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Abstract

The fragile ecological environment near mines provide advantageous conditions for the

development of landslides. Mine landslide susceptibility mapping is of great importance for

mine geo-environment control and restoration planning. In this paper, a total of 493 land-

slides in Shangli County, China were collected through historical landslide inventory. 16

spectral, geomorphic and hydrological predictive factors, mainly derived from Landsat 8

imagery and Global Digital Elevation Model (ASTER GDEM), were prepared initially for

landslide susceptibility assessment. Predictive capability of these factors was evaluated by

using the value of variance inflation factor and information gain ratio. Three models, namely

artificial neural network (ANN), support vector machine (SVM) and information value model

(IVM), were applied to assess the mine landslide sensitivity. The receiver operating charac-

teristic curve (ROC) and rank probability score were used to validate and compare the com-

prehensive predictive capabilities of three models involving uncertainty. Results showed

that ANN model achieved higher prediction capability, proving its advantage of solve nonlin-

ear and complex problems. Comparing the estimated landslide susceptibility map with the

ground-truth one, the high-prone area tends to be located in the middle area with multiple

fault distributions and the steeply sloped hill.

1. Introduction

Mine landslides are common geological hazards that have caused huge loss of life and property

worldwide. The loose accumulation of waste slag and lack of stable engineering facilities pro-

vide good conditions for development of mine landslides. China is most likely the country

with the largest number of heavy mine tailings ponds, and mining activities have produced

20,000 km2 of mine tailing wastelands [1]. Hence, the restoration and management of mines

are particularly important. Landslide susceptibility modeling (LSM) is considered as a first

procedure towards susceptibility assessment, which is a spatial distribution of probabilities of

landslide occurrences in a given area based on local geo-environmental factors [2]. Predicting
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the occurrence of landslide can avoid potential hazards and is helpful for the sustainable devel-

opment of society [3].

Since the mid-1970s, landslides began to be noticed by many scholars around the world. In

recent years, many approaches and techniques have been proposed for landslide susceptibility

modeling. Xu et al. [4] used the information value model with seven environmental factors to

evaluate debris flow susceptibility. Chen et al. [5] apply information value model using GIS to

produce landslide susceptibility map in the Chencang District of Baoji, China. Jie et al. [6]

used statistical index and logistic regression model to produce landslide susceptibility maps.

Compared with the high subjectivity and difficult reflect nonlinear relationships of statistical

models, data-driven models have become popular because of good generalization capabilities.

With the development of deep learning, machine learning is back in the spotlight again [7,8].

Peng et al. [9] developed a hybrid model based on the support vector machine (SVM) method

to assess landslide susceptibility at the regional scale using multisource data. Binh et al. [10]

compared the SVM with other models in landslide susceptibility assessment of Uttarakhand

area of India. Bui et al. [11] explored the SVM, artificial neural networks (ANN) and intro-

duced a framework for shallow landslide susceptibility. Pradhan et al. [12] used back-propaga-

tion ANN model to assess landslide susceptibility in the Klang Valley area, Malaysia. Conforti

et al. [13] built a model based on ANN model to evaluate landslide susceptibility. Moreover,

Feng et al. [14] applied the information value model (IVM), logistic regression (LR), ANN and

SVM to rainfall-triggered landslide susceptibility mapping.Although there have been many

comparison studies on the advantages and disadvantages of these methods in landslide suscep-

tibility mapping, there are few related LSM analyses in the mining field. Su et al. [15] assessed

LSM in a coal mine area by using SVM, LR, and ANN models. However, the three fitted mod-

els were compared only using the area under the receiver operating characteristics curves

(AUC) and some simple evaluation measures, the uncertainty of the models, which is paid

growing attention in nowadays, was rarely researched in these studies. On the other hand, the

impact of selecting landslide evaluation factors on the study results is also less mentioned.

Machine learning algorithms have the ability in dealing with high-dimensional spaces effec-

tively leading to high classification performances. But they do not give a direct way of analyz-

ing the relevance of contributing features [16]. Feature selection methods can be used in

combination with machine learning methods to eliminate irrelevant features, give simpler,

lower dimensional models while keeping the high classification accuracy.

The main objective of present study is to evaluate and compare the performance of feature

selection arithmetic and three assessment methods, including two machine learning models:

ANN, SVM and one conventional statistical model: IVM, for mine landslide susceptibility

assessment. The uncertainty of the models is analyzed based on the resampling techniques and

the rank probability score. For this reason, we extract evaluation factors from remote sensing

images and spatial data, which are then represented by three methods, respectively. These

models were evaluated using the landslide dataset of Shangli county, China. Analysis of land-

slide data and model construction have been carried out using ArcGIS 10.2 and Tensorflow

1.2 software. The area with high-prone landslide will be identified and the causes will be dis-

cussed in this study.

2. Study area

Shangli County was selected as the study area in this paper. This area is located in the middle

of China, within longitude 113˚430E−114˚040E and latitude 27˚380N−28˚010N, as shown in Fig

1. It belongs to Jiangxi Province, and the total area is about 720 km2. Besides the mountains in

the central region, Shangli has rolling hills and valley plain on north and south sides. The area
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has a distinct four seasons and abundant rainfall. The average annual rainfall is 1300–1700

mm, and the average temperature is 4.8˚C in January and 28.7˚C in July. The study area is rich

in mineral resources and has documented more than 26 minerals. Pingshui river, Lishui river

and other tributaries originate from mountains, run across plains and hills, moisten fertile

lands, and finally flow into the Xiangjiang River. Topographically, the highest elevation of the

study area is 947 m and approximately 45% of the area has a slope angle of less than 20˚. Geo-

logically, the main lithology includes sandstone, shale, and limestone rocks.

Landslide inventory is the basis of landslide susceptibility mapping and also affects the

accuracy of prediction models. A reliable landslide dataset is crucial for landslide susceptibility

modeling. In this study, the landslide inventory was provided by China Geological Survey

(http://www.cgs.gov.cn/). Historical landslide inventory, satellite images, and field survey rec-

ords were used to construct landslides geospatial database. Total 493 locations were prepared

for landslide analysis.

There is no clear agreement on the causes of landslides because of their complexity. How-

ever, some studies have pointed out several conditioning factors related to landslides, such as

topographical, geological, and hydrology conditions. Human activity also has an important

effect on the occurrence of landslides. Therefore, based on previous landslide susceptibility

studies and analysis of the properties of the study area, sixteen factors were prepared initially

for landslide susceptibility assessment: slope angle, slope aspect, elevation, plan curvature, pro-

file curvature, annual rainfall, river density, distance to rivers, lithology, distance to faults,

watery degree, road density, distance to roads, the Normalized Difference Vegetation Index

(NDVI), the Normalized Difference Water Index (NDWI), and the Urban Land-use Index

(ULI).

Slope angle reflects the steepness of mountains and provides a driving force for landslide.

Slope aspect and elevation have a great influence on soil, climate and vegetation types, and are

related factors of landslide occurrence. Geological structures and faults are also the main pre-

disposing factors of landslides. Theoretically, cracks in rock mass provide favorable conditions

for the occurrence of landslides. In addition, roads and rivers can adversely affect stability by

eroding the slopes. Therefore, roads and rivers are also chosen as impact factors. NDVI can

characterize the vegetation coverage of study area. Rainfall is an important triggering factor of

landslides by directly or indirectly reducing the shear strength of rock-soil through physical

and chemical effects on rock-soil [10]. Therefore, the mean annual precipitation was selected

Fig 1. Overview of the study area.

https://doi.org/10.1371/journal.pone.0215134.g001
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as the indicator. Dense plant roots can maintain soil to mitigate the effects of rainfall. With the

increase of NDVI value, the probability of landslide will decrease gradually, and it is also con-

sidered as an important factor of landslide occurrence. The group and classification standard

of these data are shown in Table 1.

Maps of landslide affecting factors have been constructed using available data of the study

area. Specifically, geomorphological factors namely slope angle (Fig 2A), slope aspect (Fig 2B),

elevation curvature (Fig 2C), plan curvature, profile curvature (Fig 2D) have been extracted

from ASTER GDEM with 30-meter resolution (https://asterweb.jpl.nasa.gov/gdem.asp) [17].

Annual rainfall data (Fig 2E) has been calculated using 30 years meteorological data (1984–

2013) from China Meteorological Data Service Center [18] (https://data.cma.cn/en). Road net-

work (Fig 2F) has been digitalized from traffic map of study area (https://www.google.cn/

maps); and then the data of distance to road and road density has been calculated by buffering

road sections in the study area [19]. The lithology (Fig 2G) and geological fault line map (Fig

2H) were also vectorized using ArcGIS software. River network (Fig 2I) has been generated

from DEM by computing flow accumulation, and then distance to river and river density also

has been calculated by buffering river sections [20]. The NDVI (normalized difference vegeta-

tion index, Fig 2J), NDWI (normalized difference water index) and ULI (urban land-use

index) have been extracted from Landsat 8 imagery using ENVI software (https://landsat.usgs.

gov/landsat-8) [21]. The lithology and distance to faults were prepared using a geological map

at a scale of 1:200,000 provided by China Geological Survey (http://www.cgs.gov.cn/).

3. Material and methods

In this study, landslide susceptibility assessment has been carried out in five steps (Fig 3): (1)

collecting and processing data, (2) selecting suitable landslide affecting factors by feature selec-

tion method, (3) using K-folder cross validation to divide dataset for model training and

Table 1. Landslide affecting factors and their classes.

Type Factor Class

Morphological Slope angle (1)<10; (2)10-20; (3)20-30; (4)30-40; (5)>40;

Slope aspect (1)N; (2)NE; (3)E; (4)SE; (5)S; (6)SW; (7)W; (8)NW; (9)Flat

Elevation (m) (1)<100; (2)100-200; (3)200-300; (4)300-400; (5)400-500; (6)>500;

Plan curvature (1)<-0.746; (2)-0.746–0.102; (3)0.102–0.783; (4)>0.783;

Profile curvature (1)<-0.910; (2)-0.910–0.007; (3)0.007–0.869; (4)>0.869;

Hydrological Annual rainfall

(mm)

(1)1550-1600; (2)1600-1650; (3)1650-1700; (4)1700-1750; (5)1750-1800;

River density (1)0-0.166; (2)0.166–0.477; (3)0.477–0.798; (4)0.798–1.154; (5)>1.154;

Distance to rivers (1)0-50m; (2)50-100m; (3)100-150m; (4)150-200m; (5)200-250m; (6)250-300m;

(7)>300m;

Geological Lithology (1) Cretaceous; (2) Late Yanshanian; (3) Early Yanshanian; (4) Triassic; (5)

Permian; (6) Carboniferous; (7) Devonian; (8) Mesoproterozoic Era;

Distance to faults (1)<200; (2)200-400; (3)400-600; (4)600-800; (5)>800;

Soil watery

degree

(1)high; (2)middle; (3)low

Other Road density (1)<1.015; (2)1.015–1.639; (3)1.639–2.316; (4)2.316–3.513; (5)>3.513;

Distance to roads (1)0-50m; (2)50-100m; (3)100-150m; (4)150-200m; (5)200-250m; (6)250-300m;

(7)>300m;

NDVI (1)<0.2; (2)0.2–0.4; (3)0.4–0.6; (4)0.6–0.8; (5)0.8–1.0;

NDWI (1)<0.2; (2)0.2–0.4; (3)0.4–0.6; (4)0.6–0.8; (5)0.8–1.0;

ULI (1)<0.2; (2)0.2–0.4; (3)0.4–0.6; (4)0.6–0.8; (5)0.8–1.0;

https://doi.org/10.1371/journal.pone.0215134.t001
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Fig 2. Different affecting factor layer.

https://doi.org/10.1371/journal.pone.0215134.g002
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testing, (4) constructing and comparing three landslide models, (5) developing landslide sus-

ceptibility map of study area. The evaluation measure system contains the receiver operating

characteristic curve (ROC), rank probability score and the area percentage of each landslide

Fig 3. Workflow of the landslide susceptibility analysis.

https://doi.org/10.1371/journal.pone.0215134.g003

Fig 4. The structure of artificial neural network model.

https://doi.org/10.1371/journal.pone.0215134.g004
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susceptibility mapping. The objective is to evaluate and compare the comprehensive perfor-

mance of feature selection arithmetic and three assessment methods for mine landslide suscep-

tibility assessment. The area with high-prone landslide will be identified and the causes will be

discussed as a supplement.

3.1 Methodology

3.1.1 Artificial neural network. ANN is a nonlinear computational model that imitate

the structure and function of human nervous system [15]. A neural network consists of a large

number of artificial neural connections that can be used to estimate or approximate functions.

In its classic form, ANN usually contains two layers of input and output layers, and feature

transformation is realized by the addition of hidden layers. In this paper, the structure of ANN

model is shown in Fig 4.

BP neural network is the most commonly used neural network architecture. The back-

propagation algorithm repeats a cycle, including signal propagation and weight update. The

signal is propagated forward through the network, layer by layer. Then use the loss function to

compare the result with expected output. The error values would be propagated back from the

output layer to the input layer, and adjust the weight and threshold of each neuron according

to an associated error value.

The learning rate is one of the most important hyper-parameters of ANNs that affect model

performance. In present study, the learning rate is calculated by the following formula [22]:

ZðnÞ ¼ Zðn � 1Þ � expðlogðZmin=ZmaxÞ=dÞ; ð1Þ

where η(n) is the learning rate in the nth times training; ηmin is the minimum value of the

learning rate; ηmax is the maximum value of the learning rate, and d is the delay rate.

In this study, the ANN model consists of an input layer, two hidden layer and one output

layer. Each neuron in the input layer represents various evaluation factors, while four output

layer neurons represent different levels of mine landslide susceptibility, the greater the area

affected by the landslide, the higher the landslide sensitivity index is. The neural network is

made up by adjusting many parameters including: the learning rate, the momentum factor

coefficient, the number of training epochs (iterations) and the Root Mean Square Error

(RMSE). The learning rate is a constant controlling the adjustment of the weights associated

with the connections, for this analysis was set to 0.01. The momentum factor prevents prob-

lems of divergence during research for minimum errors, and was used to accelerate conver-

gence. It was chosen to be 0.5. The number of iterations was set to 8,000, and the RMSE value

used for the interrupt of the training phase was set to 0.1.

3.1.2 Support vector machine. SVM is a set of supervised learning methods used for clas-

sification, regression and outliers detection [23, 24]. Given labeled training data, the method

outputs an optimal hyperplane and classifies new examples [25]. When the input variable is

linearly divisible, a method for solving the maximum interval is given, and when the input var-

iable is non-linearly divisible, the original training data set is mapped into a high dimensional

feature space by using nonlinear transformation. Then, the SVM model can find an optimal

separation hyperplane in the new dimension. Assuming samples (xi,yi):i = 1,2,� � �,n, the opti-

mal hyperplane can be solved by the following function:

min
1

2
kw!k2

þ C
Pn

i¼1
xi

� �

yiðw
!� x!þ bÞ � 1 � xi

xi � 0; i ¼ 1; 2; � � � ; n

; ð2Þ

8
>>>><

>>>>:
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where w is the weight vector that determines the orientation of the hyper plane, b is the bias, ξi
is the positive slack variables for the data points that allow for penalized constraint violation, C

is the penalty parameter that controls the trade-off between the complexity of the decision

function and the number of training examples misclassified. The function can be converted

into an equivalent dual problem based on the Wolf duality theory:

maxð
P

iai �
1

2

P
i;jaiajyiyjðxi

!� xj
!ÞÞ

s:t:
P

iaiyi ¼ 0; 0 � ai � C
; ð3Þ

8
<

:

where αi are Lagrange multipliers, C is the penalty. Then, the decision function, which will be

used for the classification of new data, can be written:

f ðxÞ ¼ sgnð
Pn

i¼1
yiaiKðxi; xjÞ þ bÞ; ð4Þ

where K(xi,xj) is the kernel function. The radial basis kernel was adopted as kernel function for

SVM model in this study.

SVM method also can be used to solve multi-classification problems, commonly including

one-against-one (OAO) and one-against-all (OAA) strategies [26]. The one-against-all

approach involves a number of binary classifiers, one for each class. Each binary classifier tries

to separate its correspondent class from the other ones, and the multiclassifier output is acti-

vated for the class whose binary classifier gives the greatest output amongst all. The one-

against-one approach on the other hand constructs a classifier for each pair of classes, resulting

in a total of N(N-1)/2 classifiers. Each classification gives one vote to the winning class and the

point is labeled with the class having most votes [27].

3.1.3 Information value model. The IVM is a statistical method based on information

theory. In this model, the possibility of landslides occurrence is affected by the information

value of factors. The information value I(xi,H) of each landslide predisposing factor

xi(i = 1,2,. . .,n) can be expressed as follows [10]:

Iðxi;HÞ ¼ ln
Ni=N
Si=S

; ð5Þ

where H represents the likelihood of landslide, S is the total number of study units from the

study area, N is the total area of landslides in the study area which is the sum of area of all land-

slide points in the study area, Si is the number of the study units with the presence of predis-

posing factor xi, and Ni is the total area of landslides with the presence of predisposing factor xi
which is the sum of area of the landslide points with the presence of predisposing factor xi.

Therefore, the total information I of each study unit can be calculated as the sum of the

information values of all predisposing factors.

I ¼
PN

I¼1
Iðxi;HÞ ¼

PN
I¼1

ln
Ni=N
Si=S

; ð6Þ

when I<0, the possibility of landslide occurrence is lower than average; when I = 0, the possi-

bility of landslide is equal to average; and when I>0, the possibility of landslide is higher than

average. The larger the information value, the greater the possibility of landslide.

3.1.4 Uncertainty analysis method. In this research, the uncertainty analysis of the mod-

els was based on the bootstrap and the rank probability score (RPS). Bootstrap is a popular sta-

tistical method that are suitable for small sample. It is a random resampling technique [28]

that can expand small samples into large samples, and it will be helpful for calculating the clas-

sification probability of each point. Traditional statistical methods like ROC are usually used
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to assess the classification results right or not, but sometimes, a classification result is neither

right nor wrong, it is uncertainty within a range. The rank probability score is a suitable mea-

sure for the uncertainty of classification [29]. It can calculate the cumulative error between the

predicted category and the actual category. For K categories, the RPS defined is as follows:

RPS ¼
XK

k¼1

ðFk � OkÞ
2
¼ ðF � OÞ2; ð7Þ

where F and O are cumulative predicted and actual vectors. Fk and Ok are defined as
Xk

i¼1

Fi

and
Xk

i¼1

Oi, Fi is the probability that the point is classified into i category, if the actual category

is i, category, Oi = 1, if not, Oi = 0. The closer the RPS is to 0, the better the classification result.

In addition to RPS, RPSS is also used to estimate the performance of models. RPSS is calcu-

lated by RPS of predicted classification result and RPS of original data:

RPSS ¼ 1 �
RPSm
RPSo

; ð8Þ

where RPSm and RPSo are average RPS values of predicted model and original data. The posi-

tive RPSS value indicated that the predicted model is superior to the original model.

3.2 Landslide inventory and conditioning factors

Sixteen geo-environmental factors have been initially considered to have an impact on occur-

rence of landslides in the present study. However, the contribution of each factors to landslide

susceptibility models are different. Therefore, it is necessary to evaluate the predictive capabil-

ity of these landslide affecting factors to eliminate irrelevant or less important factors for fur-

ther analysis.

3.2.1 Data multicollinearity analysis. Multicollinearity analysis can be used to indicate

which factors are redundant with respect to others and improve the accuracy of models.

In statistics, the variance inflation factor (VIF) is the reciprocal of tolerance in a model

with multiple terms, divided by the variance of a model with one term alone. The VIF and

tolerances are both widely used to measure the multicollinearity among factors, a Toler-

ance of less than 0.2 or a VIF above 5 all indicates a multicollinearity problem [13]. As

shown in Table 2 (Before), there is a collinearity between plan curvature and profile cur-

vature. In addition, the VIF value of NDVI, NDWI and ULI are also greater than 5. There-

fore, eliminate less important factors needs to be consider further to reduce collinearity

between variables.

3.2.2 Elimination of the less important factors. As mentioned in Section 3.2.1, we need

to eliminate some factors to reduce the multiple collinearity. Obviously, plan curvature and

profile curvature are grouped as indicators of terrain fluctuation. NDVI, NDWI and ULI also

are grouped as indicators for describing land use. In this paper, we use information gain ratio

as the basis of judgment for factor selection. Impurity of information can be measured by

information entropy to quantify the uncertainty of predicting the value of the goal variable.

The information gain is the change in information entropy H from a prior state to a state that

takes some information as given:

IGðT; aÞ ¼ HðTÞ � HðTjaÞ; ð9Þ

Mine landslide susceptibility assessment considering the contribution of affecting factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0215134 April 11, 2019 9 / 18

https://doi.org/10.1371/journal.pone.0215134


In this experiment, we use the following formula to calculate.

HðTÞ ¼ �
PK

k¼1
P logP; ð10Þ

H Tjað Þ ¼ �
PK

k¼1

jDkj

jDj
H Tk
� �

: ð11Þ

Each evaluate factor was divided into K categories according to Table 1. P in Formula 10

represents the proportion of different mapping level to all landslide records, |D| is the all land-

slides record number, and |Dk| is the number of categories K of one of these evaluation factors.

However, in Formula 11, H(Tk) was use the proportion of different mapping level to this cate-

gories number.

Information gain ratio (IGR) is a ratio of information gain to the intrinsic information.

IGR is widely used in high dimensional data and is an effective measure to determine the rele-

vance of feature for classification. Not all features contribute equally to landslide occurrence.

The feature with a higher value of IGR indicates a higher prediction ability of the models. The

importance of features towards decision making in our model is done by evaluating them with

the IGR measurement [30]. Hence these features can be sorted in the order of their contribu-

tion by listing scores of IGR.

The IGR of each factor is shown in Fig 5 and the less important factors (plan curvature, ULI

and NDWI) in multicollinearity factor pairs were eliminated to reduce multicollinearity. As

shown in Table 2 (After), only 13 factors were used for model construction in the end.

4. Discussions

4.1 Landslide susceptibility modeling

In the present study, two machine learning models of ANN and SVM and one statistical

model of IVM were applied to assessing the landslide susceptibility. After eliminating the less

important features, thirteen features, namely slope angle, slope aspect, elevation, profile

Table 2. The variance inflation factors and tolerances multicollinearity analyze of factors.

Factor Before After

Tolerance VIF Tolerance VIF

elevation 0.641 1.559 0.642 1.559

slope aspect 0.944 1.060 0.956 1.046

slope angle 0.708 1.412 0.709 1.411

plan curvature 0.085 11.744 - -

profile curvature 0.086 11.656 0.601 1.664

mean annual rainfall 0.884 1.131 0.900 1.111

distances to faults 0.842 1.188 0.849 1.178

distance to rivers 0.494 2.026 0.489 2.043

distance to roads 0.730 1.370 0.494 2.025

river density 0.488 2.047 0.743 1.345

road density 0.703 1.423 0.707 1.414

NDVI 0.015 67.736 0.809 1.235

ULI 0.010 95.424 - -

NDWI 0.043 23.519 - -

lithology 0.723 1.383 0.736 1.359

soil watery degree 0.810 1.235 0.815 1.227

https://doi.org/10.1371/journal.pone.0215134.t002
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curvature, mean annual rainfall, river density, distance to rivers, lithology, distances to faults,

soil watery degree, road density, distance to roads and NDVI were used as inputs of landslide

modeling.

The landslide inventory contains a total of 493 records. Based on coordinates of mines and

landslides, the distance between them is calculated and the number of landslide disasters

around each mine is counted. According to the number of disasters, the landslide risk grades

are divided into four categories, which are high, moderate, low and very low in order. Due to

the data imbalance of different categories, in the experiment, oversampling was performed on

minority categories, and random noise was added to minority categories to enhance model

robustness. In order to make full use of data, the landslide models were constructed using the

aforementioned dataset with 5-fold cross validation. For each round, 80% of the data is used

for training and 20% for testing. The training dataset is used to train landslide models whereas

the testing dataset is utilized to validate the performance of the landslide prediction.

In this study, the ANN and SVM model were constructed by using TensorFlow (https://

www.tensorflow.org/). For SVM, after many trial and error processes, we obtained the optimal

parameters of the model. Polynomial kernel function was selected as kernel function, and the

Penalty coefficient C is 1.0, the gamma is the reciprocal of the number of features, the degree is

3 and the coefficient of kernel function is 0.5.

The information value of factors was calculated according to Eq (5). Then, ArcGIS map

algebra tool was used to cover all landslide factors to calculate the total information. Finally,

Jenks natural breakpoint method was used to reclassify the total information to generate land-

slide sensitivity map.

4.2 Model validation and comparison

As a useful tool, the receiver operating characteristic curve (ROC) has been widely used to vali-

date the performance of landslide susceptibility models. The ROC usually has a true positive

rate on the Y-axis, with a false positive rate on the X-axis at various threshold settings. The

false positive value along the x-axis is the proportion of the area divided into landslide prone

areas but is actually not (AUC) ranging from 0.5 to 1 [31]. Having a maximum AUC close to 1

indicates that the model produces excellent results. In contrast, an AUC value close to 0.5

Fig 5. Features sorted in the order of scores of information gain ratio.

https://doi.org/10.1371/journal.pone.0215134.g005

Mine landslide susceptibility assessment considering the contribution of affecting factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0215134 April 11, 2019 11 / 18

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1371/journal.pone.0215134.g005
https://doi.org/10.1371/journal.pone.0215134


means poor results. It is generally considered that if the AUC of the model is greater than 0.7,

the model has high accuracy.

The ROC curves in Fig 6 show the training and testing performance of different methods in

the landslide modeling. The results show that all applied models have shown good capability

for spatial prediction of landslides. The machine learning models of SVM and ANN achieved

good performance in both of the training and testing dataset assessment. Out of these, the

ANN model has the highest performance, followed by the SVM and IVM model. The mean

AUC value of three models is 0.867, 0.829 and 0.805, respectively in training dataset, 0.832,

0.815 and 0.763, respectively in testing dataset. The ANN model achieved higher prediction

capability, because it is a powerful data-driven, self-adaptive, and flexible computational tool

to solve nonlinear and complex problems.

From Fig 6 We can draw the following points:

1. Based on 13 evaluation factors, all three models showed good performance in landslide sus-

ceptibility assessment. The AUC values of ANN, SVM and IVM were 0.867, 0.829 and

0.805 respectively on the training dataset. Even though the AUC value of testing dataset is

generally lower than training dataset, it still remains around 0.8;

2. Obviously, ANN model is superior to the other two models in both training data set and

verification data set, followed by SVM, and IVM. Among these method, it can be seen that

the ANN model has a good fitting effect on the non-linear function relations such as land-

slide susceptibility evaluation;

3. The ROC curves of three models have similar changes, that is, if one of these model’s AUC

values increases, the rest models will also increase. The ANN model starts with the lowest

TPR and is more evident in the verification data set, but after a period of time it can surpass

the other two models and give priority to higher levels, reflecting its rapid adjustment

ability.

The Chitupi mine landslide is located in Changping town, Shangli city. The stability of the

slope is poor, and the continuous heavy rainfall is very easy to induce the medium landslide.

According to the result of field survey, this slope has poor stability and is highly dangerous

under continuous heavy rainfall. From Fig 7, we can see that the prediction results also prove

Fig 6. The ROC curves of ANN, SVM and IVM in the training and testing datasets.

https://doi.org/10.1371/journal.pone.0215134.g006
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the effectiveness of these models. The constructed models were applied to calculating landslide

susceptibility indexes for all pixels in the study area. Thereafter, landslide susceptibility maps

were prepared by ArcGIS and classified into four classes with ratings of very low, low, moder-

ate, and high susceptibility, which is shown in Fig 8.

As can be seen from Fig 8, the actual distribution of Y1, Y2 and Y3 with more landslide

disasters has been well identified in the three estimated models. For the Y1 region, the fault

line is densely distributed, and the geological conditions are not stable. In the Y2 region, the

terrain is steep, which is not conducive to soil and water conservation, and is prone to land-

slide under heavy rainfall conditions. For the Y3 region, there are more rivers distributed, and

the erosion of the river also makes these areas prone to landslides. On the other hand, there

are two regions (N1, N2) in the estimated landslide susceptibility map that do not match

ground-truth one. The possible reason for this result is that the rock strata in these areas are

relatively hard, and the road network is sparse, which has little damage to geological structure,

thus affecting the effect of the model.

Fig 9 is obtained by calculating the area percentage of each landslide susceptibility mapping

level under different models. Compared with other two models, the ANN model can identify

larger very-low risk areas and smaller high-risk areas. This would save a lot of risk prevention

costs in specific engineering practices. The IVM model tends to overestimate the risk of a

region.

Comparing the estimated landslide susceptibility map with the ground-truth one, it

can be found that the high-prone area has multiple fault distributions. These areas are

mostly distributed in the middle of the study area. The distribution of minerals is often

controlled by fault structure, and the place where the faults suddenly change is a good

place for mineralization. Therefore, these areas have a high susceptibility to mine land-

slides. In the southern part of study area, although the roads are dense, and the vegetation

coverage is less, the landslide disasters are not easy to occur because of the gentle terrain

and good economic development.

4.3 Model uncertainty analysis

The RPS and RPSS of SVM and ANN are shown in Table 3. The IVM model did not perform

as well as ANN and SVM referring to AUC values, so it does not participate in the comparison.

RPSm represents the average RPS values of the ANN and SVM assessment model and RPSo is

Fig 7. The Chitupi mine landslide estimated result in different models.

https://doi.org/10.1371/journal.pone.0215134.g007
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reference model. The closer the RPS is to 0, the better the classification result. A positive RPSS

value indicates that the forecast model is superior to the reference forecast. Form the results, it

can be found that ANN has a lower RPS value than SVM which indicates that the classification

results of ANN have a smaller range of uncertainty and are more reliable. Compare to the val-

ues of RPSS, the ANN model and SVM model are both perform better than reference model,

and ANN model is superior to the SVM model and original model.

Fig 8. Comparison of actual distribution of landslides with three estimated models.

https://doi.org/10.1371/journal.pone.0215134.g008
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5. Conclusions

Mine landslide susceptibility assessment is a key step in reducing disaster risk in landslide-

prone areas, especially for the restoration of abandoned mines. In this study, Shangli county

was taken as a case study where more landslide disasters occurred. This study applied three

widely used models including ANN, SVM and IVM to mine landslide susceptibility mapping

under totally thirteen affecting factors.

Firstly, models based on machine learning methods show better performance than tradi-

tional statistical model. Both the ANN and SVM models have an AUC value of over 80% on

training and testing datasets. Overall, the ANN model has best performance, followed by SVM

and IVM. This has also been observed by other landslide studies [32]. The IVM model is sim-

ple to calculate but does not have good generalization capabilities and tends to overestimate

the landslide susceptibility to indicate a higher level. In contrast, the ANN model requires mul-

tiple search for optimal parameters.

Obviously, the predictive capability of evaluation factors affects the performance of predic-

tive models. This paper shows that there are only thirteen factors have better predictive capa-

bility hence these factors have been used for model construction. Plan curvature and profile

curvature, NDWI and ULI can be retain one for each group because of the strong correlation,

which can be guessed from the similarity of their formulas. This can provide a reference for

work of others.

For the study area, it can be seen from the landslide susceptibility map that the northern

part of study area is highly prone to mine landslide disasters due to geological conditions.

Although the population activity is dense in the southern area, the susceptibility is still low. As

an attempt, although there are uncertainties, it is valuable for engineering practice to get

smaller high-risk areas based on optimized assessment model.

In recent years, deep learning technology has developed rapidly. Due to its extremely high

classification accuracy, it has been successfully applied in many fields, like human perceptions

and environmental simulation [33,34]. In the landslide susceptibility research, deep learning

method has been proved to be a reliable method. Xiao et al [35]. compared the performance of

Fig 9. Percentage of each level mapping under different models, VL: Very low, L: Low, M: moderate, H: High.

https://doi.org/10.1371/journal.pone.0215134.g009

Table 3. The RPS and RPSS values of ANN and SVM.

RPSm RPSo RPSS

ANN 0.455 0.604 0.25

SVM 0.526 0.604 0.13

https://doi.org/10.1371/journal.pone.0215134.t003
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deep learning method Long Short Term Memory (LSTM) with the traditional machine learn-

ing method Decision Tree (DT), SVM, Back Propagation neural network (BPNN) in the land-

slide susceptibility assessment. Huang and Xiang [36] have found that the deep learning

method deep belief network has a comparable classification accuracy to BPNN when landslide

points were more than 1000. In addition, in the landslide susceptibility study, the identification

of landslide points is one of difficult problems, which often requires manual detection in the

field and costs a lot. The high-precision image classification ability with deep learning method

can help identify the research area to make the experiment more convenient. In the next phase

of work, we will focus on the application of deep learning in landslide susceptibility

assessment.
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