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Abstract: The emergence of azole resistant Aspergillus spp., especially Aspergillus fumigatus, has been
described in several countries around the world with varying prevalence depending on the country.
To our knowledge, azole resistance in Aspergillus spp. has not been reported in the West Indies yet.
In this study, we investigated the antifungal susceptibility of clinical and environmental isolates of
Aspergillus spp. from Martinique, and the potential resistance mechanisms associated with mutations
in cyp51A gene. Overall, 208 Aspergillus isolates were recovered from clinical samples (n = 45) and
environmental soil samples (n = 163). They were screened for resistance to azole drugs using selective
culture media. The Minimum Inhibitory Concentrations (MIC) towards voriconazole, itraconazole,
posaconazole and isavuconazole, as shown by the resistant isolates, were determined using the
European Committee on Antimicrobial Susceptibility Testing (EUCAST) microdilution broth method.
Eight isolates (A. fumigatus, n = 6 and A. terreus, n = 2) had high MIC for at least one azole drug. The
sequencing of cyp51A gene revealed the mutations G54R and TR34/L98H in two A. fumigatus clinical
isolates. Our study showed for the first time the presence of azole resistance in A. fumigatus and A.
terreus isolates in the French West Indies.

Keywords: azole resistance; West Indies; Martinique; Aspergillus fumigatus; Aspergillus terreus; cyp51A
gene mutations

1. Introduction

Acquired azole resistance in Aspergillus spp. was first reported in the late 1990s [1,2]
and has since become a widespread problem [3] usually associated with a higher rate of
treatment failure necessitating therapeutic adjustment in aspergillosis [4,5]. This resistance
concerns mainly Aspergillus fumigatus [6], though it has also involved other species, such
as Aspergillus flavus [7] and Aspergillus terreus [8–10]. The prevalence of such a resistant
species varies in the world, and several studies have shown high rates, particularly in the
Netherlands (0.8–29%), the United Kingdom (6.6–27.8%), and Germany (3.2–30%) [3,11].

Two routes of resistance acquisition have been identified: (i) the natural in vivo emer-
gence of resistant isolates in aspergillosis patients subjected to long-term azoles treatment
(patient-acquired route), and (ii) the development of resistant isolates in the environment
(environment-acquired route) [12–14]. The environmental route of azole resistance devel-
opment has been reported since the late 2000s [15] and is largely responsible for the global
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emergence of resistance. The intensive use of azole fungicides in the agriculture industry
expose Aspergillus spp. in the environment to azole fungicides and induce cross-resistance
to medical azoles [13,16,17].

For A. fumigatus, the most commonly reported mechanism of resistance development
is the alteration of cyp51A gene which codes for 14-alpha-demethylase, the target enzyme
of azole drugs [12]. Several studies demonstrated that the type of cyp51A mutations
depends on the route of resistance acquisition. In clinical isolates, the main resistance-
development mechanisms are the substitution of amino acids in position G54, G138, or
M220 of CYP51A protein [18–20]. More recently, substitutions of CYP51A protein amino
acids, combined with a tandem repeat in the promoter region of cyp51A gene (TR34/L98H,
TR46/Y121F/T289A, or rarely TR53), have been reported worldwide in azole-naïve patients
and in the environment [15,21], which suggests an environmental route of resistance.

In the French West Indies (Guadeloupe and Martinique), using triazole fungicides
(difeconazole and propiconazole) is allowed in agriculture, especially in banana planta-
tions, to eliminate Mycosphaerella fijiensis, a phytopathogenic fungus that causes Sigatoka
disease [22]. The use of these fungicides is under strict control allowing a maximum of 6 to
8 rounds of treatment per year in order to limit their environmental impact. Considering
the risk of emergence of azole fungicides-resistant species in Martinique, the aim of the
present study was to analyze the prevalence of azole resistance in clinical and environmen-
tal Aspergillus isolates in the French West Indies, and to determine whether cyp51A gene
alterations were responsible for the emergence of such resistance.

2. Materials and Methods
2.1. Clinical Samples

All phenotypically identified Aspergillus spp. detected in different samples drawn from
patients hospitalized in Pierre Zobda-Quitman hospital (Martinique University Hospital,
Fort-de-France, West Indies, France) from January 2014 to December 2018 were analyzed.
Each isolate was stored at −80 ◦C before culture on Malt-extract agar (VWR, Fontenay-
sous-Bois, France).

2.2. Environmental Samples

A total of 140 soil samples were collected from northern and central regions of Mar-
tinique, of which 100 came from five banana plantations (Banamart®; at Lamentin, Gros-
Morne, Morne-Rouge, Basse-Pointe, and Saint-Pierre, Martnique,), 20 from one sugar
cane field (Neisson®; at Le Carbet, Martinique) and 20 from a natural forest (Saint Joseph,
Martinique) (Figure 1).

The samples were treated as previously described [15] with few modifications. Briefly,
2 g of soil was suspended in sterile distilled water with 1% Tween-20 (Sigma-Aldrich,
Saint-Quentin Fallavier, France). Fifty microliters of the suspension was plated on Malt-
extract agar (VWR) supplemented with 0.5 g/L of chloramphenicol (Sigma-Aldrich) and
incubated at 37 ◦C for 48 h. Aspergillus spp. isolates were phenotypically identified using
macroscopic and microscopic characteristics.

2.3. Screening for Azole Resistance

Screening for azole resistance was performed as previously described [23–25] using
3-well plates containing RPMI-1640 agar medium (Sigma-Aldrich, Saint-Quentin-Fallavier,
France); the first well was supplemented with 4 mg/L itraconazole (Sigma-Aldrich), the
second with 1 mg/L voriconazole (Sigma-Aldrich), and the third was without drug (growth
control). Although this method has been validated for the detection of azole resistance only
in Aspergillus fumigatus [26,27], it has been used in previous studies for other Aspergillus
species [28,29]. Therefore, in this study, we attempted to use this method for screening
azole resistance also in non-fumigatus Aspergillus species in order to explore its utility for
these other species. Each well was inoculated with conidia from a colony of Aspergillus
isolates, and plates were incubated at 37 ◦C for 48 h. Two independent readers assessed
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the results qualitatively as negative (no visible growth) or positive (presence of fungal
colonies). A. fumigatus ATCC 13073 and an azole-resistant A. fumigatus were used as
susceptible and resistant controls, respectively.
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2.4. Antifungal Susceptibility Testing

Isolates detected as resistant by the screening method were further tested for antifun-
gal susceptibility using the European Committee for Antimicrobial Susceptibility Testing
(EUCAST) microdilution broth reference method [30]. All clinically available azole an-
tifungal molecules were tested: itraconazole (ITZ) (Sigma-Aldrich); voriconazole (VCZ)
(Sigma-Aldrich); posaconazole (PCZ) (MSD, Kenilworth, NJ, USA); and isavuconazole
(ISA) (Basilea Pharmaceutica International Ltd., Basel, Switzerland). The number of conidia
inoculated was 105 to 2.5 × 105 cfu/mL and the concentrations of each drug ranged from
0.016 to 8 mg/L. After 48 h of incubation at 37 ◦C, the minimum inhibitory concentration
(MIC) was determined, both visually, as the lowest drug concentration that could com-
pletely inhibit fungal growth, and spectrophotometrically at 550 nm using a 90% growth
inhibition endpoint. All tests were performed in triplicate. Candida parapsilosis ATCC 22019
and Candida krusei ATCC 6258 were included as quality controls.

2.5. Interpretation of MIC

A. fumigatus resistance was defined according to the EUCAST clinical breakpoints, i.e.,
at concentrations of >1 mg/L for ITZ and VCZ, >2 mg/L for ISA, and >0.25 mg/L for PCZ.
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For A. terreus, breakpoints were similar except for ISA (>1 mg/L), and for VCZ for which
Epidemiological Cut off Value (ECV) of >1 mg/L was used as breakpoints.

2.6. Molecular Identification

Resistant isolates detected by screening and EUCAST microdilution broth reference
methods were identified by sequencing a portion of the β-tubulin gene [31]. Complete
genomic DNA was extracted from a Malt-extract agar fungal culture using QIAamp DNA
blood minikit (Qiagen Sciences Ing, Courtaboeuf, France). Briefly, conidia and hyphae
were disrupted with glass beads (VWR, ref: 432-0064) and lysis buffer on MagNA Lyser
instrument (Roche Diagnostics, Meylan, France). The resulting suspension was then treated
according to the manufacturer’s instructions. PCRs were performed in a 50 µL-final volume
containing 1× HF buffer (ThermoFisher, Les Ulis France), 200 µM of deoxynucleoside
triphosphates (dNTPs), 1 µM of each primer, 3% of DMSO, 1 unit of Phusion™ High-
Fidelity DNA Polymerase (ThermoFisher), and 100 ng of genomic DNA. The primers used
for β-tubulin gene amplification were Bt2a (5′-GGTAACCAAATCGGTGCTGCTTTC-3′)
and Bt2b (5′-ACCCTC AGTGTAGTGACCCTTGGC-3′) as previously described [32]. Sanger
sequencing was performed at the Genomic platform of Henri Mondor Hospital Biomedical
Research Institute (IMRB). Sequences were analyzed using DNA Baser Assemble v5.15.0
and compared to GenBank and MycoBank databases sequences. Nucleotide identification
was achieved at >99% match.

2.7. cyp51 Gene Sequencing

For azole-resistant isolates, the whole cyp51A gene (14-alpha sterol demethylase)
and its promoter region were Sanger sequenced to detect azole resistance-causing alter-
ations. PCRs were performed in a 50 µL-final volume containing 1X HF buffer (Ther-
moFisher), 200 µM of deoxynucleoside triphosphates (dNTPs), 1 µM of each primer, 3% of
DMSO, 1 unit of Phusion™ High-Fidelity DNA Polymerase (ThermoFisher), and 100 ng
of genomic DNA. PCR products were Sanger sequenced using primers as previously de-
scribed [8,9,33,34]. DNA sequences electropherograms were analyzed with DNA Baser
Assembler v5.15.0 and CLC Sequence Viewer 8.0 software. The sequences were compared
with two standard cyp51A genes: AFUB_063960 of A. fumigatus reference strain CBS144,
and ATEG_05917 of A. terreus reference strain NIH2624.

2.8. Ethical Approval

All procedures contributing to this work are in compliance with the ethical standards
of the Helsinki Declaration of 1975, as revised in 2008. The study was retrospectively
conducted on isolates collected through routine clinical work and patients’ identifiable
information had already been anonymized; no written or verbal informed consent was
necessary for patients to participate in this study.

3. Results
3.1. Clinical Isolates
3.1.1. Culture and Morphological Identifications

During the study period, 45 clinical Aspergillus spp. isolates were collected from
bronchoalveolar lavages (n = 14), bronchial fluids (n = 7), sinus samples (n = 7), sputa
(n = 5), pleural fluids (n = 4), ear (n = 5), cornea (n = 2), and nose samples (n = 1) of 39
patients hospitalized at Pierre Zobda-Quitman hospital (Martinique University Hospital,
Fort-de-France, West Indies, France). These isolates were first morphologically identified
as A. fumigatus sensu lato (n = 35, 78%), A. flavus sensu lato (n = 8, 18%) and A. terreus sensu
lato (n = 2, 4%) (Table 1).



J. Fungi 2021, 7, 355 5 of 10

Table 1. Species distribution of Aspergillus spp. recovered from clinical and environmental samples.

Sample Source N
A. fumigatus A. flavus A. terreus Other Aspergilli

n (%) n (%) n (%) n (%)

Clinical 45 35 (78) 8 (18) 2 (4) 0 (0)
Environmental 163 98 (60) 43 (26) 19 (12) 2 (2)

3.1.2. Antifungal Susceptibilities

Screening on RPMI-agar plates supplemented with azoles identified 16 potentially
resistant isolates (Figure S1): A. fumigatus (n = 10), A. flavus (n = 4) and A. terreus (n = 2).
Using the EUCAST microdilution method, the MIC of at least one azole was high in only
six of such isolates (four of A. fumigatus and two of A. terreus) (Table 2).

Table 2. Characteristics and in vitro antifungal susceptibility profiles of azole-resistant Aspergillus
spp. isolates (n = 6) from clinical samples.

Isolate Species Origin Sample Type
MIC (mg/L)

cyp51A Gene
VCZ ITZ PCZ ISA

Af 001 A. fumigatus Patient BAL 1 2 1 0.25 1 WT 3

Af 002 A. fumigatus Patient BAL 1 0.5 >8 >8 1 G54R
Af 003 A. fumigatus Patient BAL 1 4 >8 1 8 TR34/L98H
Af 004 A. fumigatus Patient BAL 1 2 2 1 4 WT 3

At 001 A. terreus Patient BA 2 >8 1 1 >8 WT 3

At 002 A. terreus Patient BA 2 2 1 0.5 4 WT 3

1 BAL: Broncho-alveolar lavage; 2 BA: Bronchial aspiration; 3 WT: Wild-Type.

3.1.3. Molecular Identification

Identification of the species level of resistant isolates was confirmed by sequencing of
part of β-tubulin gene. The four resistant A. fumigatus were of A. fumigatus stricto sensu (ss)
species, and the two resistant A. terreus were of A. terreus stricto sensu (ss) species.

3.1.4. cyp51A Gene Sequencing

The analysis of DNA sequences revealed the presence cyp51A alterations in two
azole-resistant A. fumigatus isolates (Figure S1). The first isolate (Af 003) harbored L98H
mutation with a 34 bp tandem repeat in its promoter region (TR34/L98H), and the second
(Af 002) had G54R mutation (Table 2). No alterations in the cyp51A gene were found in the
remaining four resistant isolates (Table 2).

3.2. Environmental Isolates
3.2.1. Culture and Morphological Identifications

The 163 Aspergillus species isolated from the 140 soil samples were A. fumigatus sensu
lato (n = 98; 70%), A. flavus sensu lato (n = 43, 26%), A. terreus sensu lato (n = 19, 12%), and
other species (n = 3, 2%) (Table 1).

3.2.2. Antifungal Susceptibilities

Screening on RPMI-agar plates supplemented with azoles identified 51 potentially
resistant isolates (Figure S2): A. fumigatus (n = 36), A. flavus (n = 13) and A. terreus (n = 2).
Among these isolates, only two A. fumigatus showed high MICs of VCZ (2–4 mg/L), ITZ
(2 mg/L), PCZ (0.5 mg/L), and ISA (2–4 mg/L). One of these isolates (Af 005) was collected
from a banana plantation in Lamentin, and the other (Af 006) from the sugar cane field in
Le Carbet (Table 3).
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Table 3. Characteristics in vitro antifungal susceptibility profiles of azole-resistant Aspergillus spp.
isolates (n = 2) from environmental samples.

Isolate Species Origin Sample Type
MIC (mg/L)

cyp51A Gene
VCZ ITZ PCZ ISA

Af 005 A. fumigatus Banana
plantation Soil sample 2 2 0.5 4 WT 1

Af 006 A. fumigatus Sugar
cane field Soil sample 4 2 0.5 2 WT 1

1 WT: Wild-Type.

3.2.3. Molecular Identification

Identification of these resistant isolates as A. fumigatus sensu stricto was confirmed by
sequencing of part of β-tubulin gene.

3.2.4. cyp51A Gene Sequencing

No alterations in cyp51A gene were found in these two resistant isolates (Figure S2).

4. Discussion

The emergence of azole-resistant Aspergillus species is a public health problem af-
fecting many regions worldwide with varying levels of prevalence [3]. In France, and
according to the studied population, such a prevalence has been evaluated at less than
10% [23,34,35]. Our present study, which was carried out in the French West Indies, reveals
a high level of azole-resistant Aspergillus in patients and the appearance of few azoles-
resistant environmental strains. Due to the small number of isolates studied, we could not
determine a precise prevalence of resistance, but we determined approximate rates.

In clinical isolates of Aspergillus spp., the rate of azole resistance was 13% (6/45) in
an unselected patients’ population over a 4-year period (2014–2018). This prevalence is
higher than that observed in other French studies, even those involving cystic fibrosis cases,
known to have a high prevalence of azole-resistant Aspergillus [35]. Both A. fumigatus (n = 4)
and A. terreus (n = 2) isolates were concerned. On the other hand, in the environment, the
rate of azole resistance in Aspergillus spp. was low, around 1%, and concerned only A.
fumigatus (n = 2). These resistant isolates were collected from two agricultural plantations,
one from a banana plantation located in the center of the island (Lamentin) and the other
from a sugar cane field in the north of the Island (Le Carbet).

Two routes of resistance acquisition in Aspergillus have been identified (i) an in vivo
selection of resistant isolates as a consequence of long-term treatment with medical azoles
in patients with Aspergillus diseases (patient-acquired route) and (ii) an acquisition of
resistant isolates directly from the environment related to the use of azoles fungicides in
agriculture. In Martinique, we found a higher rate in patients than in the environment. This
could be related to an important use of azoles drugs as preventive or curative treatment in
patients. We do not have this information because the study was retrospectively conducted
on isolates collected through routine clinical work patients’ information and data were
anonymized.

Previous reports revealed high resistance rates in clinical and environmental A. fumiga-
tus isolates in the Netherlands, UK, and Germany [3,11]. In the aforementioned countries,
azole fungicides are extensively used in agriculture to protect grains, fruits, vegetables,
or flowers crops from mildew infection [36]. In the French West Indies, several strategies
have been adopted in the past few years to limit the environmental impact of fungicides
used in banana plantations. Such strategies focused on reducing the frequency of fungi-
cide application in the plantations, regularly clearing infected leaves, or using paraffin
oil instead of chemical fungicides whenever feasible. Although the number of isolates
studied is too small to draw firm conclusions, we can hypothesize that these measures
could explain the low prevalence of azole resistant A. fumigatus in banana plantations as
observed in our study. A larger study involving more isolates should be performed to
confirm this hypothesis. On the other hand, we do not know how to explain the presence
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of a resistant isolate in the sugar cane field because it is an organic plantation that does not
receive antifungal treatment.

The most commonly reported mechanism of resistance development is the alteration of
the target enzyme of azole drugs, namely lanosterol 14α-demethylase (CYP51). Aspergillus
spp. contain two or three CYP51 isoenzyme: CYP51A, CYP51B or CYP51C depending on
the species [37]. However, the main azole resistance mechanism is the development of
point mutations in cyp51A gene. In this study, the sequencing of cyp51A gene of resistant
Aspergillus spp. isolates showed alterations in two clinical A. fumigatus isolates; one
harbored G54R mutation and the other carried TR34/L98H insertion/mutation. Both
alterations are well known to confer azole resistance in A. fumigatus [38]. More specifically,
substituting glycine, the smallest amino acid, for arginine, a larger amino acid, at position
54, has been described as a mechanism to prevent the access of long chain azoles, such
as ITZ and PCZ, to the active site on CYP51A protein, thereby reducing the affinity of
drug-enzyme interaction [39]. Our results are in agreement with this fact as isolate Af 002
which harbored G54R mutation showed high MICs (>8 mg/L) for ITZ and PCZ, but low
MIC for VCZ (0.5 mg/L) and ISA (1 mg/L). Amino acid substitutions at position G54 were
first recognized in patients on long-term azole therapy. However, recent publications have
also shown the presence of these substitutions in environmental isolates. G54E mutation
was reported in environmental samples in Romania, India, and Tanzania [40], G54A in
Germany [41], and G54R in Switzerland [21]. The combination of a 34-bp tandem repeat
sequence in the promoter gene of cyp51A gene with the substitution of leucine 98 for
histidine, in the protein, is a common mechanism widely described worldwide [12]. The
latter appears to be an environmentally acquired alteration and is not related to selective
pressure due to prior azole treatment in patients [13,15,42].

Among the six azole-resistant A. fumigatus found in this study, four isolates (two from
patients’ samples and two from the environment) showed no mutations in cyp51A gene or
in its promotor, suggesting other molecular mechanisms. Although azole resistance in A.
fumigatus is mainly attributed to cyp51A gene mutations, other resistance mechanisms have
been previously reported and increasingly brought to light over the past years [43,44]. The
most common of these mechanisms is the overexpression of efflux pumps, ATP-binding
cassette proteins (ABC) or major facilitator superfamily pumps (MFS), which are employed
in eukaryotic organisms for cell detoxification. Overexpression of these efflux pumps
reduces the azole drug concentrations inside fungal cells, hence the resistance. In A. fumiga-
tus, at least 49 ABC and 278 MFS transporter genes have been described, but to date only
a few genes are known to be linked to azole resistance, including AfuMDR1, AfuMDR2,
AfuMDR3, AfuMDR4, AbcA-E, MfsA-C, and AtrF [45,46]. Among other mechanisms cor-
related to azole resistance, Camps et al. described in 2012 using whole genome sequencing,
a P88L substitution in CCAAT-binding transcription factor HapE in a clinical Aspergillus
fumigatus isolate [47]. Other mutations/alterations in other genes/proteins have also been
documented [48–53].

The two clinical isolates of A. terreus detected in this study showed an MIC greater
than the ECV established for VCZ and an MIC greater than the breakpoint established for
ITZ, PCZ and ISA. In A. terreus, substitutions in CYP51A at position M217 were previously
associated with reduced susceptibility to ITZ (MIC of 1.0–2.0 µg/mL), VCZ (MIC of 1.0–
4.0 µg/mL) and PCZ (MIC of 0.25–0.5 µg/mL) [8]. However, this mutation was not
identified in our isolates. Other azole-resistant A. terreus isolates with wild-type CYP51A
were previously reported, but no other alterations have been described to explain their
resistance yet [9,10].

The next step in our work will be to perform whole genome sequencing of isolates
from our study in order to compare their genetic background, to detect possible new
resistance-inducing mechanisms, and to perform a phylogenetic analysis that related the
origin of the isolates.

In conclusion, we showed herein for the first time the presence of azole resistance
in A. fumigatus and A. terreus isolates in Martinique, with a higher prevalence in clinical
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isolates than in environmental isolates. Our results contribute to the overall knowledge
of the epidemiology of Aspergillus resistance in the world and give a clearer image of the
prevalence of azole resistance in the French West Indies. Further surveillance of azole
resistance both in patients and in the environment of West Indies is warranted.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7050355/s1, Figure S1: Workflow of analyses performed on clinical isolates; Figure S2:
Workflow of analyses performed on environmental isolates.
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