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Abstract: The emergence of drug-resistant pathogens poses a serious critical threat to global public
health and requires immediate action. Antimicrobial peptides (AMPs) are a class of short peptides
ubiquitously found in all living forms, including plants, insects, mammals, microorganisms and
play a significant role in host innate immune system. These peptides are considered as promising
candidates to treat microbial infections due to its distinct advantages over conventional antibiotics.
Given their potent broad spectrum of antimicrobial action, several AMPs are currently being eval-
uated in preclinical/clinical trials. However, large quantities of highly purified AMPs are vital
for basic research and clinical settings which is still a major bottleneck hindering its application.
This can be overcome by genetic engineering approaches to produce sufficient amount of diverse
peptides in heterologous host systems. Recently plants are considered as potential alternatives to
conventional protein production systems such as microbial and mammalian platforms due to their
unique advantages such as rapidity, scalability and safety. In addition, AMPs can also be utilized for
development of novel approaches for plant protection thereby increasing the crop yield. Hence, in
order to provide a spotlight for the expression of AMP in plants for both clinical or agricultural use,
the present review presents the importance of AMPs and efforts aimed at producing recombinant
AMPs in plants for molecular farming and plant protection so far.

Keywords: antimicrobial peptides; antibiotic-resistance; biopharmaceuticals; heterologous expression;
molecular farming; plant expression system; stable expression; transient expression

1. Introduction

Various antibiotics are used for the prevention or treatment of many common diseases
caused by pathogenic organisms. Microbes have the ability to circumvent the mechanism
of antibiotic drugs resulting in the development of antimicrobial resistance. Many available
evidences showed that the frequent use of large amounts of conventional antibiotics result
in drug resistant pathogens, particularly antibiotic-resistant bacteria. The growing bur-
den of drug-resistant infections demand for suitable antimicrobial/antibiotic alternatives.
AMPs are ubiquitous short peptides that exhibit broad spectrum of potent antimicrobial
efficacy and are capable of being applied to treat various microbial infections including
drug-resistant ones. AMPs, also referred as peptide antibiotics have gained significant
prominence as innovative antibiotics with great importance in the last few years. Several
AMPs with potent antimicrobial properties against bacteria, fungi and virus have been
documented. These peptides are shown to have antimicrobial activities by obstructing the
functionality of biological molecules present in the cell membrane, making the microbes
susceptible [1,2]. Hence, instead of conventional antibiotics, these peptides have promising
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opportunity to develop into antimicrobial drugs. The importance and therapeutic potential
of AMPs have been reviewed in detail elsewhere [3–5].

AMPs are reported to exhibit a broad spectrum of antiviral, antifungal, antiparasitic,
immunomodulatory and anti-angiogenic activities [6–9]. The anionic/cationic charges,
amphiphilic and hydrophobic properties of AMPs were determined by their amino acid
composition which in turn show selective effects on the microbes. Though most of the
AMPs are cationic with substantial hydrophobic residues, anionic AMPs containing mostly
acidic amino acids like aspartic acid and glutamic acid also exist [10,11]. AMPs display
antimicrobial activity by a unique mode of action via targeted destruction of the bac-
terial membrane and/or by translocation into the cytoplasm to neutralize intracellular
targets [1,12,13]. The direct activity against bacteria involves strong electrostatic interaction
of positively charged AMPs with the negatively charged microbial surface [14,15]. Bacterial
membranes comprise abundant number of amphiphilic lipids such as phosphatidylglyc-
erol, cardiolipin, and phosphatidylethanolamine in their cytoplasmic membranes. The
head groups of anionic phospholipids are negatively charged and bind strongly to cationic
AMPs [15,16]. Moreover, teichoic acids and lipopolysaccharides in gram-positive and
gram-negative bacteria, respectively, provide electronegative charge to bacteria making
them highly attractive targets for AMPs [17,18]. The interaction of AMP with the microbial
membrane eventually results in destroying the microbes. In contrast, mammalian cell
membranes differ from microbial membranes by having rich amount of zwitterionic phos-
pholipids such as phosphatidylethanolamine, phosphatidylcholine, and sphingomyelin
in their cytoplasmic membranes [19]. These phospholipids produce neutral charge on
mammalian membranes resulting in low binding efficiency of AMPs and enable protection
and selectivity against mammalian cells [15,19]. Further AMPs bind with mammalian
membranes via weak hydrophobic interactions and are rich in cholesterol which reduces
activity of these peptides [20].

To date, more than 2000 AMPs have been identified, synthetically designed, engi-
neered accounting from all living forms including prokaryotic and eukaryotic organisms [21].
Native AMPs can be classified according to source, activity, structure and amino acid
residues wherein examples include but are not limited to defensins [22], cathelicidins [23],
cecropins [24], lactoferricin [25], dermcidin [26], and anionic peptides [11]. Since their discov-
ery, AMPs have been of great scientific interest due to their importance in human health, as
natural antibiotic agents, but also due to their potential as innate immune modulators [27].

Due to its therapeutic potential against drug-resistant pathogens, AMPs are considered
as next generation of antimicrobials having potential for pharmacological applications. Fur-
thermore, certain AMPs exert a broad spectrum of activity against diseases in plant species
caused by different plant pathogens including bacterial, fungal and viral pathogens [28].
Hence, they represent an innovative crop plant protection method for engineering insect or
disease resistance traits for sustainable agriculture. Although AMPs are widely found in
their natural form, their synthesis involves cumbersome processes that result in low yields
and has so far not proven cost-effective [29–33]. Several features of AMP manufacturing
limit the commercial development of these peptides. Chemical peptide synthesis based on
solid-phase techniques is a mature technology [34] allowing the production of naturally
existing or synthetic polypeptides of small size. In the context of green sustainable chem-
istry, to avoid the use of large amounts of organic solvents in the chemical synthesis of
AMPs, water-based solid phase peptide synthesis using water to replace organic solvents
has been developed, facilitated by the conversion of amino acids into water-soluble forms.
However there exist a few limitations such as the requirement of additional conversion
steps, high preparation costs, need of more energy and resources [35,36]. Moreover, this
method also faces issue in the production of large peptides with complex post-translational
modifications. Contemporary research utilizes a sophisticated approach to produce AMPs.
The recombinant production of AMP in heterologous expression systems provide an op-
portunity for large scale production of AMPs thereby increasing their accessibility and
broadening of their applications in the pharmaceutical sector. Genetic engineering strate-
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gies have been employed for production of AMPs in microbial and eukaryotic systems.
Traditionally bacteria, yeast and mammalian cells were commonly used for recombinant
protein production, however plant-expression systems have considerable advantages like
flexibility, scalability and speed. Hence in recent decade, plants have become consid-
ered an affordable recombinant protein expression platform. Although plants have been
widely utilized for producing vaccine antigens, diagnostic reagents and other high-value
biopharmaceuticals in recent times, the recombinant production of AMPs in plants are
very limited. Therefore, we focus in this review on the importance of AMPs, possibilities
and biotechnological approaches for the expression and production of pharmaceutically
important AMPs in plants and further discuss the recent progress which has been made in
this direction. Overall, some of the major advances in the field with the view to provide
insights on the production of AMPs in plants are presented.

2. AMPs for Infection and Therapy

AMPs differ from antibiotics by having broad range and rapid inhibitory activities
against bacteria, fungi, parasites, viruses and in their capacity to overcome resistance in
microbial populations [18,37]. Most AMPs directly target the bacterial cell membrane which
results in comparable levels of action on multidrug-resistant organisms. Consequently, com-
bined treatment with other intracellular drugs postulates no overlap in modes of action and
cross-resistance effects. Thus, considering desirable potency and bactericidal ability, AMPs
constitute a promising class of therapeutics for the treatment of drug-resistant infections [3].

To date, a number of AMPs are either in pre-clinical and clinical development or
approved for commercial applications. Selected AMPs are listed in Table 1. Polymyxins
are one of the most well-studied cyclic peptides utilized as clinically available drugs
or treatment for eye infections and multidrug resistant pathogens and are also used for
selective digestive tract decontamination and local skin infections [38,39]. Gramicidins are
another type of cyclic anti-infective peptides used to treat wounds and local infections in the
nose, eyes, and throat [40,41]. Daptomycin is one of the cyclic AMP-based drugs recently
approved by the FDA for the treatment of complicated skin and skin-structure infections
(cSSSI) caused by Staphylococcus aureus [42,43]. Meanwhile, some of the AMPs under clinical
trials, including well-characterized peptides—pexiganan and omiganan—are presently
being investigated for the treatment of many bacterial and fungal infections. Accordingly,
pexiganan is a Xenopus magainin analog targeting bacteria, fungi, and antibiotic-resistant
microbes. It has been assessed in phase III clinical trials and administered as a topical
cream for diabetic foot ulcers [44] and further examined for cSSSI [42]. Of note, omiganan
is a bovine indolicidin analog that has been evaluated in clinical trials and administered as
a topical gel for catheter infections, rosacea, dermatitis, genital warts and inflammatory
acne vulgaris [3,45,46]. On the contrary, a few AMPs under clinical trials such as LL-37
and PXL-01 are being evaluated for their mode of action unrelated to microbial infections.
For LL-37, pre-clinical results showed its role in wound healing in mice [47,48] and wound
infections in pigs [49]. In line with these reports, a phase I/II clinical trial using topical
treatment with LL-37 markedly promoted wound healing rates in patients with hard-to-
heal chronic leg ulcers [50] and has been recommended to regulate re-epithelialization,
angiogenesis and inflammatory response [51]. For PXL01, nonclinical evidence revealed
anti-adhesion properties [52] and it effectively prevented adhesion formation linked to post-
abdominal surgery in rats [53]. A phase II clinical study further established the efficacy of
using PXL01 in sodium hyaluronate for inhibiting post-surgical adhesions and improving
post-surgical recovery of the hand [54].

Consideration of AMPs for their clinical applications requires that the underlying
issues of activity, toxicity and stability be addressed to achieve progress and commercial
success. An ideal AMP should display high antimicrobial activity and specificity, less toxic-
ity towards mammalian cells, high stability and low production costs. Despite showing
antimicrobial potency against the microbes, in long term use AMPs have undesirable activ-
ities by eliciting immediate immunogenic responses, systemic toxicity, hemolytic activity
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and other side effects in mammalian cells or in vivo animal models. Hence detailed studies
are essential to assess the feasibility and safety profile of AMPs before progressing them
towards practical application. The therapeutic index, which is calculated as the ratio of
the hemolytic activity and antimicrobial activity of AMPs, is a widely used parameter to
evaluate the specificity of AMPs against prokaryotic and eukaryotic cells. Thus, higher val-
ues of therapeutic index represent greater specificity [55]. Some AMPs have demonstrated
nephrotoxicity and neurotoxicity effects [56], frequently associated with high dosages.
Further poor stability of AMPs is another major limitation that critically affects their oral
administration, as peptide antibiotics are characterized with low oral bioavailability owing
to enzymatic degradation and poor permeability in the intestinal mucosa. Likewise, sys-
temic administration via intravenous injection restricts applications of AMPs due to rapid
degradation or rapid hepatic and liver clearance resulting in significantly reduced or short
half-life [57]. Selective drug delivery methods can address some of the limitations hinder-
ing its applications viz., topical application of AMPs may reduce the systemic toxicity and
proteolytic stability [58]. To overcome the limitations and multiple restrictive factors, many
approaches have been employed to develop ideal AMPs, including multi-disciplinary
strategies with computational/bioinformatic tools, biophysical experiments and biological
validations which are discussed in detail elsewhere [59,60].

Table 1. List of few AMPs at various stages of clinical trials.

Anti-Microbial Peptide In Vivo/Clinical/Approved Indication Administration Reference

Mutacin B-Ny266 (lantibiotic) In vivo Multi-drug resistant bacteria infection - [61]

Actagardine (lantibiotic) In vivo Staphylococcal, enterococcal,
C. difficile infections - [62]

Plectasin (defensin) In vivo Systemic pneumococcal and
streptococcal infections - [63]

Planosporicin (lantibiotic) In vivo Staphylococcal and enterococcal
infections - [64]

Gallidermin/Epidermin
(lantibiotic) In vivo Acne, eczema, folliculitis, and impetigo - [65]

Microbisporicin (lantibiotic) In vivo Staphylococcal and enterococcal
infections; Acne - [66]

Mersacidin (lantibiotic) In vivo Staphylococcal, enterococcal,
Clostridioides difficile infections - [67]

Lacticin 3147 (lantibiotic) In vivo Staphylococcal and enterococcal
infections; Acne - [68]

Salivaricin B (lantibiotic) In vivo Streptococcal infections (caused mainly
by S. pyogenes) and dental caries - [69]

Duramycin (lantibiotic) In vivo Cystic fibrosis, ocular diseases, and
disorders - [70]

Deoxyactagardine/NVB302
(lantibiotic) In vivo C. difficile infections - [71]

Nisin (lantibiotic) In vivo Staphylococcal and enterococcal
infections - [72]

Pinensins (lantibiotic) In vivo Yeast/fungal infections - [73]

MX-226 In vivo Catheter infections - [74]

PAC-113 (histatin 3) Phase II
Identifier: NCT00659971 Oral candidiasis in HIV patients Oral

(Mouthwash) [75]

Omiganan (indolicidin)
Phase III
Identifier:

NCT00231153

Prevent local site catheter infection and
colonization with central venous

catheters
Topical [46]

Iseganan (protegrin-1)

Phase II
Identifier: NCT00118781 Ventilator-associated pneumonia Oral

(Mouthwash) [76]

Phase III
Identifier: NCT00022373 Oral mucositis induced by chemotherapy Oral

(Mouthwash) [77]
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Table 1. Cont.

Anti-Microbial Peptide In Vivo/Clinical/Approved Indication Administration Reference

Pexiganan (magainin analog)
Phase III
Identifier:

NCT00563-394/433
Diabetic foot ulcer infections Topical [44]

hLF1-11 (lactoferrin) Phase I/II
Identifier: NCT00509938 Bacteraemia and fungal infection Intravenous [78]

CZEN-002
(α-melanocyte-stimulating

hormone)
Phase IIb Vaginal candidiasis Vaginal gel [79]

Novexatin (defensin) Phase II
Identifier: NCT02343627 Stubborn fungal nail infection Topical [45]

LL-37 (cathelicidin) Phase I/II
Identifier: NCT04098562 Hard-to-heal venous leg ulcers Topical [50]

PXL01 (lactoferricin) Phase II
Identifier: NCT01022242

Prevent post-operative adhesion in
hands

Hydrogel applied
at surgical site [54]

Surotomycin (synthetically
modified daptomycin)

Phase III
Identifier: NCT01597505 Diarrhea caused by C. difficile Oral [80]

LTX-109 (synthetic antimicrobial
peptidomimetic)

Phase II
Identifier: NCT01803035 Skin infection, impetigo Topical [81]

Phase I/II
Identifier: NCT01158235 Nasal infection with S. aureus Nasal [81]

SGX942 (indolicidin) Phase III
Identifier: NCT03237325

Oral mucositis induced by radiation
and/or chemotherapy Intravenous [82]

OP-145 (cathelicidin) Phase I/II Chronic otic infection Eardrops [83]

C16G2 (synthetic specific-directed
antimicrobial peptide)

Phase II
Identifier: NCT02044081 Avoid caries caused by S. mutans Oral

(Mouthwash) [84]

Murepavadin (protegrin I) Phase I
Identifier: NCT03409679

Ventilator-associated pneumonia and
bronchiectasis

by Pseudomonas aeruginosa
Intravenous [85]

DPK-060 (hybrid peptide from 2
functional domains)

Phase II
Identifier: NCT01522391

Human wound infection caused by S.
aureus Topical [86]

Teicoplanin (Actinoplanes
teichomyceticus glycopeptide) Approved Bacterial infections Intravenous and

Intramuscular [87]

Daptomycin (anionic peptide) Approved Bacterial skin infections Intravenous [43]

Colistin (Bacillus polymyxa cyclic
peptide) Approved Multi drug-resistant gram-negative

infections Intravenous [88]

Dalbavancin (Teicoplanin
derivative lipoglycopeptide) Approved Acute bacterial skin and skin structure

infections Intravenous [89]

Polymyxin (Bacillus polymyxa
polypeptide) Approved Urinary tract and bloodstream infections

Ophthalmic
Topical

Intravenous
[38]

Enfuvirtide (biomimetic peptide) Approved HIV-1 infection Subcutaneous [90]

Telavancin (vancomycin derivative
lipoglycopeptide) Approved Bacterial skin infections Intravenous [91]

Gramicidin D (Bacillus brevis
polypeptides) Approved Skin and eye infections Topical

Ophthalmic [40]

Oritavancin (vancomycin
derivative lipoglycopeptide) Approved Bacterial skin infections Intravenous [92]

Bacitracin (Bacillus licheniformis
cyclic peptide) Approved Skin and eye infections; wound

infections Topical [93]

Telaprevir (antimicrobial
peptidomimetic) Approved Hepatitis C infection Oral [94]

Vancomycin (Amycolatopsis
orientalis glycopeptide) Approved Bacterial infections Oral and

Intravenous [95]
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3. Heterologous Production of AMPs

Recent advances in recombinant DNA engineering provide an insight for the eco-
nomical production of AMPs in various heterologous host systems [96–99]. Furthermore,
recombinant expression platforms will undoubtedly speed up the approaches for devel-
oping novel peptide therapeutics and are also helpful for the betterment of existing ones.
Many expression hosts are currently available for the production of various short AMPs
with varied sizes, folds and complexities. Certain factors like size, intracellular localization,
secretion, protein folding and glycosylation need to be considered during the selection
of a host expression system to produce AMPs. Microbial systems (bacteria and yeast) are
the most widely employed as they are easy to manipulate and have rapid growth rates,
multiplication times and high cell densities [100]. Bacterial species such as Escherichia coli,
Bacillus subtilis, Propionibacterium freudenreichii were used for expression of different AMPs
like adenoregulin, cecropin, crustin, defensin, hepcidin, histonin, human β defensin, lacto-
ferrin, perinerin, thanatin and viscotoxin [101]. E. coli was the most prominent bacterium
used to express AMPs, due to its easy growth rate, well developed recombinant methods
for its manipulation and the abundant available literature on its genetic morphology and
physiology [2,63]. Though many AMPs are expressed in bacteria, there are few hurdles
that need to be addressed in order to achieve efficient production. The produced AMPs
that have natural activity must be prevented from exerting their lethal action on the host
strain. A lack of post-translational modification and the need for carrier/fusion proteins
are other issues [2,63,102,103]. Pichia pastoris and Saccharomyces cerevisiae are commonly
used for the expression of AMPs such as the antifungal proteins cathelicidin, enterocin,
pediocin, plantaricin, and α-sarcin [101,104,105]. Nevertheless, plant systems have also
been utilized for AMP production in recent decades. Tobacco is one of the most highly
explored leaf-based production platforms for recombinant protein expression.

4. Plant Molecular Farming

The expression of AMPs in plants presents a dual role as their antimicrobial activity
helps in plant protection while also meeting the demand for novel antimicrobial agents
in the biopharmaceutical industry [106]. The process of utilizing plants and plant cell
cultures as an effective production platform for recombinant proteins with industrial or
pharmaceutical significance is called molecular farming and the protein products are
often referred to as plant-made pharmaceuticals (PMPs). Plants act as remarkable hosts
for producing various recombinant proteins due to their many advantages over other
prokaryotic and eukaryotic expression systems. The major propitious features include
the cheaper cost, high yields with the feasibility for easy scale up, simple manufacturing
methods, minimizing the extensive purification and processing techniques in the case of
oral vaccines [107–109]. The plant-made vaccines or therapeutic products can be easily
stored or lyophilized for longer shelf life without the requirement of low temperatures
for keeping them stable and retaining their activity [110]. Further, the pharmaceutically-
relevant proteins produced in plants are considered to be safer when compared to bacterial
or mammalian cells as the risk of contamination during the manufacturing processes is
low and the do not present serious bio-safety threats [111]. The major advantage of this
expression system is the ability to perform post-translational modifications which are likely
crucial for protein folding and the biological function of AMP molecules [112,113]. The
advantages and challenges of different protein production systems are summarized in
Table 2.
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Table 2. Advantages and disadvantages of different host systems available for the production of heterologous proteins for
pharmaceutical applications (adapted from Shanmugaraj et al. [114]).

Expression System Advantages Disadvantages

Bacteria

• Easy to manipulate
• Low cost
• High expression
• Ease of scale up
• Short turnaround time
• Established regulatory procedures and approval

• Improper folding
• Lack of post-translational modifications,

which may affect the protein function.
• Endotoxin accumulation

Mammalian Cells
• Proper folding and authentic post-translational

modifications
• Existing regulatory approval

• High production cost
• Expensive media and culture condition

requirements

Yeast

• Rapid growth and scalable
• Easy to manipulate
• Simple and inexpensive media requirements and

culture conditions
• Post-translational modifications of recombinant

proteins

• Difficulty in cell disruption due to the
thick and hard cell walls

• Hyperglycosylation of proteins

Insect cells

• High expression levels
• Ability to produce complex proteins including

secreted, membrane and intracellular proteins
• Proper folding and post-translational modifications

• High cost and time consuming
• Expensive media and culture condition

requirements

Plants

• Rapid and affordable
• Optimized growth conditions
• Free from pathogen and bacterial toxin contaminants
• Economical
• Post-translational modification somewhat similar

like mammalian system

• Regulatory compliance
• Limited glycosylation capacity

In 1986, the recombinant human growth hormone was the first plant-derived
pharmaceutically-relevant protein produced in transgenic tobacco and sunflower [115],
followed by the report of functional antibody expression in transgenic tobacco plants [116].
After two decades of research, the first PMP “Elelyso” (recombinant β-glucocerebrosidase)
produced in carrot suspension culture was approved by FDA in 2012 for the treatment
of Gaucher’s disease. In addition, the regulatory approval of tobacco-produced HIV-
neutralizing human monoclonal antibody 2G12 established the scientific, technical and
regulatory framework for plant-derived recombinant proteins [117]. Recently, virus-like
particle (VLP) influenza vaccine manufactured in plants has completed the phase III trial
and plant-derived VLP vaccine for coronavirus disease produced in N. benthamiana has
completed a Phase I trial [118]. Furthermore, number of PMPs are in various stages of
clinical development which include vaccine antigens, enzymes, cytokines, monoclonal
antibodies and their fragments and a few are approved [119,120]. The approval of the first
PMP in the commercial market and promising results of plant-proteins in clinical trials
pave the way for the further development of recombinant products.

Several examples of such PMPs and the detailed advantages, limitations and chal-
lenges of plant expression system for the production of the desired targets have been
comprehensively reviewed elsewhere [121–128]. The different plant-based expression
systems range from transgenic plants to cell suspensions cultures are available for AMP
production in plants [129–133] which are described briefly in the following sections.
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5. Strategies for Protein Production in Plants

The production of recombinant proteins in plants form an ideal cost-effective plat-
form gaining attraction for commercial biopharmaceutical production. The strategies
employed for recombinant protein production in plants are stable expression, transient
expression and suspension cell cultures (Figure 1). The stable expression is a conventional
method of recombinant technology which involves the incorporation of foreign genes into
nucleus for nuclear genomic expression [134] and/or to chloroplast for plastid genomic
expression [135] resulting in the generation of stable transgenic/transplastomic plant lines.
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biopharmaceuticals. During initial stages of plant molecular farming, recombinant protein expression in plants were
based on stable expression in which the gene of interest is cloned into plant expression vector and transformed into plant
nucleus/chloroplast either by Agrobacterium or biolistic mediated method to produce transgenic or transplastomic plants.
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controlled environment for recombinant protein production.
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5.1. Stable Nuclear Expression

Nuclear expression facilitates the stable integration of transgenes into the nuclear
genome of plant cells. This technique is regulated by transcription of the gene of interest
in the nucleus and then translation in the cytoplasm [136]. The most widely used gene
delivery system into the plant is via Agrobacterium tumefaciens-mediated transformation.
The plant bacterium, A. tumefaciens, has the capability to deliver a particular DNA segment
(T-DNA) into the plant nucleus which is commonly localized on the tumor-inducing (Ti)
plasmid of Agrobacterium [137]. Meanwhile, plant transformation utilizes a binary vector
system devised according to the T-DNA of Agrobacterium. Consequently, the T-DNA-
containing gene expression cassette is separated from the vector backbone and transformed
into plants, permitting easy genetic engineering of plants. This vector system is introduced
into a modified Agrobacterium (not containing bacterial genes within the T-DNA region) to
infect the plant cells or tissues and transfer the T-DNA-containing gene of interest from
the binary vector for expression in nuclear genome of plant host [138]. These tissues are
cultivated in an antibiotic-containing growth medium, allowing selective growth of trans-
formants harboring the gene of interest. Then, growth of callus tissue and development
of shoots and roots are observed. Upon successful rooting, plantlets are transferred to the
soil and the expression of foreign genes in the transgenic lines can be characterized [139].
The Agrobacterium-mediated transformation offers the simplest and a conventional method
for genetic modification of crops with the horizontal transgene transfer and consistent
recombinant protein expression [140]. However, few associated disadvantages of this
method includes gene silencing, transgene contamination risk, potential interactions with
natural products, low yields (about <1% of total soluble protein) and time-consuming
genetic manipulation [136,141,142]. An early study of pharmaceutical recombinant anti-
bodies stably integrated and produced in transgenic tobacco plants was recorded in 1989.
Since then, several proteins have been produced in stably transformed plants, including
anti-cancer agents [143,144] and antimicrobial peptides as anti-infectives [145]. AMPs with
anti-bacterial or anti-fungal properties can be stably expressed in plants which confers
disease resistance against plant pathogens which in turn increases the yield, quality and
safety of agricultural products.

5.2. Stable Chloroplast Expression

Chloroplast expression directs incorporation of transgenes into the chloroplast genome
of plant cells. This approach effectively transforms foreign genes into plant chloroplasts
by using a particle gun or gene gun or biolistic transformation method. In particular,
plant tissues are bombarded with DNA-coated gold or tungsten particles [146]. Then,
plant tissues are cultivated in suitable growth medium supplemented with appropriate
antibiotics, which confer selection of transformants containing the gene of interest. Similar
like nuclear transformation, characterization of callus formation, shoots and roots devel-
opment is observed. The young plantlets are transplanted into soil to generate mature
transplastomic plants. Chloroplast transformation of recombinant gene offers several
advantages compared to nuclear transformation. The chloroplast genome provides ease of
manipulation as DNA-containing cassette can be inserted in between functional chloroplast
genes by homologous recombination [147]. The specific targeting ensures high levels of
expression and prevents gene placement into a poorly transcribed region of the genome.
Due to high copies of chloroplast in plant cells, optimal yields of recombinant proteins have
been attained by chloroplast expression [136,147]. Additional advantages include no risk
of transgene contamination or leakage into the environment since chloroplast genes are
maternally inherited [146], a neutral pH and low number of active proteases [148]. The ex-
pression of therapeutic proteins in chloroplast has been well-explored for several antigens,
growth factors, interferons and many other pharmaceutical proteins [140,149–151].
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5.3. Transient Expression

Transient gene expression involves rapid production of recombinant proteins with-
out chromosomal integration into the plant cell genome. It has been employed as an
approach for determining the expression efficiency of transgenes in the plant nucleus after
a short period of time [152]. There are two promising methods of transient expression
involving plant pathogen vectors, namely, plant viruses (plant viral infection) and A. tume-
faciens (agroinfiltration). Plant virus-mediated transient expression directs amplification
of viral vectors within plant cells and introduces the transgene of interest by utilizing
mature viral particles [153]. Examples of plant virus-based vectors include but not re-
stricted to tobamoviruses, potexviruses, potyviruses, bromoviruses, comoviruses, and
geminiviruses [154–156]. This strategy has shown advantages and suitability to produce
several plant-based biopharmaceuticals [157]. In addition, they have been characterized
for their fast transmission from one plant cell to another, yielding high expression effi-
ciency [158]. Meanwhile, risk of viral vector contamination in plants and the environment
has to be regarded with careful consideration [159].

Agrobacterium-mediated transient expression refers to the process of infecting plant
leaves with Agrobacterium cells suspension containing T-DNAs with gene of interest [160]. It
can be performed either by infiltration using syringe without a needle (syringe infiltration)
or by large-scale infiltration (vacuum infiltration). Agrobacterium infection spreads across
the site of injection and infected plants can be harvested within few days of post-infiltration.
Transient approach is the method of choice for the scalable production of AMPs for large
scale applications in the food industry (as preservative), as topical disinfectant or as a feed
supplement for livestock or poultry [161].

5.4. Suspension Cultures

Suspension plant cell cultures are more promising and ideal platforms than using
the whole plants to produce various important biological active products. These cultures
are grown in controlled environments under monitoring and defined conditions for the
growth of plant cells thus complying all the regulatory concern. The plant cells are cultured
in aseptic in vitro growth conditions in a sterile sealed container without any human or
microbial contaminants [162,163]. Other biosafety and environmental issues can also be
overcome by using plant bioreactors preventing cross fertilization and transmission of
pollen. The production costs for recombinant proteins using plant suspension cell cultures
are quite low in comparison to mammalian and bacterial systems as they require simple
growth media and nutritional requirements [164]. The downstream purification and pro-
cessing of plant produced products does not require any complex methods [165]. The first
FDA-approved plant-produced pharmaceutical taliglucerase-α was produced in carrot
suspension cell cultures almost reducing the conventional orphan drug treatment costs by
75% [166]. Other popular plant cells include BY-2 and NT-1 tobacco strains that are used
as bioreactors where the proteins can be secreted into the culture medium simplifying the
purification process. BY-2 cell cultures were used to produce human monoclonal antibody
M12 in a 200 L bioreactor yielding 20 mg/L of the mAb [164,167]. The BY-2 cell lines have
the capacity to multiply up to 100-fold in one week with a generation time of 16–24 h under
defined growth parameters [168]. Suspension cultures hold significant potential in thera-
peutic AMP production for medical applications as they are easy to scale-up, compliant
with GMP and they meet regulatory requirements for biopharmaceutical production.

6. AMP Expression in Plants

Several AMPs have been expressed in plants with the perspective of clinical and
agricultural development. Plants have come into limelight for the expression of AMPs
in desired crop plants for direct defense against pathogens and also large-scale and cost-
effective production of recombinant AMPs. Although protein accumulation varies between
the AMP expressed, but the functional activity of the recombinant AMP confirmed its
active form. Protegrin-1, a broad-spectrum AMP was expressed in low alkaloid tobacco
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species using transient approach and was found to be effective against K. pneumoniae,
S. aureus, E. coli, M. bovis BCG, and C. albicans [169]. Lfchimera, a chimerical peptide
was codon optimized, expressed in plant culture system and tobacco hairy roots in vitro
and significant antimicrobial activity was reported against clinical and phytopathogenic
bacteria [170,171]. AMPs apart from exhibiting antimicrobial activity, they were further
investigated for inducing resistance against various bacterial and fungal pathogens in
plants [162]. The peptide LL-37 was produced in transgenic barley by expressing codon
optimized chimeric LL-37 under the influence of endosperm specific promoter of barley
B1 hordein gene, accumulating upto 0.55 mg/kg of grain and the plant-produced LL-37
was biologically active [172]. An insect antimicrobial peptide, thanatin S, was expressed
by fusing with signal peptide of rice Cht1 in Arabidopsis, that showed enhanced resistance
to phytopathogenic fungi and bacteria [173]. In a study by Jung et al., human cathelicidin
hCAP18 was expressed in Chinese cabbage fusing the DNA encoding fragment for this
AMP with C-terminal end of endopolygalacturonase inhibiting protein under the con-
trol of CaMV 35 S promoter showing varied levels of resistance to bacterial and fungal
pathogens [174]. Two proteins, snakin-2 (SN2) a cysteine-rich peptide and extensin-like
protein (ELP) a major cell-wall hydroxyproline-rich glycoprotein were over expressed
in tomato cultivars and showed resistance against Clavibacter michiganensis subsp. michi-
ganensis (Cmm) [175]. A snakin-1 gene isolated from potato was found to have in vitro
antimicrobial activity and when transformed into wheat by particle bombardment, showed
effective protection against soil borne fungus Gaeumannomyces graminis var. tritici which
causes root disease [176]. Defensins, SmAMP 2 gene, sarcotoxin IA, retrocyclin 101, hevein
like peptides, C4V3, trichokonins, cecropin B, temporin A, snakin-2, cathelicidins and
MsrA2 were also expressed in different plant species as listed in Table 3.

Table 3. Some of the candidate AMPs expressed in plant hosts.

Anti-Microbial
Peptide Plant Species Stable or

Transient
Nucleus or
Chloroplast Expression Level Application Reference

MSI-99
(Magainin)

Tobacco
(Nicotiana tabacum) Stable Chloroplast Undefined

Enhanced resistance to
phytopathogenic bacteria

(Pseudomonas syringae) and fungi
(Aspergillus flavus; Fusarium

moniliforme; Verticillium dahlia)

[177]

MsrA2
(Dermaseptin)

Potato
(Solanum tuberosum) Stable Nucleus 1–5 µg/g FW

Broad-range and enhanced
resistance to virulent

phytopathogenic fungi (Alternaria,
Cercospora, Fusarium, Phytophthora,
Pythium, Rhizoctonia; Verticillium

sp.) and bacteria (Erwinia
carotovora)

[178]

Tobacco
(Nicotiana tabacum) Stable Nucleus 6–7 µg/g FW

Resistance to phytopathogenic
fungi (Fusarium solani; F.

oxysporum; Alternaria alternata;
Botrytis cinerea; Sclerotinia

sclerotiorum), oomycete (Pythium
aphanidermatum) and bacterium

(Pectobacterium carotovorum)

[179]

Thi2.1 (Thionin) Tomato (Lycopersicon
esculentum) Stable Nucleus Undefined

Crop protection
(F. oxysporum f. sp. lycopersici; R.

solanacearum strain Pss4)
[180]

Mj-AMP2
(Knottin) Rice (Oryza sativa) Stable Nucleus 0.32–0.38% total

protein
Enhanced resistance to fungal
pathogen (Magnaporthe oryzae) [181]

ChIFN-alpha
(interferon-α)

Lettuce (Lactuca
sativa) Transient Nucleus 0.393 µg/kg FW Antiviral activity against vesicular

stomatitis virus (VSV) [182]

Lipid Transfer
Proteins (LTPs)

Tobacco (Nicotiana
tabacum) Stable Nucleus Undefined

Enhanced resistance to pathogen
(Phytophthora nicotianae;

Pseudomonas syringae pv. tabaci)
[183]
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Table 3. Cont.

Anti-Microbial
Peptide Plant Species Stable or

Transient
Nucleus or
Chloroplast Expression Level Application Reference

Dm-AMP1
(Defensin) Rice (Oryza sativa) Stable Nucleus 0.43–0.57% total

soluble protein

Enhanced resistance to pathogen
(Magnaporthe oryzae; Rhizoctonia

solani)
[184]

rLF (Lactoferrin) Rice (Oryza sativa) Stable Nucleus 0.1% rice bran
weight

Functional feed additive on early
weaned piglets [185]

Rs-AFP2
(Defensin) Rice (Oryza sativa) Stable Nucleus 0.45–0.53% total

soluble protein

Enhanced resistance to fungal
pathogen (Magnaporthe oryzae;

Rhizoctonia solani)
[186]

CecB (Cecropin) Tomato (Solanum
lycopersicum) Stable Nucleus 0.001 µg/mg FW

Plant protection against bacterial
pathogens (Ralstonia solanacearum;

Xanthomonas campestris)
[187]

Retrocyclin-101
(Defensin)

Tobacco (Nicotiana
tabacum) Stable Chloroplast 32–38% total

soluble protein

Control viral (tobacco mosaic
virus) and bacterial (Erwinia

carotovora) infections
[188]

Protegrin-1
(Cathelicidin)

Tobacco (Nicotiana
tabacum) Stable Chloroplast 17–26% total

soluble protein
Control bacterial infections

(Erwinia carotovora) [188]

Tobacco (Nicotiana
tabacum) Transient Nucleus Undefined

Control mammalian bacteria
(Klebsiella pneumoniae;

Staphylococcus aureus; Escherichia
coli; Mycobacterium bovis) and

fungal (Candida albicans)
pathogens

[169]

Petunia Floral
defensins Banana (Musa spp.) Stable Nucleus Undefined

Effective resistance against
pathogenic fungal Fusarium
oxysporum f. sp. cubense (foc)

infection

[189]

Snakin-2 (Snakin) Tomato (Solanum
lycopersicum) Stable Nucleus Undefined Enhanced resistance to Clavibacter

michiganensis subsp. michiganensis [175]

Lactoferricin B
(Lactoferrin)

Tobacco (Nicotiana
tabacum) Stable Nucleus Undefined

Enhanced tolerance to pathogenic
bacterial (Pseudomonas syringae pv.
tabaci) and fungal (Botrytis cinerea)

diseases

[190]

PmAMP1
(cysteine-rich

protein)

Canola (Brassica
napus) Stable Nucleus Undefined

Effective resistance against fungal
pathogens (Alternaria brassicae;

Leptosphaeria maculans; Sclerotinia
sclerotiorum)

[191]

hCAP18/LL-37
(Fusion of two

cathelicidin
antimicrobial

proteins)

Chinese cabbage
(Brassica rapa cv.

Osome)
Stable Nucleus Undefined

Enhanced resistance to bacteria (P.
carotovorum subsp. carotovorum)

and fungal (Fusarium oxysporum f.
sp. Lycopersici; Colletotrichum

higginsianum; Rhizoctonia solani

[174]

Lactostatin
(anionic peptide) Rice (Oryza sativa) Stable Nucleus 2 mg/g dry seeds Anti-hypercholestero lemic drug

for potential clinical use [192]

SP1-1 (de-novo
designed)

Tobacco (Nicotiana
benthamiana) Transient Nucleus 0.025 mg/g FW

Antimicrobial activity (P. syringae
pv. Syringae; P. syringae pv. Tomato;

P. corrugate; Pectobacterium
carotovorum ssp. carotovorum)

[193]

SN-1 (Snakin) Wheat (Triticum
aestivum) Stable Nucleus Undefined

Antifungal activity in vitro and
enhanced resistance to fungus
(Gaeumannomyces graminis var.

tritici) and

[176]

Thanatin (S)
(synthetic
thanatin)

Arabidopsis
(Arabidopsis thaliana) Stable Nucleus Undefined

Acquired resistance to bacterial
pathogen (Pseudomonas syringae pv.

tomato.) and fungal pathogens
(Botrytis cinerea; powdery mildew)

Antibacterial and antifungal
activity in vitro

[173]
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Table 3. Cont.

Anti-Microbial
Peptide Plant Species Stable or

Transient
Nucleus or
Chloroplast Expression Level Application Reference

LL-37
(Cathelicidin)

Tomato (Solanum
lycopersicum) Stable Nucleus

16.8–58.2 µg/mL
total soluble

protein

Enhanced antibacterial activity
(Pectobacterium carotovorum ssp.
Carotovorum (Pcc); Xanthomonas
campestris pv. Vesicatoria (Xcv)

[194]

Barley (Hordeum
vulgare L.) Stable Nucleus 0.55 mg/kg seeds Antibacterial activity against E.

coli TOP10 in vitro [172]

BP100.gtag
(synthetic
peptide)

Rice (Oryza sativa) Stable Nucleus 0.5% total soluble
protein

Plant protection against bacterial
pathogens (Erwinia amylovora;

Pseudomonas syringae; Xanthomonas
axonopodis)

[195]

CecA (Cecropin) Rice (Oryza sativa) Stable Nucleus 1–4 µg/g seeds

Resistance to fungal pathogen
(Fusarium verticillioides) and
bacterial pathogen (Dickeya

dadantii)

[196]

Recombinant
colicins (Colicin)

Tobacco (Nicotiana
benthamiana) Transient Nucleus 0.6–3 mg/g FW

Effective and broad control of
foodborne pathogenic Escherichia

coli strains
[197]

Tobacco (Nicotiana
benthamiana) Transient Nucleus 0.58–2.31 mg/g

FW
Broad activity, high potency, and

purity as food antibacterial [198]

Retrocyclin Tobacco Stable Chloroplast
116 µg of

RC101/g of
lyophilized leaf

Effective against Streptococcus
mutans and impaired biofilm
formation following a single

topical application of
tooth-mimetic surface.

[199]

Protegrin Tobacco Stable Chloroplast Undefined

Effective against Streptococcus
mutans and impaired biofilm
formation following a single

topical application of
tooth-mimetic surface.

[199]

pro-SmAMP2
(Hevein-like

peptide)

Potato (Solanum
tuberosum) Stable Nucleus Undefined

Crop protection from Alternaria sp.
and Fusarium sp. pathogens in

resistant potato cultivar
[200]

D2A21 (synthetic
peptide)

Citrus fruit (Carrizo
citrange) Stable Nucleus Undefined

Reduced development of canker
disease caused by bacterium

(Xanthomonas citri)
[201]

PaeM4 (Pyocin) Tobacco (Nicotiana
benthamiana) Transient Nucleus 800 µg/g FW

Broad spectrum of antimicrobial
activity against clinical isolates of

Pseudomonas aeruginosa
[202]

CBD-alfAFP
(Defensin)

Tobacco (Nicotiana
tabacum) Stable Nucleus Undefined Enhanced resistance to plant

pathogen (Fusarium solani) [203]

LFchimera
(Lactoferrin-

derived
peptides)

Tobacco (Nicotiana
tabacum) Stable Nucleus Undefined

Antimicrobial activity against
clinical (Escherichia coli;

Staphylococcus aureus) and
phytopathogenic bacteria

(Ralstonia solanacearum; Erwinia
amylovira)

[171]

Tobacco (Nicotiana
tabacum)

Suspension
Cultures Hairy roots 4.8 µg/g FW Effective antimicrobial activity

against Escherichia coli [170]

Penicillium
digitatum AfpB

(antifungal
protein)

Tobacco (Nicotiana
benthamiana) Transient Nucleus 225 ± 37 µg/g

FW

Protect tomato plants against
Botrytis cinerea causing grey mold

disease
[204]
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Table 3. Cont.

Anti-Microbial
Peptide Plant Species Stable or

Transient
Nucleus or
Chloroplast Expression Level Application Reference

DrsB1
(Dermaseptin)

Tobacco (Nicotiana
tabacum)

Suspension
culture Nucleus Undefined

Effective antimicrobial effects of
plant bacterial and fungal

phytopathogens
[205]

Tobacco (Nicotiana
tabacum) Stable Nucleus 5.5–6.0 µg/g FW

Enhanced resistance to plant
pathogens (Alternaria alternata;

Alternaria solani;, Fusarium
oxysporum; Fusarium solani fungi)

[206]

Laterosporulin-1
(synthetic anionic

AMP/ELP
fusion)

Tobacco (Nicotiana
benthamiana) Transient Nucleus 375 µg/g FW High antibacterial activity against

Staphylococcus epidermidis [161]

ADP2-3
(synthetic anionic

AMP/ELP
fusion)

Tobacco (Nicotiana
benthamiana) Transient Nucleus 563 µg/g FW High antibacterial activity against

Staphylococcus epidermidis [161]

Colicin M
(Colicin)

Tobacco (Nicotiana
tabacum) Stable Nucleus 2 mg/g FW

Antibacterial activity against
control and clinical pathogens

(Escherichia coli; Klebsiella
pneumoniae)

[207]

7. Conclusions

Diverse AMPs hold major potential for the development of innovative approaches
in both clinical and agricultural biotechnology. Disease-resistant plant traits developed
by introducing AMPs might increase yields and offer safety of agricultural products
against phytopathogens. Further recombinant expression of AMPs in plant platforms
overcome the limitations associated with the large-scale production of these recombinant
peptides for clinical use. The urgent need of rapid, cost-effective protein production systems
for the production of large amounts of recombinant protein has been driving the plant
molecular farming research. There has been much progress in our understanding of this
field and extensive research has been performed over the last three decades on plant-based
biopharmaceutical production against various pathogens. The plant-derived proteins are
shown to be functional and even shown to be effective in clinical trials. However, plant-
made pharmaceuticals still encounter some technological and regulatory issues limiting
prospective investors eventually resulting in a long timeframe of potential products from
bench-to-market. Despite the many proof-of-concept studies, few products are approved
for commercial applications. The challenges faced by PMPs during initial stages of plant
molecular farming such as longer production time, transgene escape and safety have been
addressed in recent decades. The issues related to low yield and time associated with the
stable expression have been addressed by developing transient expression systems. Thus,
the proper selection of expression strategy, vector, and extraction/purification techniques
is essential to achieve high product yield, desired functionality, safety and quality of
the products. Furthermore, the recent advances in the plant biotechnology have pushed
various regulatory bodies to develop regulatory frameworks for the process of genetic
transformations or on the final plant-derived product [208]. There is substantial evidence
showing the capability of making proteins with high quality to address a range of human
health-related issues particularly in low-income and middle-income countries. The FDA
approval for the therapeutic enzyme Elelyso was a major milestone in the field. Most likely,
we can expect a significant number of plant-derived biopharmaceuticals on the market in
the upcoming years. There are several promising AMPs which are in different stages of
clinical trials. These AMPs could be potential candidates for plant-based manufacturing.
Thus, the integration of our existing knowledge of the plant biotechnology, huge strides
that have been made in plant transient expression and glycoengineering strategies coupled
with the design, development and accessibility of AMPs could make an ideal foundation
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for the design of a novel class of plant-derived AMP based therapeutics that hold promising
potential. In summary, biotechnological perspectives for the rapid large-scale production
of AMPs in plant systems has been provided. The existing knowledge on plant expression
system opens the way to produce and evaluate the potentiality of AMPs that could be
rapidly manufactured, at low cost and with negligible risk, to fight against drug resistant
pathogens in post-antibiotic era. Altogether production of AMPs in plants is considered a
prospective tool for novel applications in medicine and agriculture.
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