Geneious v6.1.6 [51], and aligned

using MAFFT v6.903b [52], together with HPV16 reference

sequences of each sublineage (Table S1). The construction of the

phylogenetic tree inferred from the aligned sequences was

performed using the software PhyML [53]. Chi2 statistics was

performed to test the association of HPV16 variants between case

and control groups.

Results

The median age of participating women was 38.7 years (SD

10.97). Out of 281 samples, 56% (157/281) were positive for HPV

DNA. All of these positive samples were genotyped by RFLP and

RLB and HR-HPV was found in 124 samples (79%, 124/157),

from which 32.3% (49/124) were positive for HPV16. Based on

cytology results, HR-HPV types were detected in 33.7% (76/225)

from ,CIN1, in 84.4% (27/32) from CIN2 and in 91.6% (22/24)

from CIN3+. HPV16 was found in 14% (35/257) and 58% (14/

24) of the samples classified as ,CIN3 and CIN3+, respectively

(p,0.001).

The HPV16 complete genome was characterized for 32 samples

and partial genome information was obtained for 6 using HPV16

specific overlapping PCR [49]. The nucleotide sequences obtained

for all 38 samples were compared with the HPV16 prototype of

each HPV16 variant lineage and sublineage and based on the

phylogeny, variants were assigned to a specific lineage (Figure 1).

Phylogenetic analysis classified 65.8% of the samples as HPV16

European (E, A lineage) (n = 25) and 34.2% as non-European (NE,

lineages B, C, and D) (n = 13) variants. Isolates of the E group/A

lineage were further classified to sublineages A1 (60.5%, 23/38)

and A2 (5.3%, 2/38), and isolates from the NE group/lineages B/

C/D sorted to sublineages B1 (Af-1) (2.6%, 1/38), C1 (Af-2)

(18.4%, 7/38), and D3 (AA1) (13.2%, 5/38) (Figure 1). Taken

together, samples containing HPV16 NE variants were associated

with high-grade disease (CIN3+) with an OR = 4.6 (95% CI: 1.07–

20.2; p = 0.05) compared to those with HPV16 E variants

(Table 1). The nucleotide differences amongst the sequenced

genomes are shown in Figure S1. The T/G variation at nucleotide

350 (gene E6) was not associated with CIN3+ (Figure S1).

Discussion

Based on complete and partial genome analyses, this study

described the association of non-European HPV16 variants

lineages/sublineages in women from Vitoria Brazil with CIN3+
cervical lesions. There is a proposed hypothesis about the

differences in pathogenicity existing among variants of a single

HPV genotype [22,28]. Studies have demonstrated that HPV16

variants differ in their association with CC [24,25,28,54–56] and

viral persistence [23,26,29,30,32].

The prevalence of molecular variants from each branch in

different geographical areas varies significantly and correlates with

the intrinsic admixture level of each population [49,57,58]. An

increased risk of developing high-grade CIN/cancer was observed

in association of HPV16 non-European variants in several studies

in the world [22,32,45,59–63]. In addition, a number of reports in

Brazil have described the presence of HPV16 variants in cervical

samples and/or in association with different grades of lesions [37–

43].

All sequenced HPV16 genomes showed at least one specific

nucleotide variation compared to the HPV16-E prototype

sequence. Regarding HPV16 sublineages, defined as containing

0.5–1% of nucleotide variations, the described population had a

HPV16 Non-European Variants and High-Grade Cervical Lesions

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e100746



HPV16 Non-European Variants and High-Grade Cervical Lesions

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e100746



relatively heterogeneous set of HPV16 variants found in the

following frequency order: A1.Af-2.AA.A2.Af-1. A study

conducted with cervical samples from Central Brazil, identified

AA variants as the second most common lineage of HPV16, with

samples from the E branch being most common [38]. It was

described AA/NA variants in cases from cervical cancer in South/

Central America in association with high grade cervical lesions

which might be related to differences in transcriptional activity,

that were higher than E isolate variants [60]. This feature might be

one possible explanation for the association between the NE

variants in CIN3+ cases in the present study. The HPV16 C

lineage (Af-2) was the second most common variants in the current

report, but due to the limited sample size it is not possible to

ascribe specific risks to sublineages, nevertheless 3/12 cases had C

lineage isolates vs. 4/26 controls; and 3/12 cases had D lineage

isolates vs. 2/26 controls. Studies conducted in Central or

Southeastern Brazil have not found the HPV16 Af variants or it

was identified infrequently [37,38]; which, has been detected

relatively commonly in Argentinean Indians [64]. The difference

in geographic distribution of HPV16 variants is likely related to

the population history of the region reflecting the influx of

Europeans, Indian/native populations and people of African

descent. Similar results of geographic origins have been reported

and were the basis to suggest that HPV16 variants reflect the

relatively recent human migration patterns [65].

In the present study it was found that HPV16 NE variants were

significantly associated with CIN3 or worse lesions. Another study,

with women from Northern Brazil found NE variants associated

with high-grade cervical lesions [42]. However, HPV16 NE

variants were detected at similar frequencies in low grade lesions

(6/41, 14.6%) and in high grade cases (4/41, 9.7%) in a study

conducted in São Paulo, also in Southeastern Brazil [39] and

HPV16 NE and E variants have been detected at similar

frequencies among the cytological finds (atypical squamous or

glandular cells of undetermined significance, cytological alterations

suggesting HPV infection, CIN, squamous cell carcinoma, and

adenocarcinoma) in women from Central Brazil [38], not

supporting a role for NE HPV16 variants as at increased risk for

CC. Nevertheless, there is other evidence that HPV16 NE variants

have elevated risks for CIN3 and cancer, although much of the

effect was related to the increased risk with the AA (D) lineage

[25,56,66], and there appears to be geographic complexity [58].

There are also reports that indicate the HPV16 AA (D) lineage

compared to the E (A) lineage is disproportionately (4–35 fold

increased) associated with adenocarcinoma (AdCa) vs. squamous

cell carcinoma (SCC) [25,56,67,68]. The differences in studies

probably relates to the level of admixture of different HPV16

variants within a population.

The nucleotide substitutions in the samples from the lineage A

have not shown any association with the cases, corroborating the

negative association of the E variants with high-grade lesions. On

the other hand, the SNPs detected along the complete genome

from the NE variants are highly correlated and it is difficult to

identify specific SNPs that might have unique pathologic

consequences. The frequency of the Af-2 variants and AA in the

NE branch could reflect the admixture of the population studied.

The substitutions in the URR region can affect the transcription

binding sites including activator protein 1 (AP1), nuclear factor 1

(NF1), octamer-binding protein 1 (Oct1), glucocorticoid/proges-

terone response element (GRE), specificity protein 1 (SP1),

transcription enhancer factor 1 (TEF1), and yin yang 1 (YY1)

[69,70]. The substitution observed in the NE samples (A7458T),

but not in the E samples, can affect the NF1 binding site and the

ACCN6GGT sequence recognized by the E2 protein in the URR

region [71] which could be also related to the oncogenicity. The

nucleotide alterations at the position of the transcriptional factors

binding site (TFBS) could reflect in the HPV replication, and

consequently in the malignancy induction in the cervix. Some

point mutation could be observed at the binding sites TEF-1

(G7193T, C7689A), GRE-1 (A7458T, A7485C, G7489A) and

YY1 (G7521A, C7786T, G7826A, A7837C, A7839G). One of the

changes, as C7689A (TEF1 site), was found in NE samples

significantly associated with cases. In a previous study, Kämmer et

al. [69] observed that nucleotide variations, although not inside

the TFBS, but located adjacent to them, were probably

responsible for the increase of 3.9-fold on the transcriptional

activity of P97 promoter. Accordingly, besides the mutations

located in the binding sites it was found in our study some adjacent

nucleotide alterations that could alter the function of the

mentioned transcriptional factors. HPV isolates from cervical

cancer show frequent point mutations or deletions at YY1 binding

sites on the LCR, which may be responsible for the increase of the

transcriptional activity observed for these isolates [72,73]. How-

ever with the small numbers of cases, the present study cannot

confirm the relation of the TFBS with the grades of cervical

lesions.

Increasing studies performed around the world, including

Brazil, indicate the relationship between HPV16 variants and

Figure 1. Tree topology. Phylogenetic tree was inferred from global alignment of complete and partial genome nucleotide sequences. Distinct
variant lineages (i.e., termed A, B, and C) are classified according to the topology and nucleotide sequence differences from .1% to ,10%; distinct
sublineages (e.g., termed A1 and A2) were also inferred from the tree topology and nucleotide sequence differences in the .0.5% to ,1% range [22].
doi:10.1371/journal.pone.0100746.g001

Table 1. HPV16 variant distribution by diagnostic category.

HPV16

Cytology E NE Total

,CIN3 20 06 26

CIN3+ 05 07 12

Total 25 13 38

,CIN3: control group, comprising the normal and cervical intraepithelial neoplasia (CIN) grades 1 and 2;
CIN3+: case group, comprising the samples from CIN 3 or worse (cervical cancer in situ or invasive);
E: HPV16 European variant; NE: HPV16 non-European variant.
doi:10.1371/journal.pone.0100746.t001
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higher oncogenic risk is complex [74,75], thus a well-planned

epidemiological study is needed to evaluate HPV16 single

nucleotide polymorphisms and oncogenic risk. For example, there

is a relatively common SNP with the E6 ORF (T350G), which is a

non-synonymous change resulting in an amino acid variation

(L83V). This variation/mutation might be related to higher

oncogenic potential [23,24,76,77], or not [33,78,79]; in the

current study it was not found to be associated with increased

risk. It has been suggested that this mutation is associated with CC

in a heterogenic form by world region [58]. The E variants

harboring the 350T were significantly associated with the cancer

risk in comparison with those with the mutation 350G in samples

from Europe/Central Asia and East Asia, while the opposite was

true in South/Central America [80]. A similar strong association

of EUR-350G with cervical cancer has been observed in previous

studies from Argentina [81] and Morocco [45].

Moreover, miss-sense nucleotide mutations theoretically could

alter the epitopes targeted by the current HPV vaccine [82]. The

investigation of circulating HPV variants is important not just in

the light of the viral and concomitant viral evolution, but also in

understanding the pathogenesis of HPV in malignant lesions. It

will also be important to follow vaccinated populations to establish

whether the oncogenic HPV genomes might have greater

mutational variability and/or ability to mutate than has currently

been documented. It is not thought that the oncogenic HPV types

will be able to evade the current vaccines, but only empirical

evidence will allow this question to be addressed in the decades to

come.

The association of HPV16 non-European variants with CIN3+
is consistent with a genetically determined enhanced oncogenic

potential of the NE HPV16. These observations suggest that

determination of HPV16 variant lineage has clinical implications.

The complete genome sequencing has the goal of allowing the

genetics of HPV16 to inform us about differences in HPV biology,

and permit continued improvements in phylogenic classification of

subgroups with even higher oncogenic risks.

The prevalence of genetic variants of HPV16 is distributed

across different geographical areas and with recent population

admixture, Brazil is an ideal location to study the biology and

clinical importance of HPV variants.

Supporting Information

Figure S1 Nucleotide variations compared to the HPV16
reference sequence. The nucleotide positions of detected

variations are shown across the top and are indicated by the

corresponding nucleotide letter. The absence of variations relative

to the prototype is represented by dots, the dashes represents

regions without sequence information. 1: nt 1311–1322, a 63 bp

insertion of GCGCCATGAGACTGAAACACCATGTAGT-

CAGTATAGTGGTGGAAGTGGGGGTGGTTGCAGTCA;

2: nt 4192–4193, a 3 bp insertion of TTG; 3: nt 4196–4197, a

3 bp insertion of TTG; 4: nt 7772–7807, a 36 bp deletion of

AACTAAATGTCACCCTAGTTCATACATGAACTGTGT.

(PDF)

Table S1 Reference sequences used to perform the
alignment for phylogenetic analysis.

(PDF)
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