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Vibrio parahaemolyticus is a leading cause of seafood-related gastroenteritis and is also an
autochthonous member of marine and estuarine environments worldwide. One-hundred
seventy strains of V. parahaemolyticus were isolated from water and plankton samples
collected along the Georgian coast of the Black Sea during 28 months of sample
collection. All isolated strains were tested for presence of tlh, trh, and tdh. A subset
of strains were serotyped and tested for additional factors and markers of pandemicity.
Twenty-six serotypes, five of which are clinically relevant, were identified. Although all
170 isolates were negative for tdh, trh, and the Kanagawa Phenomenon, 7 possessed
the GS-PCR sequence and 27 the 850 bp sequence of V. parahaemolyticus pandemic
strains. The V. parahaemolyticus population in the Black Sea was estimated to be
genomically heterogeneous by rep-PCR and the serodiversity observed did not correlate
with rep-PCR genomic diversity. Statistical modeling was used to predict presence of
V. parahaemolyticus as a function of water temperature, with strongest concordance
observed for Green Cape site samples (Percent of total variance = 70, P < 0.001). Results
demonstrate a diverse population of V. parahaemolyticus in the Black Sea, some of which
carry pandemic markers, with increased water temperature correlated to an increase in
abundance of V. parahaemolyticus.
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INTRODUCTION
Vibrio parahaemolyticus, a halophilic bacterium, is a causative
agent of seafood-related gastroenteritis, wound infections, and
septicemia and is known to occur in marine, estuarine, and brack-
ish water environments globally with sporadic occurrence in fresh
water (Sarkar et al., 1985; DePaola et al., 2000; Wong et al., 2000;
Alam et al., 2009). In addition to notoriety as a causative agent
of human infection, the organism is autochthonous to marine
and brackish water ecosystems and, similar to other Vibrio spp.,
degrades chitin (Kaneko and Colwell, 1974; Kadokura et al.,
2007). One of its main virulence factors, the type three secre-
tion system-2 (TTSS2), plays an important role in preventing
predation of its host by higher organisms, suggesting the vir-
ulence factors have evolved via environmental selection (Matz
et al., 2011). Little work has been done on non-anthropocentric
roles of this organism, but its ubiquity and association with
animals demonstrate that its ecology extends beyond the
human body.

The majority of clinical strains encode the thermostable direct
hemolysin (TDH), within the V. parahaemolyticus pathogenic-
ity island (Vp-PAI), one of the virulence factors responsible
for enterotoxicity (Honda, 1993; Guang-Qing et al., 1995).
However, some clinical isolates do not encode TDH, but other
hemolysins instead, such as the TDH-related hemolysin (TRH),
while all encode the thermolabile hemolysin (TLH). It has also
been reported that two type three secretion systems (TTSS1
and TTSS2) are involved in V. parahaemolyticus pathogenicity
(Bhattacharjee et al., 2006; Ono et al., 2006; Kodama et al.,
2007; Matlawska-Wasowska et al., 2010). The TTSS1 found in
all V. parahaemolyticus strains examined to date has been shown
to translocate an effector protein (VP1686) into the cytosol
of macrophages and induce DNA fragmentation and another
effector protein (VP1680) has been shown to play a role in
cytotoxicity in eukaryotic cells (Bhattacharjee et al., 2006; Ono
et al., 2006). Interestingly, V. parahaemolyticus strains lacking
TDH, TRH, and TTSS2 have frequently been isolated from
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patients not colonized by TDH-, TRH-, and TTSS2-positive
strains, suggesting TTSS1 is also responsible for illness in humans
(Suthienkul et al., 1995; Okuda et al., 1997; Vuddhakul et al.,
2000; Laohaprertthisan et al., 2003; Cabanillas-Beltrán et al.,
2006; Bhoopong et al., 2007; Meador et al., 2007; Serichantalergs
et al., 2007; Chao et al., 2009, 2010; García et al., 2009; Harth et al.,
2009).

V. parahaemolyticus has been frequently isolated from water
samples collected from the Black Sea and sporadic cases of gas-
troenteritis caused by this bacterium and related vibrios have
historically been reported in the Sea of Azov region (Libinzon
et al., 1974, 1980, 1981; Shikulov et al., 1980; Clark et al., 1998;
WHO, 2011). Further, human pathogenic vibrios are known
to be endemic to the greater Caucasus (Narkevich et al., 1993;
Gurbanov et al., 2011; Rashid et al., 2013) but the ecolo-
gies of these organisms are not well-elucidated in this region.
The increasing global incidence of V. parahaemolyticus infec-
tions suggests it is important to fully understand the ecology
of these regions in multiple locations so that public health
assessments can be made more accurately (Baker-Austin et al.,
2010). Members of the Vibrionaceae are known to have an
intimate association with planktonic organisms and many stud-
ies have demonstrated the role of environmental conditions
(namely water temperature and salinity) on the density of these
organisms in water bodies. Generally, an increase in tempera-
ture of a water body is associated with an increase in Vibrio
density (Turner et al., 2009; Oberbeckmann et al., 2012). To
further understand the ecology of V. parahaemolyticus along
the Georgian coast of the Black Sea we evaluated the pres-
ence of these organisms in water and plankton fractions over
a 28 month period (June 2006 to October 2008) and modeled
their presence in relation to environmental conditions (salinity,
water temperature, pH, and dissolved oxygen). We further eval-
uated the molecular diversity and presence of virulence factors
in a subset of V. parahaemolyticus isolates collected during this
study.

MATERIALS AND METHODS
Water samples were collected monthly, except July to September
when water was collected biweekly, from five stations on
the coast of the Black Sea (Figure 1). One hundred liters
of water were filtered through 200- and 64-μm plankton
nets, to separate size fractions of plankton. Water tempera-
ture, salinity, pH, and dissolved oxygen were recorded at the
time of sampling. The water fraction (100 ml) was filtered
using a 0.45 μm nitrocellulose membrane, which was incu-
bated in alkaline peptone water (APW) at 37◦C for 24 h. An
aliquot (1- to 5-ml) of each plankton fraction (64- and 200-
μm) was also inoculated in APW and incubated at 37◦C for
24 h. A 10 microliter loop of the enrichment cultures were
streaked onto thiosulfate citrate bile salts (TCBS) agar plates,
which were incubated overnight at 37◦C. All colonies that
appeared yellow to green at 24 h were considered presump-
tive Vibrio spp., picked with a sterile toothpick, and streaked
to isolate colonies on Luria–Bertani (LB) agar. Presumptive V.
parahaemolyticus colonies were confirmed by streaking onto
CHROMagar™ Vibrio (mauve colonies) the latter were confirmed

by PCR (presence of tlh, and V. parahaemolyticus-specific collage-
nase).

For molecular analyses, the following PCR primers were
used; collagenase (Di Pinto et al., 2005), tdh, trh, and tlh
(Bej et al., 1999), GS-PCR (Matsumoto et al., 2000), ORF8
(Nasu et al., 2000), Mtase (Wang et al., 2006), histone-like
DNA-binding protein (HU-α ORF) (Williams et al., 2004), the
850 bp pandemic strain sequence (VPF2/VPR2) (Khan et al.,
2002), VP1346 (yop) and VP1339 (escC) of TTSS2 (Chao et al.,
2010), VP1680 (Whitaker et al., 2012) and VP1686 of TTSS1
(This study). Primer sequences for VP1686 were VP1686-F:
TGCTTTTGTGATCGCTTTTG and VP1686-R: TGAAGGCAA
ACTCAGCATTG (Ta = 56◦C; amplicon size = 169 bp) and
were designed in silico using V. parahaemolyticus RIMD2210633
(NC_004603.1/NC_004605.1). DNA (25.0 ng) was mixed with
2.5 mM of dNTP, 15 mM of PCR buffer, and 5 U μL−1 of
Taq DNA polymerase, using 20 μm of appropriate primer for
each analysis. Amplicons were visualized on 1.5% agarose gel
stained with ethidium bromide and examined under a UV
transilluminator.

To approximate the molecular diversity of the V.
parahaemolyticus isolates, rep-PCR was executed on a ran-
domly selected subset of strains following the methods of
Chokesajjawatee et al. (2008). PCR products were separated
on a 1% agarose gel in TAE buffer. The resulting fingerprint
patterns were documented using the GelDoc-It™ Imaging System
(Ultra-Violet Products, Upland, CA). Banding patterns were
identified by visual observation and dendrograms were calculated
by the unweighted pair-group method using average linkages
(UPGMA). Serotyping was performed as follows. Strains were
streaked on LB agar with 3% NaCl and incubated overnight
at 37◦C. One 10 μl loopful of growth was homogenized in
1 mL of saline solution (0.9% NaCl). This solution was divided
into two 500 μl tubes, one of which was boiled for 2 h. Ten
microliters of the boiled cell solution was then mixed with
10 μl of each O-antisera and 10 μl of the cell suspension that
had not been boiled was mixed with 10 μl of K-antisera on
a glass slide and agglutination visually determined (Denka
Seiken Co., Niigata-ken, Japan). Distilled water was used as
a negative control for serotyping assays. V. parahaemolyti-
cus strain RIMD2210633 (KP positive; serotype O3:K6) for
assays.

Predictive models of V. parahaemolyticus detection were deter-
mined by examining the relationship between presence/absence
(response variable) and recorded environmental parameters
(explanatory variables) at the time of sample collection.
Environmental parameters were also evaluated as explanatory
variables by determining the distance from optimality for each
data point. This was performed by subtracting the median values
of all parameters for those samples in which V. parahaemolyti-
cus had been detected (optimal parameters) from all data points
following the methods of Jacobs et al. (2010) and Banakar et al.
(2011). The absolute values of differences were used as explana-
tory variables in binary logistic regression analysis. For all mea-
sures of association, p-values ≤ 0.05 were considered significant.
Statistical analyses were conducted on R (http://www.r-project.
org/) and SAS softwares (Cary, NC, USA).
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FIGURE 1 | Map showing locations of sampling sites along Black Sea.

RESULTS
DETECTION OF V. parahaemolyticus
In total, 170 isolates of V. parahaemolyticus were recovered
from Black Sea water and plankton samples collected along the
Georgian coast, of which 101 were from water, 30 from the 64 μm
fraction, and 39 from the 200 μm fraction of plankton (Figure 2).

Vibrio parahaemolyticus was isolated from 40 of a total of 106
water samples collected and 19 of 106 and 26 of 106 of 64- and
200-μm plankton fractions, respectively. Based on Cochran’s Q-
test, water samples yielded V. parahaemolyticus significantly more
frequently than either of the plankton fractions. The difference
in V. parahaemolyticus isolation frequency was not significantly
different between the two plankton fractions. When these distri-
butions were binned to water temperature quartiles (11, 19.8, and
25.8◦C), water samples with temperature between 11 and 19.8◦C
were significantly more likely to yield V. parahaemolyticus isolates
than plankton.

Median water temperatures and salinities for all fractions pos-
itive for V. parahaemolyticus were higher than those that were
negative for V. parahaemolyticus, while the opposite was observed
for dissolved oxygen (Table 1). Median pH levels were slightly
lower for all fractions positive for V. parahaemolyticus than those
that were negative, excluding the P64 fraction (Table 1).

SERODIVERSITY
Twenty-seven serotypes of V. parahaemolyticus were detected
the majority of which were O2:K28 (7 isolates), O3:K31 (7),
O3:KUT (7), O4:KUT (7), and untypable (24) (Table 2). Vibrio
parahaemolyticus O3 O-antigenic type was the most common,
comprising 35% of the isolates. Untypable strains may represent

strains with novel serology for which V. parahaemolyticus anti-
sera has not yet been developed, or strains in which antigenic
expression is altered or repressed.

VIRULENCE FACTORS, MARKERS OF PANDEMIC CLONES, AND rep-PCR
None of the V. parahaemolyticus isolates carried the genes
for thermostable direct hemolysin (tdh) thermostable-related
hemolysin (trh), TTSS-2, or MTase; all were both, Kanagawa
phenomenon and urease negative (Table 2). Nineteen isolates
resulted in PCR amplicons for the pandemic GS-PCR marker
(toxRS sequence of pandemic strains), but only seven were
651 bp and 12 were ca. 750 bp. Twenty seven isolates carried
the 850-bp pandemic sequence (VPF2/VPR2). Three of the 651
bp, GS-PCR-positive strains were positive for the 850 bp pan-
demic sequence, whereas six of the 750 bp, GS-PCR-positive
isolates encoded this region. Each of the 651 bp, GS-PCR-positive
isolates were different serotypes and were typed as O1:KUT,
O3:KUT, O3:K31, O3:K33 O3:K65, OUT:K33, and UT, the most
notable was the O1:KUT, related to pandemicity. This iso-
late was also positive for the 850 bp pandemic sequence but
lacked all other markers of virulence except TTSS1. Rep-PCR
was performed on 45 of the strains (Figure 3). A dendrogram
of banding patterns revealed a high level of diversity suggest-
ing a non-clonal population of V. parahaemolyticus in this
environment.

PREDICTIVE MODELING
Among four explanatory variables in a logistic regression used to
model presence/absence of V. parahaemolyticus as the response
variable, water temperature was the only significant predictor

www.frontiersin.org February 2014 | Volume 5 | Article 45 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Aquatic_Microbiology/archive


Haley et al. Vibrio parahaemolyticus in the Black Sea

FIGURE 2 | Water temperature in degrees C (black diamonds, Y-axis) and

V. parahaemolyticus detection in water (blue bars) and plankton

[200 µm (green bars) and 64 µm (magenta bars)]. Water temperature is

averaged across all sites for each sampling month and colored bars
demonstrate at least 1 positive sample for that fraction across all sites for
each sampling month.

Table 1 | Recorded environmental parameters when V. parahaemolyticus was/was not detected for each sample type.

Environmental conditions when V. parahaemolyticus was detected/not detected

Media Statistic Salinity (�) Water temp (◦C) pH DO (mg/L)

Water Min 3.4 A/3.6 B 8/7.7 6.2/6.3 2.1/2

Max 20.8/20.8 28.5/29.7 8.6/8.5 7.2 /7

Mean 12.9/12 22.8/16.5 7.7/7.8 4.4/4.3

Median 15.7/13 24.25/13 7.8/7.9 4.3/4.6

Std Dev 5.0/7.3 4.9/7.3 0.7/0.6 1.2/1.3

P64 Min 5/3.6 19.3/7.7 6.5/6.2 2/2

Max 17.4/20.8 28.5/29.7 8.4/8.5 6.8/7.2

Mean 13.6/12.3 25.4/17.3 7.9/7.8 4.1 /4.4

Median 16.5/14.2 26.6/17 8.2/7.9 4.2/4.5

Std Dev 4.6/4.9 2.9 /7 0.6/0.6 1/1.2

P200 Min 3.4/3.6 18/7.7 6.2/6.5 2.1/2

Max 20.8/20.8 29/29.7 8.4/8.5 7.2/7.2

Mean 12.8/12.3 24.6/17 7.6/7.8 4.4/4.3

Median 14.9/14 25.6/14.2 7.6/8 4.1/4.4

Std Dev 5.4/4.7 3/7 0.7/0.5 1.3/1.2

All Plankton Min 3.4/3.6 18/7.7 6.2/6.5 2/2

Max 20.8/20.8 29/29.7 8.4/8.5 7.2/7.2

Mean 13.2/12.3 25/16.2 7.7/7.8 4.2/4.3

Median 16/14.1 25.8/13.6 7.8/8 4.1 /4.5

Std Dev 5/4.8 3/6.8 0.7/0.5 1.2/1.2

All Sample Types Min 3.4/3.6 8/7.7 6.2/6.2 2/2

Max 20.8/20.8 29/29.7 8.6/8.5 7.2/7.2

Mean 12.7/12 22.7/15.3 7.7/7.8 4.4/4.3

Median 15.2/13.2 24/12.4 7.7/8 4.4/4.6

Std Dev 5/4.9 4.9/6.9 0.7/0.5 1.2/1.2

A, statistic when V. parahaemolyticus was detected.

B, statistic when V. parahaemolyticus was not detected.
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Table 2 | Molecular characteristics of serotyped strains.

Serotype No. of tdh KP trh Mtase ureC VP VP VPA1321 Vp1346 VPA1339 HU-a ORF8 GS-PCR VPF2/

isolates 1680 1686 (vopC) (yop) (escC) ORF VPR2

O1:K32 1 0 0 0 0 0 la (100b) 1 (100) 0 0 0 0 0 0 0

O1:K58 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 1 (100)

O1:KUT 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 1 (100) 1 (100)

O2:K28 7 0 0 0 0 0 7 (100) 7 (100) 0 0 0 0 0 0 0

O2:KUT 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 0

O3:K5 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 0

O3:K31 7 0 0 0 0 0 7 (100) 7 (100) 0 0 0 0 0 1 (14) 2 (29)

O3:K33 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 1 (100) 1 (100)

O3:K51 2 0 0 0 0 0 2 (100) 2 (100) 0 0 0 0 0 0 0

O3:K65 2 0 0 0 0 0 2 (100) 2 (100) 0 0 0 0 0 1 (50) 0

O3:KUT 7 0 0 0 0 0 7 (100) 7 (100) 0 0 0 0 0 1 (14) 2 (29)

O4:K12 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 0

O4:K34 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 0

O4:K37 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0

O4:KUT 7 0 0 0 0 0 7 (100) 7 (100) 0 0 0 0 0 0 2 (29)

O5:K68 2 0 0 0 0 0 2 (100) 2 (100) 0 0 0 0 0 0 1 (50)

O5:KUT 2 0 0 0 0 0 2 (100) 2 (100) 0 0 0 0 0 0 1 (50)

O6:KUT 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 0

O8:KUT 2 0 0 0 0 0 2 (100) 2 (100) 0 0 0 0 0 0 0

O10:K61 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 0

O10:K60 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 0

O10:KUT 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 1 (100)

O11:KUT 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 1 (100)

OUT:K27 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 0

OUT:K33 2 0 0 0 0 0 2 (100) 2 (100) 0 0 0 0 0 1 (50) 1 (50)

OUT:K52 1 0 0 0 0 0 1 (100) 1 (100) 0 0 0 0 0 0 1 (100)

UT 24 0 0 0 0 0 24 (100) 24 (100) 0 0 0 0 0 1 (4) 12 (50)

Total 80 0 0 0 0 0 80 (100) 80 (100) 0 0 0 0 0 7 (9) 27 (34)

aNumber of positive isolates.
bPercent of total isolates of that serotype.

(Table 3). When data from all sites were combined, water tem-
perature explained 37.3% of variance in isolation of V. para-
haemolyticus, suggesting the dynamics of the population are
driven by multiple factors. In the Chorokhi and Supsa estuar-
ies, the proportion of variance in V. parahaemolyticus isolation
explained by water temperature was 22 and 32.1%, respectively,
but higher for Batumi Bulvard and Green Cape sites, 43.2 and
70.1%, respectively (Table 3).

DISCUSSION
Although commonly isolated from brackish waters, presence of
V. parahaemolyticus suggests a public health concern to those uti-
lizing these water sources or consuming products harvested from
these waters. This risk is appreciable regardless of pathogenicity
island presence in the genomes of circulating V. parahaemolyti-
cus, since some infections are caused by isolates lacking tdh, trh,
and TTSS2 (Suthienkul et al., 1995; Okuda et al., 1997; Vuddhakul
et al., 2000; Laohaprertthisan et al., 2003; Cabanillas-Beltrán et al.,
2006; Bhoopong et al., 2007; Meador et al., 2007; Serichantalergs
et al., 2007; Chao et al., 2009, 2010; García et al., 2009; Harth et al.,
2009). Isolates recovered in this study lacked the major virulence

factors associated with the majority of clinical cases. However,
these results are not surprising since typically <1% of environ-
mental isolates encode these elements (McLaughlin et al., 2005).
The historical reporting of V. parahaemolyticus infections in this
region suggests that either infections have been caused by strains
lacking major virulence factors, resident strains encoding these
virulence factors were not detected using the methods employed
by this study, or both.

Results of this study demonstrated a high level of diver-
sity among isolates as measured by serotype distribution, pres-
ence/absence of pandemic markers, and rep-PCR banding pat-
terns. Strains isolated in this study represented 9 O-antigens
and 27 K-antigens, as well as untypable strains, a measure of
antigenic diversity of natural isolates in this region. Mutations
within antigen coding regions of the genome are common, as
well as lateral transfer, allowing strains to adapt to microen-
vironments of the environment or evade predation by grazing
protozoa (Lerouge et al., 2001; Woo et al., 2001; Wildschutte
et al., 2004). Molecular divergence was noted by the heterogeneity
observed among O3:K31 and O2:K28 strains by rep-PCR anal-
ysis suggesting that serology does not necessarily correlate with
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FIGURE 3 | Dendrogram showing relatedness of V. parahaemolyticus strains by rep-PCR. Asterisks identify strains that are GS-PCR-positive. Numbers on
branches indicate degree of divergence between isolates.

Table 3 | Results of binary logistic regression analysis between V. parahaemolyticus water temperature.

Parameter All Sites Chorokhi Batumi Bulvard Green Cape Supsa

Temperature

% of Total Variance 37.33 22.01 43.18 70.08 31.23

P-value 8.00E-10 0.008 0.004 0.005 0.003

Coefficient 0.27 0.19 0.32 0.53 0.24

Intercept −5.51 −4.09 −6.79 −9.36 −4.99

Deviance 112.93 35.47 25.98 12.32 30.16

df. residual 128 31 31 30 30

df. null 129 32 32 31 31

N 130 33 33 32 32

genome architecture. This genomic heterogeneity indicates the
necessity of classifying strains by methods other than serology.
The high degree of divergence among environmental V. para-
haemolyticus strains in the Black Sea is corroborated by reports
of similar findings in geographically distant regions (Wong et al.,

1999; Matsumoto et al., 2000; Alam et al., 2009; Yu et al., 2011;
Ellis et al., 2012; Paranjpye et al., 2012).

V. parahaemolyticus was detected across a broad range of salin-
ities (3.4–20.8�) (Table 2). However, it was not significantly
associated with V. parahaemolyticus presence in our model. This
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is most likely due to the relative stability of salinity readings
at each site over the course of the study (data not shown). V.
parahaemolyticus is a known member of estuarine and marine
environments and salinity values detected during this study were
typical of brackish waters (0.5 > 30�) suggesting a suitable
salinity regime for V. parahaemolyticus presence at most sam-
pling points. V. parahaemolyticus seasonality was observed at all
sites, with a clear trend of increasing numbers as water tem-
peratures increased from May to September. The organism was
isolated from water samples at temperatures as low as 8◦C, but
more frequently (ca. 93% of strains) at temperatures greater than
17◦C (Table 1). The highest percentage of total variance in detec-
tion, related to temperature, was at Green Cape (percent of total
variance = 70, P < 0.05). At each site, the total variance in V.
parahaemolyticus detection was significantly related to an increase
in water temperature. However, these associations were not as
strong for the Batumi Bulvard (43.18), Chorokhi estuary (22.01),
and Supsa estuary (31.23) sites (Table 3). Interestingly, the associ-
ations between water temperature and V. parahaemolyticus detec-
tion were weaker for the two estuarine sites. Salinities at these
two sites were much lower than the non-estuarine sites (Batumi
and Green Cape) suggesting that either salinity played a role in
V. parahaemolyticus presence, even though it did not show up
as significant in our model, or that an unmonitored parameter
common to both estuarine environments influenced V. para-
haemolyticus presence. This trend is indicative of the patchiness
of V. parahaemolyticus distribution in water bodies suggesting
that environmental conditions are noticeably different at different
locations within the same water body and that these differences
contribute to V. parahaemolyticus presence.

In summary, an antigenically diverse population of V. para-
haemolyticus inhabits the Georgian coast of the Black Sea.
Although none of the strains collected during this study were
Kanagawa phenomena-positive or tdh and trh-positive, the
TTSS1 effector proteins and TLH were present in some isolates,
which included a possible serovariant of the V. parahaemolyticus
O3:K6 pandemic clone. These results, together with epidemiolog-
ical data demonstrating strains lacking pathogenicity islands can
cause disease, suggest there is a risk associated with occurrence
of V. parahaemolyticus in Black Sea coastal waters. Warmer tem-
peratures in the spring and summer lead to increased densities of
V. parahaemolyticus. Recent clinical data on isolation of TDH-,
TRH-, and TTSS2-negative V. parahaemolyticus suggests these
strains represent underreported etiological agents of diarrhea,
similar to V. cholerae non-O1/non-O139 strains lacking major
virulence factors (Safrin et al., 1988; Ko et al., 1998; Lukinmaa
et al., 2006; Shannon and Kimbrough, 2006; Chatterjee et al.,
2009; Hasan et al., 2012; Marin et al., 2013). The high frequency of
detection of V. parahaemolyticus lacking major virulence factors
but associated with severe infection, suggests recreational water
and shellfish harvesting areas in Georgia should be monitored,
especially when water temperatures are seasonally high.
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