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Abstract: The protein phosphatase-2A (PP-2A), one of the major phosphatases in eukaryotes, is a heterotrimer, consisting of a scaffold 
A subunit, a catalytic C subunit and a regulatory B subunit. Previous studies have shown that besides regulating specific PP-2A activity, 
various B subunits encoded by more than 16 different genes, may have other functions. To explore the possible roles of the regulatory 
subunits of PP-2A in vertebrate development, we have cloned the PR55/B family regulatory subunits: β and δ, analyzed their tissue 
specific and developmental expression patterns in Goldfish (Carassius auratus). Our results revealed that the full-length cDNA for 
PR55/Bβ consists of 1940 bp with an open reading frame of 1332 nucleotides coding for a deduced protein of 443 amino acids. The full 
length PR55/Bδ cDNA is 2163 bp containing an open reading frame of 1347 nucleotides encoding a deduced protein of 448 amino acids. 
The two isoforms of PR55/B display high levels of sequence identity with their counterparts in other species. The PR55/Bβ mRNA 
and protein are detected in brain and heart. In contrast, the PR55/Bδ is expressed in all 9 tissues examined at both mRNA and protein 
levels. During development of goldfish, the mRNAs for PR55/Bβ and PR55/Bδ show distinct patterns. At the protein level, PR55/Bδ 
is expressed at all developmental stages examined, suggesting its important role in regulating goldfish development. Expression of the 
PR55/Bδ anti-sense RNA leads to significant downregulation of PR55/Bδ proteins and caused severe abnormality in goldfish trunk and 
eye development. Together, our results suggested that PR55/Bδ plays an important role in governing normal trunk and eye formation 
during goldfish development.
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Introduction
The reversible phosphorylation of proteins is an impor-
tant posttranslational modification in eukaryotes1–3 
and an essential mechanism regulating functions of 
more than 30% total cellular proteins.4,5 The protein 
phosphatase-2A (PP-2A) is one of the major phos-
phatases in eukaryotes, contributing to more than 
50% serine/threonine phosphatase activity and par-
ticipating in many cellular processes such as signal 
transduction, gene expression, neurotransmission, cell 
cycle control, cell transformation and senescence.1–7 
In this regard, our recent studies have indicated that 
PP2A is associated with carcinogenesis8,9 and is highly 
regulated in ocular tissues.10–12

The holoenzyme of PP-2A is a heterotrimer, con-
sisting of a scaffold A subunit, a catalytic C subunit 
and a regulatory B subunit.13–16 While the A and C 
subunits exist in two isoforms encoded by different 
genes, the B subunits exist in approximately 26 dif-
ferent isoforms and are encoded by four subfamilies 
of genes (B or PR55, B’ or PR61, B’’ or PR72, and 
B’’’ or PR93/PR110) and each family consists of mul-
tiple genes, with each gene generating multiple splice 
variants.13,14 These B subunits exhibit differential 
subcellular localization as well as tissue-specific and 
developmentally-regulated expression patterns. Vari-
ations in their expression pattern and cellular localiza-
tion of B subunits provide substrate specificity, which 
is thought to be the molecular basis for the appropriate 
regulation of numerous cellular processes.1,2,5–7,13,14

The major function of the regulatory subunits for 
PP-2A is to provide specific PP-2A activity in dif-
ferent cellular compartments and different tissues of 
organisms.1,2,5–7,13,14 In addition, these different regula-
tory subunits may have other functions independent of 
PP-2A. For example, SG2NA, a member of the B’” or 
PR93/110 family, has been shown to act as a molecu-
lar scaffold to promote localization of the estrogen 
receptor to the plasma membrane and organize the 
ER-eNOS membrane signaling complex in endothe-
lial cells.17 In addition, it is found that the Drosophila 
orthologue member of SG2NA named CKA can form 
a physical complex with several kinases including 
HEP, BSK, and components of AP-1 family includ-
ing JUN and FOS.18,19 To further explore the indepen-
dent functions of the regulatory subunits of PP-2A, 
we have cloned two members of the PR55/B family 
from goldfish, established their tissues specific and 

developmental expression patterns. Moreover, we 
have designed antisense expression construct to 
block translation of the δ isoform and demonstrated 
that injection of the anti-sense RNA from PR55/Bδ 
significantly downregulates the expression of this 
regulatory subunit at several developmental stages. 
Furthermore, inhibition of PR55/Bδ expression via 
anti-sense RNA-mediated blockage of translation 
caused severe phenotype of the developing goldfish 
embryos including microphthalmia (small eye) and 
abnormal trunk. Thus, our results demonstrate that 
the PR55/Bδ plays an important role in regulating 
vertebrate organogenesis.

Materials and Methods
Animals
The goldfish samples at the age of 6 months to one year 
were collected from the Experimental Fish Culture 
Facility of the Key Laboratory of the Educational 
Ministry of China in Hunan Normal University. And 
the fertilization was conducted at the laboratory.

Chemicals
The RNA extraction kit was purchased from Omega, 
the reverse transcription kit from Invitrogen, Inc, the 
protein size marker from Fermentas. The 5′ and 3′ 
RACE cloning kit was obtained from the Clontech, 
Inc. The PCR Taq polymerase and the PMD18-T vec-
tor were purchased from Takara Inc. The antibodies 
used for this study were purchased from Santa Cruz 
Biotechnology and from Sigma, Inc. Gel purifica-
tion kit and all the oligo primers were provided by 
Sangon, Inc.

Collection of tissues and embryos
Goldfish were sacrificed through removal of the gill 
tissue. Various tissues including liver, spermary, ovary, 
brain, kidney, heart, muscle, gill and fin were quickly 
dissected out on ice and then frozen under liquid nitro-
gen for homogenization, first with a mortar and then 
with 1 ml syringe (18.5 G and 23.5 needles passed). 
Artificial fertilization was conducted in Hoff’s solu-
tion (0.1 g CaCl2, 0.05 g KCl, 3.5 g NaCl dissolved 
in 1000 ml distilled H2O). The fertilized egg mem-
branes were removed with 0.4% pancreatic protease 
and the de-membraned eggs were allowed to develop 
at 22 °C in Hoff’s solution. Under microscopic exam-
ination, the developing embryos at stages of 2-cell, 

http://www.la-press.com


Role of PP2A-Bd in Goldfish Development

Gene Regulation and Systems Biology 2010:4	 137

multiple-cell, blastula, gastrula, neurula, optical 
vesicle, brain differentiation, muscle differentiation, 
heart beat, eye pigmentation, body pigmentation and 
hatching larvae were collected and frozen under liq-
uid nitrogen. The frozen embryos were homogenized 
for extraction of total RNA and proteins as described 
below.

Molecular cloning of the PR55/B  
family of PP2A
The two cDNAs for PR55/Bβ/δ were cloned 
using 5′-RACE and 3′-RACE as previously 
described.9,20 Briefly, the specific primers used to 
clone these cDNAs were designed using Jellyfish 
and prime 5.0  softwares and were shown in 
Table 1. The homology-based reverse transcriptase-
polymerase chain reaction (RT-PCR) cloning was 
used to isolate partial B subunit cDNAs from total 
adult goldfish brain RNA. Additional 5′ sequences for 
B subunits were obtained by 5′ rapid amplification 
of cDNA ends (5′-RACE) from goldfish brain RNA 
according to instructions supplied with the Marathon 
cDNA amplification kit (Clontech, Inc.). 3′ Race was 
performed using 3′-RACE kit.

Reverse transcription-linked  
polymerase chain reaction (RT-PCR)
The reverse transcription was conducted with a kit 
from Invitrogen (Invitrogen #18085-019) as previ-
ously described.8,9,20–22 Briefly, 2 µg of total RNA were 
used in a total reaction volume of 20 µl and 2 µl of 
the reverse transcription reaction mixture were used 
for PCR reaction. To detect the mRNA expression 
of PR55/Bβ/δ, three pairs of specific primers as well 
as the β-actin primers (Table 1) were used. For PCR 
amplification, both specific primers and β-Actin prim-
ers were added into the same reaction at the begin-
ning of PCR, and the PCR reaction was continued 
30 cycles. At the end of each reaction, the PCR prod-
ucts were separated by agarose gel (1.5%) electro-
phoresis and photographed under UV illumination.

Western blot analysis
Western blot analysis was conducted as previously 
described.8–10,23 Briefly, 50 or 100 µg of total proteins 
from various tissues and each developmental stage of 
embryos were separated by 10% SDS-polyacrylamide 
gel electrophoresis and transferred into supporting 
nitrocellulose membranes (Bio-Rad). The protein 
blots were blocked with 5% milk in TBS (10 mM Tris, 
pH 8.0; 150 mM NaCl) for 60 minutes at normal room 
temperature. Then, each blot was incubated with the  
anti-B55β/δ antibodies (Santa Cruz Biotechnology) at 
a dilution of 1:100 in 5% milk prepared in TBS over-
night at 4 °C with mild shaking. After washing 3 times 
with TBS-T (TBS with 0.05% Tween-20), 15 minutes 
for each, the blot was incubated with a secondary 
antibody (anti-rabbit IgG from Santa Cruz Biotech-
nology) at a dilution of 1 to 1000 for 45  minutes. 
After washing twice with TBS-T and once with TBS 
(15 minutes each), the PR55 proteins were detected 
with an enhanced chemiluminescence detection kit 
according to the instruction manual from Amersham.

As reference, after stripping the previous anti-
body, the blot was re-hybridized with the anti-β-actin 
primary antibody (1:2000 from Sigma, Inc.). After 
washing with TBST 3 times, the blot was incubated 
with the anti-mouse IgG (secondary antibody from 
GE Health Care, Inc. diluted in 1:1000). After wash-
ing with TBST twice times and TBS one time, the 
β-actin level was detected as described above.

Quantitation of RT-PCR  
and Western blot results
After RT-PCR, the relative density of each specific 
band verse β-actin control band was quantitated as 
described before.24 Both RT-PCR and Western blot 
results in the x-ray films were analyzed with the 
Automated Digitizing System from the Silk Scientific 
Corporation. The relative expression levels (fold) 
were calculated by dividing the total pixel from each 
band under investigation by the total pixel from the 
corresponding β-actin band. The quantitative data 

Table 1. Oligo primers used for RT-PCR analysis to detect expression of PR55/Bβ/δ.

Forward primer Reverse primer

PR/Bβ 5′-CCCCAGTAATCGCTCCTTCT-3′ 5′-AACTTTGCGTGGCTTGAGAAT-3′
PR/Bδ 5′-CGCATCAACCTGTGGCACTT-3′ 5′-GGTCTCAACGGGTCGATTCTC-3′
b-actin 5′-CCGTGACCTGACTGACTACCTC-3′ 5′-ATACCGCAAGATTCCATACCC-3′
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averaged from three independent experiments and 
statistics were analyzed by students’ t-test.

Preparation of antisense expression 
construct for PR55/Bδ
The full-length cDNA for PR55/Bδ was cloned into 
the pEGFP vector in a reverse direction so that the 
anti-sense strand will be expressed under the direc-
tion of the viral promoter as previously described.25 
The pEGFP vector alone was used as mock.

Injection of plasmids and observation  
of the injected embryos development
Both vector and anti-sense expression vector were 
amplified in DH-5α, and then purified through maxi-
mal plasmid purification kit (Qiagen) according to 
the instruction manual. The 500 ng of purified plas-
mids in 0.05 µl were injected into each fertilized egg 
using a microinject developed by Shanghai Instru-
ment, Inc. The vector-injected embryos and the anti-
sense expression construct-injected embryos were 
allowed to develop at 22 °C in Hoff’s solution. The 
wound embryos were removed from the experiments. 
The phenotypes of each developmental stage were 
recorded with microscopy (Table 2).

Results
Molecular cloning of the PR55/Bβ/δ 
cDNAs of PP-2A from goldfish
Using a molecular strategy as previously described,9,20 
the full-length cDNAs for PR55/Bβ and PR55/Bδ were 
isolated. These cDNA sequences were deposited to gene 
bank database with the access numbers of FJ356012 
and FJ356011 for PR55β and PR55δ, respectively.

Sequence analysis revealed that the full-length 
PR55/Bβ cDNA consists of 1940 bp, with an open read-
ing frame of 1332 nucleotides coding for a deduced 

protein of 443 amino acids (Fig. 1A). Amino acid 
sequence alignment showed that goldfish PR55β 
shares high levels of identity to those from African 
clawed frog (88.4%), mouse (92.2%) and human 
(92.5%) (Figs. 1B and 3B). The full-length PR55/Bδ 
cDNA contains 2163 bp with an open reading frame 
of 1347 nucleotides, which encodes a deduced pro-
tein of 448 amino acids (Fig. 2A). The amino acid 
sequence alignment demonstrated that the goldfish 
PR55δ protein shared a sequence identity of 98.4%, 
87.7%, 86.9%, 86.9% and 86.9% with those from 
zebrafish, western clawed frog, chicken, mouse and 
Norway rat, respectively. (Figs. 2B and 3C).

Analysis of the amino acid sequence in the deduced 
protein PR55/Bβ/γ/δ of PP-2A through both ExPASy 
and the conserved domain architecture retrieval 
tool (DART) revealed presence of the WD-40 tan-
dem repeats in all three isoforms (Boxed regions in 
Figures 1A and 2A, and data not shown), indicating the 
functional importance for their binding to the scaffold 
subunits of PP-2A.12,15,16,21,22,26 Moreover, an 80.8% of 
sequence identity between PR55/Bβ and PR55/Bδ were 
found (Fig. 3A). In addition, the N-termini in PR55/Bβ 
and PR55/Bδ are significantly diversified (Fig. 3A).

Tissue specific expression  
of PR55/B family members
To explore the potential functions of PR55/B family 
members in various tissues of the lower vertebrates, 
we examined the mRNA levels for PR55/Bβ/δ of 
PP-2A in liver, spermary, ovary, brain, kidney, heart, 
muscle, gill and fin from goldfish using reverse tran-
scription-linked polymerase chain reaction (RT-PCR) 
analysis. As shown in Figure 4A, a band of 370 bp 
cDNA was amplified using specific primers for 
PR55/Bβ in two tissues: high level of expression in 
brain and low level of expression in heart. Similarly, 
a single band of 372 bp was amplified in all tissues 
examined for PP2A/Bδ (Fig. 4B). Among these tis-
sues, brain, ovary and kidney contained the highest 
levels of PR55/Bδ mRNA expression (Fig. 4B). In 
comparison with brain, ovary and kidney, muscle and 
heart displayed a slight decrease in PR55/Bδ mRNA 
expression, and fin, gill, spermary and liver showed 
further decrease.

To further explore the tissue-specific distribution 
of PR55/Bβ/δ, we conducted western blot analysis. 
As shown in Figure 5A, PR55/Bβ protein was 

Table 2. Statistical results of abnormality of development 
derived from inhibition of P55/Bδ expression from four 
independent experiments.

Injection 
group

Total injected 
fertilized eggs

Reduction 
of eye size

pEGFP-C3 
(vector)

100% (126) 6.2% ± 2%

pEGFP- 
antisense-P55/Bb

100% (128) 80.2% ± 6.6%
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detected at relatively high level in the brain tissue but 
much attenuated in the heart. All other tissues have no 
detectable PR55/Bβ protein. In contrast to PR55/Bβ, 
the PR55/Bδ was highly expressed in the brain and 
heart, moderately expressed in liver, spermary, ovary, 
muscle, fin and gill, and the lowest level detected in 
kidney (Fig. 5B).

Developmental expression  
patterns of PR55/Bβ/δ
To explore the possible function of the PR55/Bβ/δ 
during goldfish development, we first determined their 
developmental expression patterns at both mRNA 
(Fig. 6) and protein (Fig. 7) levels. Through RT-PCR 
analysis, we demonstrated that PR55/Bβ mRNA 

Figure 1. (Continued)
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level was relatively low from two-cell, multiple-cell 
to blastula stage. This mRNA level was substan-
tially increased at the gastrula stage transiently, then 
dropped down at the neurula stage. From the optic 
vesicle, through brain and muscle differentiation, to 
heart beat, the PR55/Bβ mRNA became gradually 
increased. And it maintained relatively stable at this 
level in the next four different stages of development 
(Fig.  6A). Different from the expression pattern of 
PR55/Bβ mRNA (Fig. 6A), the PR55/Bδ mRNA, in 
the very first three stages of development, displayed 
the highest level, then slightly dropped down from 
gastrula to neurula stages, gradually increased from 
optical vesicle stage to brain differentiation stage, main-
tained at this level at muscle differentiation and heart 
beat stages, and became gradually decreased from eye 
pigmentation, to hatching larval stages (Fig. 6B).

To further confirm the developmental expression 
of PR55/Bβ/δ at the protein level, we have con-
ducted western blot analysis. As shown in Figure 7A, 

PR55/Bβ protein seems to be undetectable at any stage 
of development. In contrast, the PR55/Bδ protein was 
maintained at similar levels in the 8 different stages 
examined: multiple-cell, blastula, gastrula, neurula, 
optic vesicle, brain differentiation, eye pigmentation, 
body pigmentation and hatching (Fig. 7B).

Attenuation of PR55/Bδ protein 
expression led to severe abnormality  
in eye development of goldfish
To further confirm the role of PR55/B family subunit 
in regulating development of goldfish, we constructed 
an expression construct for the generation of the anti-
sense strand RNA from the PR55/Bδ cDNA. Basically, 
the full length cDNA of PR55/Bδ was ligated into the 
pEGFP-C3 vector in the non-coding direction so that 
the anti-sense RNA would be generated when injected 
into fertilized eggs. The empty vector was used as mock 
injection. Expression of the antisense PR55/Bδ RNA 
substantially attenuated the translated level of PR55/

Figure 1. A) The full length cDNA of PR55/Bb for PP-2A and the deduced protein sequences. The initiation and termination codons are underlined. The 
predicted amino acid sequence is shown in the one-letter code below the nucleotide sequences. The WD-40 repeats were high-lighted by open box. 
B) Alignment of the deduced amino acid sequence from goldfish PR55/Bb of PP-2A with the known PR55/Bb sequences of PP-2A from human (Homo 
sapiens, NM_004576), mouse (Mus musculus, NM_088979) and frog (Xenopus laevis, BC130184).
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Bδ protein at several developmental stages examined 
(Figs. 8A and 8B). When PR55/Bδ protein level was 
significantly downregulated, the development of 
the goldfish displayed severe phenotype in both 
trunk and eye (Fig. 8D) in comparison with those in 
the normal larvae (Fig. 8C). The trunk was severely 
bent and the eye appeared in much small size 
(microphthalmia) (Fig. 8D Table 2) in comparison 
with the vector-injected embryos (Fig. 8C). Thus, 
our results demonstrate that PR55/Bδ is important 

for goldfish organogenesis, especially the trunk 
and the eye.

Discussion
In the present study, we have demonstrated: 1) The 
goldfish PR55/Bβ/δ cDNAs contain ORFs of 1332 bp 
and 1347 bp, coding for the deduced proteins of 443 
PR55/Bβ and 448 PR55/Bδ amino acids, respec-
tively; 2) the deduced goldfish PR55/Bβ protein share 
an amino acid identity of 88.4%, 92.5% and 92.5% to 

Figure 2. (Continued)
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that from frog, mouse and human, respectively; the 
deduced goldfish PR55/Bδ protein share an amino 
acid identity of 98.4%, 87.7%, 86.9%, 86.9% and 
86.9% to that from zebrafish, frog, chicken, mouse 
and rat, respectively; 3) the PR55/Bβ mRNA is 
present in brain and heart only, and the PR55/Bδ 

Figure 2. A) The full length cDNA of PR55/Bδ for PP-2A and the deduced protein sequences. The initiation and termination codons are underlined. The 
predicted amino acid sequence is shown in the one-letter code below the nucleotide sequences. The WD-40 repeats were high-lighted by open box. 
B) Alignment of the deduced amino acid sequence from goldfish PR55/Bδ of PP-2A with the known PR55/Bδ sequences of PP-2A from Rat (Rattus 
norvegicus, NM_144746), Mouse (Mus musculus, NM_026391), Chicken (Gallus gallus, NM_001006507), Frog (Xenopus tropicalis, NM_001006696), 
and Zebrafish (Danio rerio, NM_199776).

mRNA is detected in all 8 tissues examined; 4) At 
the protein level, the PR55/Bβ and PR55/Bδ also 
displayed distinct patterns; 5) Inhibition of PR55/Bδ 
translation through anti-sense RNA blockage caused 
severe phenotype of the injected embryos including 
severe reduction of the eye size. Together, our results 
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reveal that PR55/B family members have important 
functions controlling animal development and main-
taining adult tissue homeostasis of goldfish.

Contrast expression patterns  
of PR55/Bβ/δ are present  
in lower and higher vertebrate
The protein phosphatase-2A (PP-2A) is one of the 
major phosphatases in eukaryotes, and the holoenzyme 

of PP-2A is a heterotrimer, which contains a scaf-
fold A subunit, a catalytic C subunit and a regulatory  
B subunit.1–7 Both A and C subunits exist in two isoforms 
which are encoded by different genes. In contrast, the 
B subunits exist in 26 or more isoforms and so far, four 
subfamilies of genes, PR55/B, PR61/B’, PR72/B”, 
and PR93/PR110/B’” have been identified to code for 
these different isoforms.1,2,6,15,16 In the present studies, 
we have isolated two members of the PR55/B family 
from goldfish. Although each member of the goldfish 

Figure 3. A) Amino acid sequence alignment of the PP2A-PR55/B family members, β/γ/δ in goldfish (The partial amino acid sequence for PR55/Bβ 
is non-published data from Zhao et al). The completely conserved region among the three isoforms is marked by black shadow. The less conserved 
region is marked by grey shadow and the non-conserved region is revealed by white background. B) and C) the corresponding phylogenetic trees of the 
PR55/BβBֵ and PR55/Bδ (C) from four (B) or six (C) vertebrates. The phylogenetic tree for PR55/Bβ (B) was generated through comparative analysis 
of the coding sequences in human, mouse, frog and the present study using UPGMA calculation and the MEGA3.1 software. The phylogenetic tree for 
PR55/Bδ (C) was generated using the same strategy and software through comparative analysis of the coding sequences from mouse, rat, chicken, frog, 
zebrafish and the present study.
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PR55/B family shares high levels of amino acid iden-
tity (from 70% to 98%) with the counterpart from 
other vertebrates (Fig.  3), their expression patterns 
may be substantially different in different vertebrates. 
In the present study, we demonstrate that the goldfish 
PR55/Bβ mRNA is mainly expressed in the brain and 
to a much less degree in the heart. However, in mouse 
and rat, it is mainly expressed in testis and to a less 
degree in murine brain.27,28 For the expression pattern 
of PR55/Bδ, there is significant difference between 
goldfish and murine. While in goldfish, PR55/Bδ 
mRNA is expressed in all 8 tissues examined with the 
highest level found in brain, ovary and kidney, and 
the lowest level in liver and testis (spermary), the high 
level of PR55/Bδ mRNA is only detected in mouse 

testis, the remaining tissues either have very little 
PR55/Bβ mRNA (kidney, muscle, liver and brain) 
or no PR55/Bδ mRNA (lung, spleen and heart).27–29 
Thus, goldfish (lower vertebrate) and murine (higher 
vertebrate) display distinct difference in the tissue-
specific expression patterns of PR55/Bβ/δ.

In the present study, we found that the PR55/Bβ 
mRNA was present at low levels at the first 3 stages 
and then became clearly upregulated at gastrula-
tion stage. After a brief downregulation in neurula 
and optic vesicle stages, the PR55/Bβ mRNA were 
gradually increased from optic vesicle to heart beat 
stages and then maintained at this level with some 
slight fluctuations in the next three stages. Similar to 
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Figure 5. Western blot analysis of the PR55/Bβ and PR55/Bδ proteins 
in 9 tissues of the adult goldfish indicated. A) Up panel: 100 mg of total 
proteins extracted from the 9 different tissues of the adult goldfish were 
subjected to Western blot analysis as described in the Materials and 
Methods. Bottom panel: quantitative results of PR55/Bβ protein in the 
above 9 tissues of the adult goldfish from three independent experi-
ments. Note that the highest expression levels of the PR55/Bβ pro-
tein was detected in the brain, and to a much less degree in the heart.  
B) Up panel: 100 mg of total proteins extracted from the 9 different tissues 
of the adult goldfish were subjected Western blot analysis as described 
in A. Bottom panel: quantitative results of PR55/Bδ protein in the above 
9 tissues of the adult goldfish from three independent experiments. Note 
that the highest expression levels of the PR55/Bδ protein was detected 
in the brain and heart, and a reduced level of this protein was detected 
in liver, spermary, ovary, gin and gill. A much reduced PR55/Bβ/δ protein 
expression was found in kidney.
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the temporal mRNA expression pattern in goldfish, 
the PR55/Bβ mRNA was also detected in mouse 
embryo, as early as embryonic day 11 (ED11). This 
mRNA level became gradually increased from ED 
11 to ED 17.28 In contrast to the goldfish PR55/Bβ 
mRNA expression pattern, we hardly detected any 
PR55/Bβ protein expression at the 12 different devel-
opmental stages examined. Such results suggest that 
the PR55/Bβ mRNA may be non-translatable and the 
specific PP-2A activity with PR55/Bβ as regulatory 
subunit may be not necessary for goldfish devel-
opment. Whether the PR55/Bβ mRNA in mouse 
embryo yields any detectable protein remains to 
be explored. On the other hand, we could not exclude 
the possibility that a low level of PR55/Bβ protein 

exists that cannot be detected with the antibody we 
used and in the presence of a large portion of yolk 
protein in goldfish embryo. Different from the PR55/
Bβ the PR55/Bδ is highly expressed at both mRNA 
and protein levels from early to later developmen-
tal stages of goldfish. This temporal pattern is also 
different from that in mouse where no PR55/Bδ 
transcripts could be detected until ED17.28 Such 
distinct difference in their temporal expression pat-
terns between lower and higher vertebrates suggest 
that PR55/Bδ plays an important role in regulat-
ing development of goldfish embryo but not mouse 
embryo before ED17.

The discrepancy of the mRNA and protein lev-
els for PR55/Bδ in goldfish kidney (Figs. 5 and 6) 
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Figure 6. Temporal mRNA expression patterns of PR55/Bβ/δ for PP-2A during embryonic development of goldfish. A) Up panel: RT-PCR to detect the 
mRNA level of PR55/Bβ of PP-2A during 12 different developmental stages. Bottom panel: quantitative results of the PR55/Bβ mRNA expression from 
three independent experiments. B) Up panel: RT-PCR to detect the mRNA level of PR55/Bδ of PP-2A during the 12 stages. Bottom panel: quantitative 
results of the PR55/Bδ mRNA expression from three independent experiments. The method is the same as described in Figure 4.
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suggests that the other isoform of PP2A PP55/B family 
regulatory subunit, PR55/Bα, may play an important 
role in regulating specific PP-2A activity in this tissue.

P55/Bδ of PP-2A has important  
functions in regulating development
Besides its regulatory function in the heterotrimeric 
holoenzyme of PP-2A, the regulatory subunits of 
PP-2A may have other functions. In Drosophila, there 
exists only one form of the PR55/B regulatory sub-
unit.30 It has been shown that Drosophila mutants with 
reduced levels of PR55 expression display pleiotro-
pic phenotypes.31 Although three mutant alleles, aar1, 
aar2 and twinsP, derived from the insertion of different 
P-elements at the same position within the PR55 gene 
all show mitotic abnormalities in anaphase, aar1 dis-
plays abnormality in larval brain, aar2 is female ster-
ile, and twinsP shows imaginal disc abnormality.32–34 
The imaginal disc duplication observed in twinsP is 

derived from complete loss of PR55/B expression.34 
These results indicate that the functions of PR55/B 
observed in twinsP can’t be complemented by other 
PP-2A activity, suggesting presence of non-PP-2A 
functions of PR55/B.32,34 Since the three types of 
insertion mutations all affect the expression level of 
PR55/B in different tissues and the abnormality in 
the expression level of PR55/B leads to multiple phe-
notypes, it is conceivable that PR55/B has important 
functions in Drosophila development. In the present 
study, we found that PR55/Bδ is highly expressed 
from two-cell stage to hatching larvae (Figs. 6 and 
7). To explore its function in regulating development, 
we expressed the anti-sense RNA from the exogenous 
PR55/Bδ cDNA, which can block the expressed PR55/
Bδ mRNA from the endogenous PR55/Bδ gene. The 
principle of this technology is based on the fact that the 
anti-sense RNA can form complementary duplex with 
the sense mRNA strand and thus block the translation 
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Figure 7. Western blot analysis of the protein for PR55/Bβ/δ in 8 devel-
opmental stages as indicated. A) Up panel: 100  micrograms of total 
proteins extracted from 8 developmental stages of the developing gold-
fish embryos were subjected to Western blot analysis. Note that no 
PR55/Bβ protein was detectable at any stage. B) Up panel: 100 micro-
grams of total proteins extracted from the 8 different stages were sub-
jected to Western blot analysis as described in Figure 5. Bottom panel: 
quantitative results of PR55/Bδ protein in the 8 developmental stages as 
determined using the methods described in Figure 5.
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of the later.35 It has been extensively used for suppres-
sion of endogenous gene expression.36–38 Western blot 
analysis confirmed that expression of the anti-sense 
RNA substantially attenuated the protein expression 
level of PR55/Bδ in goldfish embryos of different 
developmental stages (Fig. 8A & 8B). When PR55/
Bδ is downregulated, the development of goldfish 
embryos displays severe abnormality in organogen-
esis. We observed that during differentiation stage, 
while expression of the vector (mock) had little effect 
on the eye development, expression of the antisense 
PR55/Bδ RNA led to microphthalmia and abnormal 
trunk in the embryos with reduced PR55/Bδ expres-
sion of majority embryos (Table 2). These results pro-
vide the first evidence that the regulatory subunit of 
PP-2A directly controls eye and trunk development. 
Our demonstration that downregulation of PR55/Bδ 
by anti-sense RNA led to microphthalmia (small eye) 
in the developing embryo suggests the specific PP-2A 
activity contributed by PR55/Bδ regulatory subunit is 
crucial for development. In this case, the PP-2A con-
taining PR55/Bδ regulatory subunit may modulate a 
set of specific targets important for development that 
can’t be dephosphorylated by PP-2A with non-PR55/
Bδ regulatory subunit. Indeed, previous studies have 
shown that such proteins as cdc25, histone H1 and 
caldesmon phosphorylated by p34cdc2/cyclinB kinase 
are only subjected to dephosphorylation by the specific 
PP-2A containing PR55/B regulatory subunit.31,39–42 
In addition, the PP-2A containing PR55/B regula-
tory subunit also regulates targets phosphorylated 
by MAP kinases such as the microtubule-associated 
protein, tau.43,44 On the other hand, we could not rule 
out the possibility that the PR55/Bδ regulatory sub-
unit alone functions in some unknown mechanism to 
govern goldfish development. Whether the later case 
is possible is currently under investigation.
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