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ABSTRACT: Diesel and biodiesel blends requires additives to improve
fuel quality properties and engine performance. Diesel improvers are
added before, during and/or after the fuel is blended. However, no
accurate rapid and non-destructive analytical method is used during the
fuel production that could determine the exact concentration of various
types of improvers in diesel fuel. Thus, the aim of this study was to
determine the concentration of several improvers in diesel matrices at
the same time. Three types of diesel improvers, i.e., a cold-flow improver
(CFI), a conductivity−lubricity improver (CLI), and a cetane number
improver (CNI), were simultaneously determined by near-infrared
(NIR) spectroscopy combined with multivariate statistical analysis and
the partial least squares algorithm. The prediction models yielded high
correlation coefficients (R2) >0.99 and satisfactory values of the root
mean square error of calibration as follows: CLI 4.2 (mg·kg−1), CFI 4.6
(mg·kg−1), and CNI 5.3 (mg·kg−1). The residual standard deviation of the repeatability was calculated to be around 8%. These
results highlight the potential of NIR spectroscopy for use as a fast, low-cost, and efficient tool to determine the concentrations of
diesel improvers. Moreover, this technique is suitable for application during refinery production, especially for the purpose of online
monitoring to prevent overdoses of additives and save financial expenses.

1. INTRODUCTION
In the last decade, the emission of environmental pollutants
upon the combustion of fossil fuels has become of significant
concern. These concerns have resulted in stricter global fuel
regulations, particularly in terms of reducing the emission of
sulfur, nitrogen oxides (NOx), carbon monoxide, total
hydrocarbons, and particulate matter from the combustion of
diesel fuels.1 In addition, the shift to renewable sources to
replace fossil fuels has also accelerated, leading to the increased
production, improvement, and use of environmentally friendly
biofuels.

However, the use of biofuels has been shown to have a
negative effect on the properties and behavior of the fuel inside
the engine due to the absence of specific components. As a
result, cost-effective additization is necessary to maintain the
desirable properties of diesel fuels while ensuring an optimal
engine performance. Fuel additives, i.e., improvers, come in
several types, such as liquids, gases, or solid additives. In
general, additives are divided into different categories (cetane
improvers, antioxidants, metal-based additives, lubricity im-
provers, etc.) and differ in effects and applications.2

More specifically, additives can be mixed into the fuel either
during blending or after blending to improve the fuel
properties without requiring major changes to current engine
technologies. Furthermore, these chemicals are effective even
when added at low concentrations. However, no purposeful

regulations exist regarding the concentrations of such fuel
improvers that can be added to diesel, which can lead to an
unnecessarily high consumption of improvers and higher
costs.3 This issue could potentially be solved by the use of
near-infrared (NIR) spectroscopy to effectively and simulta-
neously determine the concentrations of diesel improvers
within the diesel matrix, while also purposefully correcting
their concentrations during online monitoring.

NIR spectroscopy is a well-known analytical technique that
has proven its potential for use in the refinery industry,
wherein it has been developed for various fuel characterization
applications over the last decade. This technique is desirable
because of its rapid, nondestructive, and low-cost nature, in
addition to its potential for combination with multivariate
statistical analysis. Furthermore, the NIR technique can be
integrated into portable devices that can be used directly for
online monitoring or off-site operations.4,5 Indeed, a
combination of NIR spectroscopy and multivariate analysis is
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often used to determine the chemical and physical properties
of fuels and their components.6−11

Three main types of diesel improvers are commonly
employed, including cold-flow improvers (CFIs), conductiv-
ity−lubricity improvers (CLIs), and cetane number improvers
(CNIs); however, no method exists that permits the
simultaneous determination of all three additive types. In
terms of their application, the CFI additive improves the flow
of diesel fuel in cold weather and enhances the cold-flow
properties of diesel fuels, including the cloud point, pour point,
and cold filter plugging point.12 The main problem with diesel
fuel is its tendency to exhibit reduced flow at reduced
temperatures, and this can be attributed to the formation of
solids in the cold fuel.13 For example, wax crystals can be
generated, which possess a slightly higher density than diesel
fuel at any given temperature, and so there is a tendency for
wax to settle at the bottom of the storage vessel. The resulting
reduction in the fuel flow therefore affects the transport and
combustion of such distillate fuels in internal combustion
engines. To avoid such issues, CFIs are commonly employed,
including wax antisettling flow improvers (WAFI) that reduce
wax crystal formation while also exhibiting an antisettling
effect.14

In addition, the CLI is a combination of diesel additives that
focus on improving the lubrication and electric conductivity of
the fuel while allowing the electrostatic buildup to dissipate
safely without sparking.15,16 This combination additive is
commonly employed due to the fact that low-lubricity diesel
can cause premature failure of injection system components
and reduce engine performance. To determine the lubricity of
a fuel, a number of analytical methods have been reported,
including the high-frequency reciprocating rig method
according to European standard (EN) 590:2013+A1:2017
and American Society for Testing Materials (ASTM) D6079-
18.17,18 Moreover, when the sulfur content of diesel fuel is
reduced to meet the necessary requirements, a variety of
engine problems can arise, including increased wear, injector
corrosion, engine instability, or slow starting.19 These
problems arise because of the removal of naturally occurring
conductive polar substances during the hydrodesulfurization
process, ultimately resulting in a low diesel conductivity.20

The cetane number of diesel, which is an indicator of the
speed of combustion of diesel fuel and the compression
required for ignition, can be improved by the addition of a
booster CNI, such as alkyl nitrates. The most common type
used is 2-ethylhexyl nitrate (EHN).21 This additive is used due
to its rapid decomposition in the combustion chamber at high
temperatures, in addition to the fact that it generates products
that help initiate combustion and shorten the ignition delay
time. What is more, it contributes to lower NOx.22 According
to previous reports, the addition of 0.1 wt % EHN can increase
the cetane number of diesel by between 4 and 6.23−25

Importantly, EHN is effective at low concentrations, which is
important when the maximum percentage of added improvers
cannot exceed 5%.26

Therefore, the aim of this study is to verify whether it is
possible to determine the concentrations of three types of
diesel improvers at the same time in diesel fuel by NIR
spectroscopy combined with multivariate statistical analysis
and the partial least squares (PLS) algorithm.

2. EXPERIMENTAL SECTION
2.1. Sample Collection and Preparation. A mixture of

hydrogenated middle distillates (gas oil and kerosene) was
used as the fuel matrix, which is referred to hereafter as diesel.
The diesel specimen was produced by processing a mixture of
Russian export blend and Caspian Pipeline Consortium crude
oil in an 80:20 wt % ratio using commercial refinery
technology.

The diesel sample was extracted on a static mixer (blender)
according to the standard procedure to ensure that it did not
contain any additives or fatty acid methyl esters and to ensure
that it would only contain laboratory-added amounts of
selected additives.27 With the exception of the cold-flow
properties, the lubricity, and the cetane number, which are
normally modified by additives, the diesel sample met all
quality requirements outlined in EN 590:2013+A1:2017.

Three commercially available additives were used in this
study. More specifically, CFI, the additive for modifying cold-
flow properties (CFPP parameter) of the WAFI type, consisted
of a mixture of vinyl acetate, ethylene copolymers, and
modified polymers, while the CLI was composed of fatty acids,
including linoleic and oleic acids, and 2-ethylhexyl nitrate (2-
EHN, >99%) was used as the CNI.

All diesel samples were prepared on a laboratory scale. In
each case, the desired additive was homogenized and the
appropriate mass was placed in a small glass beaker. The
beaker was then placed in a dryer for 15−20 min at the
temperature recommended by the additive manufacturer (i.e.,
40 °C for the CFI, 50 °C for the CLI, and ambient
temperature 21−23 °C for the CNI). The additive was then
quantitatively transferred from the beaker to a preheated (45
°C) diesel sample of the required calculated weight. The total
amount was 10 g for one analyzed sample. The final samples
were thoroughly homogenized and analyzed, as detailed below.

2.2. NIR Data Acquisition and Modeling. Each sample
(∼10 mL) was analyzed under laboratory conditions using a
Nicolet 6700 Fourier transform infrared (FTIR)/NIR
spectrometer (Thermo Fisher Scientific, Waltham, Massachu-
setts, USA) equipped with an immersion probe (Hellma
GmbH & Co. KG, Müllheim, Germany) with a 5 mm optical
path and an InGaAs detector. The spectra were acquired in the
spectral range of 10,000−4000 cm−1 and are displayed as the
average of three consecutive measurements from 50 scans with
a resolution of 8 cm−1. These spectra were then subsequently
employed for NIR model development. OMNIC software
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) was
used for all spectral analyses. The chemometric computations
were performed using TQ Analyst 9 software (Thermo Fisher
Scientific, Waltham, Massachusetts, USA) for the quantitative
determination of the diesel improvers.

NIR models were developed based on the PLS algorithm, as
it allows the compression of large spectral data.

On top of this, the number of spectral variables is converted
to a smaller number of factors in the spectral matrix, thereby
removing unnecessary spectral information. PLS uses the
relationship between the observed response variable y (y-
variable = additive concentration) and the independent
variable x (x-variable = NIR spectral matrix), displaying linear
distributions for the calibration standards, with correlation
coefficients close to 1. The PLS calibration model for the
mean-centered data was assessed using the root mean square
error of calibration (RMSEC), which indicates the quality of a
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calibration model, and the root mean square error of cross-
validation (RMSECV) using the leave-one-out method, where
one standard was always removed and subsequently predicted
by the model prior to comparison with the actual value, as
follows:

=
y y

n
RMSE

( )i
n

i i
2

where yi is the actual value, ŷi is the predicted value, n is the
total number of samples in the calibration set for the RMSEC,
and n also represents the number of samples in the cross-
validation set for the RMSECV.28 In addition, the dependence
of the latent variables (LVs) on the PLS-based RMSECV was
determined using the minimum value of the predicted residual
error sum of squares (PRESS).

To determine the quality of the model and verify whether
the NIR measurements are fit for purpose, the ratio of error
range (RER) of the calibration set was calculated as the ratio of
the maximum and minimum of the reference data to the
RMSECV, and the ratio of prediction to deviation (RPD),
which in turn was defined as the ratio between the standard
deviation (SD) of the reference data from the external cross-
validation set by the RMSECV.29,30

Moreover, a number of statistical parameters were evaluated,
including an external validation dataset of 10 samples, which
were not included in the calibration set, and a repeatability test
along with its residual standard deviation (RSD), which was
performed over a short time period under identical NIR
conditions. Calibration standard number 119 was measured 15
times, and the NIR immersion probe was cleaned and then
reinserted into the sample. The workflow scheme of building
the PLS model is presented in Figure 1.

3. RESULTS AND DISCUSSION
3.1. Preprocessing of the NIR Spectra. The raw spectra

of all samples shown in Figure 2a were obtained in the region
of 10,000−4000 cm−1. The absorbance spectra acquired across
the NIR spectral range were inspected to identify gross outliers
and noisy spectral regions. Generally, regions in the given NIR
spectra can be assigned to the occurring C−H stretching bands
approximately as: (1) first overtone bands of −CH2 and
−CH3 stretching in the region 5250−6100 cm−1, (2)
combinations of vibrational modes 6300−7500 cm−1, and
(3) second overtones 8000−8700 cm−1. However, assigning
each band and functional group of NIR spectra is difficult
compared to other infrared spectra, such as Raman or FTIR.31

Hence, the usage of quantitative analyses, such as multivariate
calibration of NIR spectra is necessary. A spectral region for
building the PLS model was selected (Table 1) and a first
derivative preprocessing technique was applied, based on the
obtained lowest and best fit given chemometric parameters
when compared to baseline correction or the second
derivative. Figure 2b shows the optimized spectra for
developing the PLS model in the first derivative, where the
spectral region between 4000 and 4500 cm−1 was eliminated
from the calculations to avoid possible interference. In
addition, data normalization by mean centering was employed
as the first stage in preprocessing to subtract the average from
each variable, which ensured that all results would be
interpretable in terms of the variation around the mean.

3.2. Calibration and Validation Modeling. Figure 3
shows a graphical representation of each calibration model
created using the actual concentration on the x-axis versus the
calculated (predicted) concentration on the y-axis, based on
the near-infrared (NIR) data. The data employed for the PLS
model reference values were based on the exact weight of the
improver that was added to the diesel matrix to simultaneously
determine the concentrations of all diesel improvers. The PLS
models were developed as follows. First, the CLI model was
developed using 200 calibration standards with additive
contents ranging from 60 to 285 mg·kg−1, the CFI model
was developed using 170 calibration standards (65−215 mg·
kg−1), and the CNI model was developed using 120 calibration
standards (75−513 mg·kg−1). The number of calibration
standards used for each model differs owing to the removal of
outlying standards and mainly because of the gradual use of
additives. For example, initially, only the CLI was added to the
diesel specimen, and this was followed by addition of the CFI,
and later the CNI. The spectra of the calibration standards
containing the same additive concentration were averaged to
create the composite standards. Therefore, the PLS models in
their final form were composed as follows: the CLI model of
37 calibration standards (Figure 3a), the CFI model of 28
calibration standards (Figure 3b), and the CNI model of 54
calibration standards (Figure 3c), including the composite
standards. The corresponding values for the RMSEC
parameter, as outlined in Table 1, were found to be 4.2 for
the CLI, 4.6 for the CFI, and 5.3 for the CNI. The measure of
fit of the calibration model, given by the calculated correlation
coefficient (R2), was >0.99, depending on the data sample type.
This value should be close to 1 to ensure that the maximum
variance in the response variable can be attributed to the
dataset.

For additional control, cross-validation, i.e., internal
validation of the created calibration models, was carried out.Figure 1. Workflow scheme of building a PLS model.
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Moreover, the use of this cross-validation approach helps
reveal outlying standards. The RMSECV results are shown in

Table 1 for each model. While building the PLS model, the
LVs with the lowest RMSECV parameters were preserved until

Figure 2. (a) Typical raw absorbance spectra of the samples. (b) First derivative preprocessed NIR spectra used for modeling.

Table 1. Overview of the Chemometric Parameters Employed in the PLS Models

PLS model

parameter CLI CFI CNI

spectral region 4501−8600 cm−1 5000−7600 cm−1 4550−9000 cm−1

R2 0.9978 0.9936 0.9988
RMSEC 4.2 4.6 5.3
RMSECV 21.0 14.5 40.2
LV 9 5 10

Figure 3. NIR models for PLS regression analysis of each diesel improver containing the composite standards: (a) CLI, (b) CFI, and (c) CNI.
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the ratio between the cross-validation and calibration errors
(RMSECV/RMSEC) exceeded 10:1. Generally, large differ-
ences between the RMSEC and RMSECV indicate a lack of
model robustness and the need for greater caution in future
predictions. In contrast, a model is considered to be of good
quality when the ratio between the RMSEC and RSMECV
parameters was not >10:1. In our case, a lower ratio was
obtained, which indicates that the number of false-positive
results created by the PLS models was minimized. This
criterion was empirically established based on previous
modeling to avoid overfitting and false-positive results. The
dependence of the LVs on the PLS-based RMSECV is
presented in Figure 4 and was determined using the minimum
PRESS value.32

The plot showing the dependence of the LV on the
RMSECV should take the form of a sharply declining curve,
where the optimal factor number is represented by the
minimum of the curve. As expected, it was found that upon
increasing the factor number, the RMSECV parameter
decreased to an essentially constant value. Thus, the optimal
LV values for the CLI, CFI, and CNI models were determined
to be 9, 5, and 10, respectively. These results highlight the
potential of minimal negative influence predictions, as the use
of too many factors (i.e., ≥20) for PLS modeling can lead to
false-positive results.

To further determine the accuracy of the developed PLS
models, external validation and repeatability experiments were
carried out, as presented in Figure 5 and Table 2, respectively.

Moreover, the external validation data can be found in the
Supporting Information. Based on the external validation

dataset, the minimum/maximum absolute differences were
determined as follows: CLI minimum = 1 mg·kg−1 for
validation standard numbers 9 and 10, CLI maximum = 14
mg·kg−1 for validation standard 4; CFI = zero absolute
difference for validation standard number 7, CFI maximum =
14 mg·kg−1 for validation number 2; CNI = zero absolute
difference for validation standard number 4, and CNI
maximum = 25 mg·kg−1 for validation standard number 6.

Furthermore, the repeatability of the multivariate PLS
method (Table 2) was determined based on outlying
measurements, using the Dixon’s Q-test with a significance
level of 0.05 (with a critical value of 0.330 for 15 analyses) and
the obtained RSD values. As a result, none of the standards
were eliminated. RSD values of 8.1, 7.8, and CLI 7.9% were
obtained for the CLI, CFI, and CLI systems, respectively,
thereby confirming the reliability of the PLS models. However,
it should be noted that a more robust model could yield
superior results.

In addition to determining the quality of the PLS models
and evaluating whether they are fit for the purpose, the RPD
and RER were calculated. Based on previous literature, it is
known that an RPD value between 2 and 2.5 indicates that the
prediction model is sufficient for determination purposes,
while values of 2.5 and ≥3 correspond to good and excellent
prediction accuracies, respectively.33,34 In this study, the RPD
values for the PLS models were determined to be 3.1, 2.2, and
2.3 for the CLI, CFI, and CNI systems, respectively, thereby
indicating that they are suitable for use in the determination of
diesel improvers. However, the prediction performance must
be enhanced to achieve higher CFI and CNI values and to

Figure 4. Dependence of the LV on the RMSECV for (a) CLI, (b) CFI, and (c) CNI.
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label these models as excellent for prediction. It should also be
noted here that models with RER values >4 are considered
suitable for sample screening, while values >10 render the
model acceptable for quality control applications, and values
>15 allow the model to be employed for quantification
purposes; therefore, values >10 are preferred.35 Indeed, the
RER values for the CLI, CFI, and CNI systems were calculated
to be 10.7, 10.3, and 12.8, respectively, thereby further
confirming the suitability of the developed models.

Here, we performed cost analysis of the mentioned additives
according to the information of individual suppliers. CLI and
CFI groups of additives are currently (2022) commercially
available at a price level of around 3400−3900 EUR per ton. In
the case of CNI, it is an amount of 1900−2100 EUR/ton. It
should be mentioned that the last year marked a significant
price increase, especially in the case of CLI additives, for which

the price was increased by 119%. The smallest price increase
was for additives of the CNI group (+18%), probably due to
the fact that it is a pure chemical (2-EHN).

Taking into account the current price level and the RSD
(8%), it would be possible to calculate potential savings in the
accuracy of dosing of individual additives. For these
calculations, the verified maximum of the tested ranges was
considered, which at 8% is 23 mg/kg for CLI; 17 mg/kg for
CFI, and 41 mg·kg−1 for CNI. Potential savings when using the
mentioned PLS model then reach up to 242 EUR per ton of
diesel fuel produced.

Previously, Velvarska ́ et al.36 predicted the concentration of
one additive in diesel fuel, namely, CFIs, using NIR
spectroscopy with the PLS model developed in the range of
15−325 mg·kg−1 and with the following parameters calculated
by their PLS model; RMSEC (11.9 mg·kg−1), RMSECV (28.4
mg·kg−1), and R2 (0.9880). Moreover, they reported RPD 2.7,
RER 10.9, and the maximum absolute difference between the
actual value and the NIR value for CFI 17 mg·kg−1. Areas
where significant differences have been found in comparison to
our PLS model include RMSEC (5.3 mg·kg−1), RMSECV
(14.5 mg·kg−1), and R2 (0.9936), whereas the PLS model in
this study performed well over a lower concentration range
65−215 mg·kg−1. Furthermore, we demonstrate a CFI
maximum absolute difference of 14 mg·kg−1.Based on these
results, it is apparent that our PLS model was superior to that
of Velvarska ́ et al. However, it should be noted that these
authors reported better RPD and RER performance efficiencies
of 2.7 and 10.9, respectively, which are superior to our values

Figure 5. External validation datasets for (a) CLI, (b) CFI, and (c) CNI.

Table 2. Repeatability Test Data for the PLS Models

value

statistical parameter CLI CFI CNI

minimum [mg·kg−1] 118 98 191
maximum [mg·kg−1] 153 121 242
mean [mg·kg−1] 137 110 215
reference value [mg·kg−1] 143 100 190
median [mg·kg−1] 137 111 216
SD [mg·kg−1] 11.2 8.5 17.1
RSD (%) 8.1 7.8 7.9
variance [mg·kg−1] 124 73 292
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of 2.2 and 10.3; these differences may have been due to the
lower range of additive concentrations used in this study.
However, as we mentioned before, they predicted concen-
tration just for one diesel improver in a larger range, in
contrast, we determined three additives at the same time in
one diesel fuel sample, which is more suitable for saving time
and costs.

In addition, Vrtisǩa and Šimaćěk37 employed FTIR and PLS
models to predict the content of CNI 2-ethylhexyl nitrate
(EHN) in the range of 0−2436 mg·kg−1 in diesel/biodiesel
blends with a mean error of 32 mg·kg−1. By contrast, we
predict the CNI in the smaller range of 75−513 mg·kg−1.

Nevertheless, despite some of the beneficial properties of the
previously described PLS models by authors, our model stands
out due to the fact that we determined the contents of three
types of diesel improvers in the diesel matrix, thereby
rendering our model more desirable for online monitoring
purposes. It should also be noted that the investigation of a
higher concentration range could potentially yield more
desirable results, and this will be investigated in the future
by our group.

4. CONCLUSIONS
NIR spectroscopy was used to determine the concentrations of
the three types commonly used diesel improvers, including a
CLI, a CFI, and a CNI. The developed PLS models were
evaluated using a range of chemometric parameters, correlation
coefficients, the RMSEC, RMSECV, and LVs. To determine
the quality of the developed PLS models, external validation
and repeatability experiments were performed, wherein an
acceptable RSD of 8% was obtained. Moreover, we acquired an
RPD >2 and an RER >10 for each PLS model. Although a
more robust model would be expected to yield superior results,
the current PLS models are highly accurate for online
monitoring purposes.

Our results highlight the potential of NIR spectroscopy to be
used as a fast, inexpensive, and efficient tool for the
determination of concentrations of three diesel improvers in
diesel fuel at the same time. In addition, we recommend NIR
spectroscopy as a suitable technique for application in refinery
production; specifically, it would be possible to monitor the
content of additives in diesel fuel online either during or after
blending. In addition, this monitoring only requires a NIR
spectrometer instead of several devices and techniques, which
brings advantages in terms of rapid response to avoid fuel
overdoses, thus saving costs. As further variants following this
study, it would be possible to verify whether it is possible to
determine a larger number of additives at the same time or
whether three types of improvers can also be analyzed with a
different matrix or a different ratio of diesel to biomaterial.
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