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Background: Previous measurement error work that investigates the relationship

between a nutritional biomarker and self-reported intake levels has typically been at

a single time point, in a single treatment group, or with respect to basic patient

demographics. Few studies have examined the measurement error structure in

longitudinal randomized trials, and whether the error varies across time or group.

This structure is crucial to understand, however, in order to correct for measurement

error in self-reported outcomes and properly interpret the longitudinal effects of

dietary interventions.

Methods: Using two longitudinal randomized controlled trials with internal longitudinal

validation data (urinary biomarkers and self-reported values), we examine the relationship

between urinary sodium and self-reported sodium and whether this relationship changes

as a function of time and/or treatment condition. We do this by building a mixed effects

regression model, allowing for a flexible error variance-covariance structure, and testing

all possible interactions between time, treatment condition, and self-reported intake.

Results: Using a backward selection approach, we arrived at the same final model for

both validation data sets. We found no evidence that measurement error changes as a

function of self-reported sodium. However, we did find evidence that urinary sodium can

differ by time or treatment condition even when conditioning on self-reported values.

Conclusion: In longitudinal nutritional intervention trials it is possible that measurement

error differs across time and treatment groups. It is important for researchers to consider

this possibility and not just assume non-differential measurement error. Future studies

should consider data collection strategies to account for the potential dynamic nature of

measurement error, such as collecting internal validation data across time and treatment

groups when possible.
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INTRODUCTION

Dietary interventions seek to change dietary behaviors – either to affect some clinical outcome or
to change the behavior itself. These studies might use only one time point after baseline to assess
participant outcomes, or they may be longitudinal, in which participant outcomes are measured
several times over the course of months or years after initial group assignment.
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Dietary intervention studies usually require investigators to
collect nutrient intake data— such as sodium consumption in
study participants—to estimate the effect of the intervention on
diet. Yet properly measuring dietary intake, especially over time,
with high accuracy can be difficult. Direct nutrient intake is
rarely observed, and in dietary studies, researchers frequently
resort to two methods to measure nutrient intake: self-report or
biomarkers (1).

Self-reported measures generally rely on participants
reporting their dietary intake over some period of time, such
as the past 24 h or 7 days. This often takes the form of a food
frequency questionnaire (FFQ), where participants fill out a
survey about their eating habits or a 24-h dietary recall, where
participants report everything consumed over the previous day.
That is then used to extract information about the nutrients in
the food reported as having been consumed. Biomarkers are
biologic components from participants, such as blood, urine,
or hair, which contain information about a person’s nutrient
levels. Biomarkers are useful because they objectively measure
intake and some provide unbiased estimates of intake. Therefore,
biomarkers may be closer to the “truth” than self-reported
methods (but still subject to measurement error), and hence
provide a better estimate of a person’s nutrient intake (2, 3).

Unfortunately, biomarkers are often expensive, invasive,
and/or difficult to implement in a study (4). They place
potentially greater burden on study participants than self-report
measures; this burden may discourage participants from taking
part in a longitudinal study. Thus, there are concerns that
biomarkers can contribute to poor study adherence and missing
data problems (i.e., that participants will drop out of the study
because of the hassle or invasiveness of the biomarker collection)
(5). For these reasons, in many studies, it is often infeasible to
capture biomarker data over time. Self-reported methods are
more frequently implemented than biomarker measurements
since they are likely easier, cheaper, and more convenient for the
participant (4).

Both of these methods (biomarkers and self-report) act as
“proxy” measurements of true intake, because they can be
representative, but are potentially imprecise versions of the truth.
They are potentially subject to twomain types of error: systematic
and random. Systematic error, or bias, means that a measure
consistently departs from the truth in the same direction (i.e.,
always higher or lower), and can be hard to detect and analyze
statistically (6). Systematic errors can decrease the accuracy
of measurements and create potentially erroneous conclusions
about the relationship between food intake or nutrients and
nutrition-related diseases (7). Random error can create variability
in the measurements, which may reduce precision, resulting in a
loss of statistical power. However, random errors can be more
easily corrected with statistical methodology (8). These errors
together help create measurement error, the difference between
“true” and “observed” intake.

If researchers are concerned with measurement error, they
may have a slight preference for biomarker collection methods
because the objective nature of biomarkers leads to less
systematic error, but they are still subject to potential random
errors such as daily variation in diet (3, 8–10). Self-reported

measures can be more susceptible to systematic measurement
errors due to the many complexities of properly reporting food
intake (8, 11, 12). Even with the best due diligence, factors such
as social desirability or recall problems influence final results.
Examples include constant over or under-reporting (systematic
error) or daily fluctuations in food consumption (random error).

Given these measurement challenges in nutrition (and many
other fields), researchers have developed statistical methods
such as regression calibration (13) and Simulation Extrapolation
(SIMEX) (14) to deal with measurement error in settings where
the variable measured with error is a covariate in an outcome
model. To implement these methods, it is necessary to have
information on the relationship between the variable measured
with error and its true value.

The existing measurement error literature in dietary studies,
and their respective correction methods, typically examine
measurement error at one specific time point and/or in
a single observational cohort. However, these measurement
error patterns may not remain constant in longitudinal
lifestyle interventions.

In addition, in randomized controlled trials (RCTs), where
individuals are randomly assigned to treatment conditions
and the intervention and comparison groups have different
experiences, self-reporting behaviors could change over time
and/or by treatment assignment. Those in the treatment group
may become more cognizant of nutrition intake through
intervention exposure, leading to increased reporting accuracy.
Participants may also modify their self-reported values (even
if not necessarily their true intake) to appear compliant
with intervention recommendations, which decreases their
accuracy (12).

Self-reported precision could also wane over time as
participants experience fatigue with repeated reporting (15). This
fatigue could lead them to be more carefree and less rigorous,
introducing uncertainty into measurements. Conversely, as
people repeatedly monitor sodium intake over time, they may
become more accurate with increased repetitions. Thus, the
structure of themeasurement error could be differential, meaning
the amount of error may differ across treatment groups and
could change over time differently for each treatment group.
However, to this point there has been little empirical investigation
of these patterns.

As a case study, we examined sodium intake in two
longitudinal intervention trials, Trials of Hypertension
Prevention (TOHP) (16) and PREMIER: Lifestyle Interventions
for Blood Pressure Control (17). These data sets are particularly
useful for examining measurement error over time because they,
unlike most dietary intervention trials, contain both self-reported
sodium intake via 24-h recall and a sodium biomarker−24-h
urine—for each participant at every time point. With this
information, we compare the participants’ self-reported values
with their directly measured urinary sodium to characterize the
measurement error, and assess whether the error varies across
treatment group and time. Our analyses could be helpful to
learn about potential measurement error in other settings, and
to help researchers understand when it is important to consider
differential measurement error by time or treatment condition.

Frontiers in Nutrition | www.frontiersin.org 2 November 2020 | Volume 7 | Article 581439

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Pittman et al. Measurement Error in Dietary Sodium

MATERIALS AND METHODS

Trials of Hypertension Prevention
TOHP was a U.S. based, multicenter, randomized trial of
2,182 participants testing the efficacy of a lifestyle intervention
aimed at lowering diastolic blood pressure (DBP) from the
high normal range (80–89 mmHg) (16) to a lower range.
Participants were assigned to one of four treatment groups:
sodium reduction, weight reduction, stress management, or
control. The sodium reduction group received counseling on
how to reduce sodium consumption in everyday life. The weight
reduction group received guidance on weight-loss techniques.
The stressmanagement group were provided copingmechanisms
to handle stressful situations. The weight loss and stress
management groups did not receive any counseling specifically
on sodium intake. The control group did not receive any
particular intervention or information; in this sense it was similar
to a “usual care” condition.

Participants were considered eligible if they were healthy
men and women, aged 30 through 54 years, who had high
normal DBP and were not taking antihypertensive drugs for
the prior 2 months (16). All participants were screened three
times prior to enrollment to check eligibility requirements and
then randomized to one of the four treatment groups. On
the third screening, a 24-h dietary recall was conducted, and
participants provided a 24-h urine sample; this served as their
“baseline” measurement. All participants were contacted again—
at an unannounced point in time— ∼6 and 18 months after
enrollment to again provide 24-h dietary recall and 24-h urine
biomarker for sodium consumption at each respective time point
(Table 1). The 24-h recall data on individual foods was converted
into nutrients using the Tufts Nutrient Data Bank based on the
US Department of Agriculture Standard Reference (Release 9) in
combination with extensive manufacturers’ data and published
nutrient data on currently consumed food products (16, 18, 19).

PREMIER: Lifestyle Interventions for Blood
Pressure Control
PREMIER was also a U.S. based, multicenter randomized trial
testing the effects of various lifestyle intervention on blood
pressure outcomes in 810 adults with above optimal DBP
(80–95 mmHg) and who were not taking antihypertensive
medications (17).

Participants were randomly assigned to one of three treatment
groups: Established, Established Plus Dash, or Advice Only. The
Established group received guidance on improving their dietary
habits (including reducing sodium consumption) and increasing
physical activity. Established Plus Dash received an intervention
similar to Established but also received education on the DASH
diet, a diet high in fruits, vegetables and low-fat dairy products.
Finally, Advice Only received general healthy behavior advice,
but no specific counseling on sodium intake or physical activity.

All eligible participants attended a randomization visit, where
researchers randomized them to a group and then collected
baseline measurements including two 24-h dietary recalls, and
a 24-h urine sample. Trial researchers contacted all participants
unannounced at 6 and 18 months after enrollment, at which

TABLE 1 | Study characteristics and participant demographics in TOPH and

PREMIER studies.

TOHP† PREMIER

N 751 818

Enrollment dates 1988–1990 1999–2001

Timing of sodium

assessment

Baseline Baseline

6 months 6 months

18 months 18 months

Assessment method 24-h recall Two 24-h recalls

24-h urine 24-h urine

Treatment categories

(N in group)

Sodium reduction* (329)

Control‘ (422)

Established* (271)

Established plus DASH*

(272)

Advice only‘ (275)

Male N (%) 534 (71) 310 (38)

Mean baseline BMI

(SD)

27.3 (3.6) 33.2 (5.7)

Mean baseline age (SD) 43 (6.4) 50 (8.9)

†
Some cohorts in the original TOHP study were outside the scope of our analysis and

therefore were excluded from the final models. N = 751 reflects a subset of TOHP

we used for this study, and subsequent BMI and age calculations are derived from the

subsetted population.

*Categorized as “treatment” for our purposes.

‘Categorized as “control” for our purposes.

point individuals again provided two 24-h dietary recalls and
24-h urine samples (Table 1).

Intake of nutrients and food groups was assessed from
unannounced 24-h dietary recalls conducted by telephone
interviewers. Two recalls (one obtained on a weekday and the
other on a weekend day) were obtained at baseline, 6-, and 18-
months by the Diet Assessment Center of Pennsylvania State
University. The Nutrition Data System (NDS) developed and
maintained by the Nutrition Coding Center of the University
of Minnesota was used to generate the estimates of individual
nutrient intake from the recalls (17).

We obtained the datasets for TOHP and PREMIER through
an online request from the National Heart, Lung, and Blood
Institute BioLINCC data repository after receiving IRB approval
through Johns Hopkins Bloomberg School of Public Health and
Northwestern University.

For both datasets we consolidated the original treatment and
control groups into new ones for our purposes. In TOHP, only
the sodium reduction group received counseling on sodium
management. Hence, we discarded the stress management and
weight reduction groups and only use the original control
group in the control arm. For the PREMIER study we
considered both behavioral intervention groups (Established,
Established plus DASH) as the “treatment” condition, and
used the advice only condition as the control condition.
We are interested in whether participants in the sodium
reduction interventions, more (or less) accurately report their
actual sodium intake compared to those in the advice only
group, and whether the pattern of measurement error varies
over time.
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The same data cleaning procedures were used for both
studies prior to analysis. First, the biomarker sodium values
were converted to dietary sodium values by dividing urine
sodium values by 0.86, as only 86% of sodium intake appears
in urine (1, 20). The dietary sodium and self-reported sodium
values were both natural log-transformed to make the respective
distributions approximately normal. In PREMIER, the two
self-reported sodium values at each time point were averaged
after log transformation. We centered log self-report (log
self-report – mean log self-report at baseline) to help with the
interpretability of regression coefficients.

Our model of interest is a calibration model in which a
reference measure (urinary sodium) is regressed on its self-
reported version (21). This relationship is used for missing data
approaches (22) for handling measurement error where the
variable measured without error is treated as missing data and
imputation is used to fill in the unobserved data (23–26).

We began by plotting the data in order to visualize the
relationship between urinary sodium and self-reported sodium
and help inform our modeling efforts. We used scatterplots of
urinary sodium against self-reported sodium, grouped by time,
with an overlapping linear predicted regression line for each
condition at each time point.

Mixed effects linear regression was used (27) to estimate the
relationship between log measured urinary sodium and log self-
reported sodium over time, and by treatment group, while taking
into account the correlation of measures within a participant over
time. To estimate these models, we used the lme4 and lmerTest
packages in R version 3.5.1 (28–30).

For each trial, we started with an initial model that included
main effects for follow-up time (indicators for 6- and 18-months),
subjects’ self-reported intake, as well as two-way interactions
between self-reported intake and time, time and treatment
assignment, and a three-way interaction between self-reported
intake, time, and treatment. We allow each individual to have a
random intercept, and the (log centered) self-reported values to
have a random slope, and used an unstructured covariancematrix
to model the random effects.

For each person i (i = 1,. . . , N), at time j (j = baseline,
6 months, 18 months; coded categorically), in our defined
treatment group (TX; 0 = control, 1 = treatment) their urine
measured sodium intake is represented by Uij and self-reported
intake is represented by selfij. Our model can be written as:

Uij = β0 + β1∗selfij + β2I(timej = 6)+ β3I
(

timej = 18
)

+ β4I
(

timej = 6
)

∗TXi + β5I
(

timej = 18
)

∗TXi + β6∗selfijI
(

timej = 6
)

+ β7∗selfijI
(

timej = 18
)

+ β8∗selfijI
(

timej = 6
)

∗TXi + β9∗selfijI
(

timej = 18
)

∗TXi + b0i + b1i∗selfij + eij (1)

In Equation (1) I() is an indicator function which takes on either
0 or 1. b0i is the random intercept and b1i is the random slope
for each person’s centered self-reported values, respectively. We
assume correlated random effects where b0i ∼ N (0, τ 20 ), b1i ∼ N

(0, τ 21 ), and residual error terms eij ∼ N(0, σ 2), independent of
the random effects

We excluded a main effect for treatment (TX) from the model
because the coefficient was ∼0. This is expected because we
assume treatment and control groups have similar sodium levels
at baseline, at least in expectation (because of randomization) and
thus reduces an extra parameter.

Including the three-way (self-reported intake by time
by treatment) interactions in this initial model allows the
relationship between urinary sodium and self-reported sodium
to vary over time and across the treatment and control groups.
We include a time by treatment interaction to examine whether
average levels of urinary sodium differ by time and treatment
condition at a fixed level of self-report.

A backwards variable selection approach was used to obtain
a final analysis model. First, the initial saturated model with
the three-way interaction shown in Equation (1) was fit. We
used a significance level of 0.2 to decide whether a variable
should remain in the model. We first tested the two three-way
interactions self-report∗time∗treatment. If at least one coefficient
had a p-value < 0.2, we kept both interaction terms in the model
(i.e., for both time points). If both coefficients had p-value > 0.2,
we dropped them from the model and refit our second-stage
model which omits the 3-way interaction.

In our second-stage model, we tested the significance of the
self-report∗time terms (β6, β7), which measure whether the
relationship between urinary sodium and self-reported sodium
changes over time, assuming any change is constant across the
treatment and control groups. Once again, if both coefficients had
p-values > 0.2, we dropped them from the model and fitted our
final model.

Our final model allows urinary sodium levels to change
across time and treatment status. In this model we test the
time∗treatment interactions (β4,β5). If both coefficients had p-
values > 0.2, we dropped them from the model.

After selecting our final model we then standardized
the regression coefficients. To standardize the exposure—
self-reported intake—we subtracted the pooled (control and
treatment) mean self-reported intake at baseline from all self-
reported values and then divided that result by the standard
deviation of self-reported intake at baseline. The outcome—
urinary sodium—was similarly standardized, using the pooled
mean and standard deviation of urinary sodium at baseline.

RESULTS

Both datasets include people who over and under report by
time and treatment status (Figures 1, 2). The 45-degree line in
each graph represents “perfect” reporting, where measured urine
biomarker equals self-reported sodium. Those who fall above
the line under report, meaning their measured urine sodium
levels were higher than self-reported intake. Conversely, those
below the line over report, meaning their measured urine sodium
levels were lower than their self-reported amounts. The wide
scattering of points suggests a high degree of variability in
reported sodium levels.
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FIGURE 1 | Scatterplots of log urinary sodium vs. log self-reported sodium by time and treatment conditions in TOHP. The solid orange (control) and dashed blue

lines (treatment) are linear smoothers of urinary sodium as a function of self-reported sodium in each treatment condition. 45-degree line represents where urinary

sodium equals self-reported sodium. Units are on the natural log scale.

We overlapped a linear smoother on top of the scatterplot
to highlight some reporting differences between the treatment
and control conditions. These lines should be considered as
preliminary models, as they fit the models separately by time
and group, and thus do not allow formal model comparisons
across time or group, but the relationships between self-
reported and biomarker values appear broadly similar. In both
studies at baseline, the two study conditions are approximately
equal in urinary vs. dietary sodium levels, as expected from
the randomization.

Regression Results
Using the stepwise procedure described above, neither the three-
way interactions in model (1), nor the interactions between self-
reported sodium levels and time in the second-stage model met
the criteria for inclusion in either study. As such, the final model
for both studies only includes the interaction between treatment
and time. This final model is shown in Equation (2).

Uij = β0 + β1∗selfij + β2I(timej = 6)+ β3I
(

timej = 18
)

+ β4I
(

timej = 6
)

∗TXi + β5I
(

timej = 18
)

∗TXi

+ b0i + b1i∗selfij + eij (2)

This model implies that average measured urinary sodium
changes over time (β2,β3), and at different rates in the treatment
group vs. control group (β4,β5) but that there is no differential
change in the slope of self-reported sodium across groups over
time. It is interesting to note that the final regression results in
both datasets were very similar to one another.

In TOHP (Table 2), there was a small but significant decrease
in urinary sodium between baseline and 18 months in the control
group. The control group at 18 months has 0.19 SD lower urinary
sodium than the control group at baseline on the log scale
(β3 =−0.19). There was, on average, a much larger significant
decrease in measured urine sodium between baseline and each
follow up time for the treatment group, for a given level of self-
reported sodium. At 6 months, the treatment group has 0.81 SD
lower urinary sodium than control group (β4 =−0.81), and 0.65
SD lower at 18 months on the log scale (β4 =−0.81).

In PREMIER (Table 2), there was a significant decrease in
average measured urine sodium at 6 months compared to
baseline. Both groups at 6 months had 0.24 SD lower urinary
sodium at baseline on the log scale (β2 = −0.24). However, this
difference was no longer there at 18 months. There were no
significant difference between treatment and control groups at
any point in PREMIER.
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FIGURE 2 | Scatterplots of log urinary sodium vs. log self-reported sodium data time and treatment conditions in PREMIER. The solid orange (control) and dashed

blue lines (treatment) are linear smoothers of urinary sodium as a function of self-reported sodium in each treatment condition. 45-degree line represents where urinary

sodium equals self-reported sodium. Units are on the natural log scale.

TABLE 2 | Standardized regression output from the final regression model.

Parameter from model (2) TOHP PREMIER

Estimate (95%CI) p-value Estimate (95%CI) p-value

Centered self-report β1 0.29 (0.23, 0.34) <0.001 0.21 (0.17, 0.26) <0.001

Month 6 control β2 0.03 (−0.10, 0.16) 0.68 −0.24 (−0.37, −0.10) <0.001

Month 18 control β3 −0.19 (−0.32, −0.06) 0.005 −0.08 (−0.21, 0.05) 0.23

Month 6 Trt. β4 −0.81 (−1.0, −0.63) <0.001 -0.1 (−0.26, 0.06) 0.20

Month 18 Trt. β5 −0.65 (−0.84, −0.47) <0.001 −0.15 (−0.30, 0.0) 0.06

β1: Change in average log urinary sodium (in SD units) due to a 1 SD unit change in log self-reported sodium at baseline for treatment and control (assumed to be same across groups

at baseline because of randomization).

β2: Among the control group members, difference in average urinary sodium (in SD units) between baseline and 6 months on the log scale.

β3: Among the control group members, difference in average urinary sodium (in SD units) between baseline and 18 months on the log scale.

β4: Difference in average urinary sodium (in SD units) between treatment and control groups at 6 months on the log scale.

β5: Difference in average urinary sodium (in SD units) between treatment and control groups at 18 months on the log scale.

If the relationship between urinary sodium and self-reported
sodium did not change over time and by treatment condition,
we would expect β2, β3, β4, β5 = 0. Instead, we find that β2,
β3, β4, β5 < 0, an indication that the relationship between
urinary sodium and self-reported sodium does in fact change
over time and by treatment status. In general, for a given level
of self-report, urinary sodium is lower at follow-up than it is
at baseline.

DISCUSSION

We expand on the current nutrition literature by focusing on the
differential measurement error structure of self-reported intake
which may arise when the treatment group self-reports their
sodium intake with increased or decreased accuracy (31). We
do this by modeling the relationship of urinary sodium as a
function of self-reported sodium, time, treatment condition and
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all possible interactions. This information is important when
designing studies where self-reported intake is a longitudinal
outcome variable, and can help inform measurement error
correction methods that use missing data approaches to correct
for measurement error.

The final models for TOHP and PREMIER look very similar
to one another, with slightly different coefficient values. The
slopes of self-reported sodium did not change as a function of
time or by treatment condition. The lack of significance in the
three-way self-report∗time∗treatment interaction and the two-
way self-report∗time interaction indicates a lack of significant
difference in systematic error in terms of the relationship
between self-reported sodium and urinary sodium between
the treatment arms across all three time points. However,
the intercepts do change by time and/or treatment condition
indicating that measurement error is affected by time and/or
treatment condition. Further, our final models were much
more parsimonious than our initial, fully saturated model.
This result suggests that relatively simple measurement error
correction models that involve only shifts in the intercept of
the calibration model are sufficient to appropriately correct for
measurement error.

In PREMIER, we see a decrease in measured urine sodium—
conditioning on self-report—at 6 months in the control group,
whereas in TOHP we see a much stronger decrease in the
treatment group at 6 and 18 months. These results suggest that
the relationship between biomarker and self-report can differ by
treatment group and/or time, however, these differences may be
study specific.

A failure to take into account differential measurement error
could result in biased estimates of the treatment effect. For
example, in TOHP at 6-months, for a given level of self-reported
sodium, participants in the treatment condition had lower
urinary sodium than did control participants. A measurement
error correction model that did not take this difference into
account would result in an attenuated treatment effect because
this difference in reporting would not be incorporated into the
difference between groups.

Discrepancies in the literature still exist about the relationship
between treatment and self-reporting error. Other studies
have found evidence for a relationship between treatment
assignment and self-report bias, similar to the results of
TOHP. In the Women’s Health Eating and Living Study,
a longitudinal randomized intervention trial with validation
data (32), researchers found dietary intervention affected
measurement error in self-reported outcomes using plasma
carotenoid biomarkers. In the Women’s Health Initiative Dietary
Modification Trial, another dietary intervention trial (33),
participants in the control group under-reported protein intake
at greater amounts compared to the treatment arm. There is thus
evidence that there may be differential measurement error across
time and treatment group, and that this may vary depending on
the dietary component being measured.

One possible solution to examine and address measurement
error across time and treatment groups would be internal
validation datasets with longitudinal intervention aspects. While
this route is resource intensive, it may be worthwhile if it

allows researchers to estimate treatment effects with less bias
and greater power to detect significant effects. A cheaper or
less invasive biomarker would make creating this dataset more
feasible. Another option would be more measurement error
correction methods, which is why it is important to study
how measurement error structures change over time and by
treatment status. Siddique et al. (25) performed sensitivity
analyses to the assumption that measurement error structure
is time invariant, treatment invariant, and time and treatment
invariant. Understanding how measurement error changes over
time and by treatment condition in validation datasets can help
encourage the implementation of these methods and improve the
accuracy of self-reported measures in longitudinal intervention
trials without available biomarker data.

Limitations
One limitation of this study is the amount of missing data, with
the highest being 29% at 18 months in TOHP and the lowest
being 1% at baseline in both studies. The regression models
were fit assuming that the missing data was “missing at random”
(MAR). This means we assume participants with unobserved
dietary sodium information at a given time point will have similar
intake values as the observed participants at the same time after
conditioning on other observed values (34). This assumption
may not hold in all circumstances however, and if violated could
imply differences between the observed and unobserved groups.
Future work could examine how the patterns of missingness may
interact with measurement error structures.

In both studies, the 24-h recalls and the 24-urine samples
were not required to capture the same day of measurement. We
assume that these two measures are capturing estimates of short-
term intake. Even so, the limited number of measurements at
each time point is likely not adequate to capture usual intake.
Estimates from both the biomarker and self-reported data are
therefore subject to additional variability due to day-to-day
variation in diet (1).

The biomarker sodium levels—measured through urine—are
also subject to additional sources of variability. Urinary sodium
excretion may reflect more than 1 day of intake (35). Further, we
divided urinary sodium values by 0.86 under the assumption that
86% of consumed sodium is available in urine (1, 20), this value is
likely to differ by participant, introducing additional uncertainty
in our estimates (36). These sources of variability in 24-h recalls
and urinary sodium would have the result of attenuating the
relationship between self-reported sodium and urinary sodium
in our models.

Conclusion
We found that the measurement error structure in longitudinal
studies can differ by time and treatment condition. When
correcting for measurement error, intervention researchers need
to take these differences into account, either by designing
internal validation studies that are also longitudinal or by
implementing measurement error correction methods that are
explicitly designed to account for these changes in measurement
error. Lifestyle intervention trials that fail to do this may draw
erroneous conclusions of their results.
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