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Dementia affects millions of elderly worldwide causing remarkable costs to society, but effective treatment is still lacking.
Acupuncture is one of the complementary therapies that has been applied to cognitive deficits such as Alzheimer’s disease (AD)
and vascular cognitive impairment (VCI), while the underlying mechanisms of its therapeutic efficiency remain elusive.
Neuroplasticity is defined as the ability of the nervous system to adapt to internal and external environmental changes, which
may support some data to clarify mechanisms how acupuncture improves cognitive impairments. This review summarizes the
up-to-date and comprehensive information on the effectiveness of acupuncture treatment on neurogenesis and gliogenesis,
synaptic plasticity, related regulatory factors, and signaling pathways, as well as brain network connectivity, to lay ground for
fully elucidating the potential mechanism of acupuncture on the regulation of neuroplasticity and promoting its clinical
application as a complementary therapy for AD and VCI.

1. Introduction

As the population ages, the prevalence of dementia is increas-
ing worldwide with an annual incidence of nearly 10 million
[1], which leads to threats and challenges to global health and
wellbeing. Dementia is characterized as a syndrome with
myriad and complex causes, including primary neurologic,
neuropsychiatric, and medical conditions and genetic and
environmental factors [2, 3]. In the elderly, neurodegenera-
tive dementias are most common [2], among which Alzhei-
mer’s disease (AD) is believed to be the leading cause of
dementia, and vascular cognitive impairment (VCI) is the
second utmost cause [4, 5]. Unprecedented advancements
have been made in molecular neuroimaging, clinicopatho-

logic correlation, and the development of novel biomarkers
in recent decades. However, effective therapeutics remain
limited and even absent to date [4, 5]. Acupuncture, as one
of complementary therapies for AD and VCI, is gradually
applied to alleviate suffering, aggressively treating contribut-
ing symptoms and improving overall quality of life [6–10].
However, the underlying mechanisms remain elusive.

Neuroplasticity refers to the capacity of the nervous
system to adapt to internal and external environmental
changes by reorganizing its structure, function, and connec-
tions [11–14], which occurs at various levels of the nervous
system from tissue to cellular to molecular [13]. It is known
that dysregulated or disrupted neuroplasticity is implicated
as a pathological mechanism in AD [15] and VCI [16].
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Furthermore, some treatments that stimulate or modulate
neuroplasticity have been indicated as effective in improving
cognition [12, 17, 18], and might be potential therapy in
cognitive impairments such as AD and VCI.

Acupuncture signals are recognized as a potent form of
sensory stimulation that ascend mainly through the spinal
ventrolateral funiculus to the brain [19]. The mechanisms
of acupuncture-mediated neuroplasticity have recently
attracted increased interest. Accordingly, acupuncture mod-
ulation over several cognition- or aging-related gene expres-
sions [20], plasticity signaling pathways [21, 22], and brain
functional connectivities [23] has been studied. Herein, we
review the application of different protocols of acupuncture
in animal models and humans, and their effectiveness on
neuroplasticity in various sections: neurogenesis and gliogen-
esis, synaptic plasticity, related proteins and signaling path-
ways, and brain network connectivity. This review is aimed
at laying the ground for elucidating the potential mechanism
of acupuncture on AD and VCI to promote its clinical appli-
cation as a complementary treatment.

2. Neurogenesis and Gliogenesis

The proliferation and differentiation of neurons and glial
cells, also known as neurogenesis and gliogenesis, contribute
to some neurorepair and improve brain function [24, 25].
Many previous results demonstrated that cerebral amyloid-
osis in ADmouse models caused neuronal proliferation inhi-
bition and marked gliogenesis [26–28], and that stroke could
trigger striatal and cortical neurogenesis and gliogenesis in
murine models [29]. Mounting evidence indicates that adult
hippocampal neurogenesis is implicated in cognitive pro-
cesses, and that neurogenesis deficits may impair learning
and memory. In states of brain injury such as AD and VCI,
compensatory neurogenesis and gliogenesis mediate a bal-
ance between initial injury processes and endogenous repair
processes [24]. Regulation of neurogenesis and gliogenesis
is possibly associated with improving cognitive impairment
and, consequently, may be attractive therapeutic targets for
AD and VCI.

It is known that neurogenesis in the adult mammalian
brain mostly takes place in specific brain regions harboring
adult neuro stem and precursor cells, such as the subgranular
zone (SGZ) of the hippocampal dentate gyrus (DG) and the
ventricular/subventricular zone (VZ/SVZ) of the lateral ven-
tricles [25]. Cognitive impairment due to AD or ischemic
injury is recognized as partly related with neuron loss,
impairment of cell proliferation, and imbalance between
neuron loss and proliferation in the above regions [30]. Some
studies showed that both manual acupuncture (MA) and
electroacupuncture (EA) could ameliorate the learning and
memory deficits of AD mice models through inducing the
enhancement of neuron proliferation and migration in hip-
pocampal DG and VZ/SVZ [31–33]. And the effect of MA
and EA on improving cognitive dysfunction through the pro-
liferation and differentiation of hippocampal neuro stem cells
(NSCs) was also identified in murine models for vascular
dementia (VaD) [34–36]. In addition, neurogenesis could
take place in other brain areas in pathological conditions,

such as the cortex [37], where the promotion of neurogenesis
related to EA was also detected in the transgenic mice model
for AD [33].

VCI is recognized to be associated with pathological
changes in white matter degeneration and demyelination
[38]. Oligodendrocyte (OL), as one predominant cell type
in white matter, mediates myelination that is an essential
process for the appropriate propagation of action potentials
along axons [39]. Myelination participates in the restoration
of damaged white matter in the adult brain [40], which may
provide potential utility for the treatment of VCI. In a mouse
model of VaD, EA was indicated to enhance the differentia-
tion of oligodendrocyte precursor cells (OPCs) into mature
OLs and ameliorate white matter damage in the corpus callo-
sum (CC) [41]. Moreover, astrocytes also perform critical
impacts on promoting neovascularization, regulating neuro-
nal activity, and supporting synaptogenesis and neurogen-
esis, which may influence recovery following ischemic
lesion [39, 42]. Experimental studies have reported that acu-
puncture was able to influence the proliferation and differen-
tiation of astrocytes; however, the results were discrepant.
One study revealed that MAwas able to inhibit astrocyte acti-
vation and proliferation in VaD rat models [36]. Conversely,
Kim et al. found that EA stimulation could induce NSCs
differentiated into astrocytes in a VaD mouse model [35].
These results may be caused by differential acupoints or acu-
puncture methods. The differential influence of the acupunc-
ture method (i.e., MA vs. EA) on neurogenesis has been
demonstrated. And one study found that MA vs. EA stimula-
tion at the same acupoints might induce differential cell
proliferation and neuroblast differentiation in healthy rats
[43]. And further investigation of the compared impact of
differential acupuncture methods and acupoints on gliogen-
esis in AD and VCI models is required.

In addition to the direct effect on endogenous neurogen-
esis and gliogenesis, acupuncture was able to promote the
survival, proliferation, migration, and differentiation of exog-
enous NSCs in the hippocampal microenvironment by regu-
lating components of the cerebral microenvironment [44] or
the related cytokine levels [45] in an AD mice model. All
these findings demonstrated the influence of acupuncture
on endogenous and exogenous neurogenesis and gliogenesis
in AD and VCI, which deepen our understanding of acu-
puncture modulating neuroplasticity. There remain some
limitations and even discrepancies in these results possibly
caused by acupoints or models or observation times, or even
acupuncture methods (i.e., MA vs. EA). And the mechanisms
underlying the impact of acupuncture on neurogenesis and
gliogenesis in different states, especially molecular mecha-
nisms, need to be investigated.

3. Synaptic Plasticity

Synapses, the most sensitive and plastic structures, are
directly involved in the integration and transfer of informa-
tion within the neuro system. Previous studies demonstrated
that synapse loss and dysfunction was a key feature in AD
[46] and VCI [47] and positively correlates with cognitive
damage. Impaired dendritic structure, spine density, and
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synaptic ultrastructure of neurons have been identified in
brain tissue of AD patients and murine models, caused by
soluble amyloid beta (Aβ) in the hippocampus [48, 49].
And ischemia-induced synapse reduction was also recog-
nized to be the major pathological causes of VaD [50].
Synaptic plasticity, also defined as activity-dependent syn-
aptic modifications of the strength of synaptic connections,
is widely recognized to be fundamental to the formation
and maintenance of learning and memory [51]. Synaptic
plasticity in the neuro network, an important basis for
cortical plasticity, is associated with learning and memory
and sensorimotor dysfunction and recovery [51, 52]. Syn-
aptic plasticity mainly includes modulation of the morpho-
logical structure of synapses and the synaptic strength and
transmission, in which some synaptic protein markers,
neurotransmitters, and receptors participate. Recently,
modulation of synaptic plasticity is believed to be a prom-
ising approach for treating AD and VCI.

Synapse-structure parameters, such as synaptic curva-
tures, the width of the synaptic cleft, and the thickness of the
postsynaptic density, are proposed to be important indicators
that reflect synaptic morphological plasticity and greatly affect
synaptic transmission [53]. Many studies revealed that MA
and EA treatments had positive effects on the recovery of the
learning and memory abilities not only in AD rat models but
also in VCI, through increasing synaptic curvatures, decreas-
ing the width of synaptic clefts, and thickening the postsynap-
tic densities in the hippocampus [49, 54]. In addition, MAwas
able to reverse the learning and memory impairments in AD
mice models through enhancing the conjunction among the
synapses and promoting synaptic formation [20] and regener-
ation [55], reducing ultrastructural degradation of synapses
[56], and increasing the number and length of dendrites [57]
and neurite fibers [58].

Long-term potentiation (LTP) and long-term depression
(LTD) are considered as two indicators and forms of synaptic
transmission [59]. As a cellular model of synaptic plasticity,
LTP is the long-lasting enhancement in signal transmission
between two neurons after synchronous stimulation associ-
ated with memory formation and storage, reflecting an
increase of synaptic strength [60]. LTD is relevant to memory
integration, forgetting, and recovery of LTP production at
desaturation state [61]. And converging studies supported a
crucial role of LTD in some types of learning and memory
and in situations where cognitive demands require a flexible
response [59]. Many electrophysiological studies showed that
acupuncture could apparently improve the recovery from
cognitive deficits by promoting LTP and/or LTD [61–63]
and preventing or restoring the impaired LTP [64–69] in
AD or VCI rat models. In addition to LTP and LTD, EA
could also ameliorate the synaptic transmission by raising
the slope of excitatory postsynaptic potential (EPSP) and
the amplitude of population spikes (PS) in an AD mouse
model [70].

Synaptophysin (SYN) is a major integral membrane pro-
tein of the presynaptic vesicle, and postsynaptic density 95
(PSD-95) and growth-associated protein 43 (GAP-43) are
postsynaptic markers [71]. As important protein markers of
regeneration and remodeling, they are widely found in all

nerve terminals and used for quantifying the number of axon
terminals, reflecting the occurrence, density, and strength of
synapses [49, 72]. Many previous studies reported reduced
expression of SYN and PSD-95 in the hippocampus in AD
and VaD [73, 74]. It was demonstrated that acupuncture
was able to promote synapse-structure damage rehabilitation
by upregulating the expression of SYN [44, 54, 55], PSD-95
[56, 75, 76], and GAP-43 [77] to improve the learning and
memory abilities of AD and VCI murine models.

Furthermore, accumulated evidence indicates that the
effect of acupuncture on modulating synaptic structure and
function in AD and VCI is achieved by changing the releas-
ing of the presynaptic neurotransmitter or the function of
the postsynaptic receptor [67, 68, 78]. As one of the major
neurotransmitters, dopamine (D) plays an essential role in
modulating hippocampal LTP and memory processes [79,
80]. Ye et al. found that MA could activate D1/D5 receptors
to ameliorate cognitive function and LTP impairments in
VaD rats [67]. The central cholinergic pathway and the
norepinephrine- (NE) adrenergic receptor (AR) system are
known for their critical roles in learning acquisition and
synaptic plasticity in the mammalian limbic system. It was
demonstrated that MA not only could alleviate memory-
associated decreases in the levels of choline acetyltransferase
(ChAT) and restore the expression of choline transporter 1
(CHT1) as well as vesicular acetylcholine transporter
(AChT), resulting eventually in the recovery of the entire
cholinergic system circulation pathway [81], but also was
able to enhance norepinephrine (NE) levels and the
activation of β1-AR in the hippocampus [68]. In addition,
γ-aminobutyric acid (GABA) is one main inhibitory neuro-
transmitter in the central nervous system inhibiting the
excessive release of glutamate (Glu). And GABA receptor-
mediated inhibitory inputs modulate hippocampal LTP
[82]. EA could elevate the excitability of granule cells by
decreasing GABA from interneurons, which resulted in
increasing LTP [78].

Glutamate receptors (GluRs) are the main receptors of
the postsynaptic neurotransmitter area and modulate synap-
tic plasticity; they are divided into metabotropic GluRs and
ionotropic GluRs. Among the three types of ionotropic
GluRs, N-methyl-D-aspartate receptor (NMDAR) is the
most widely distributed regulator of synaptic plasticity,
which plays an important role in inducing and maintaining
LTP and LTD closely associated with learning and memory
[83]. NMDARs are comprised of NMDAR subtype 1
(NMDAR1) subunits plus at least one type of NMDAR2
subunit [84]. It was reported that EA could reduce the deficit
of LTP in VaD rat models via reversal of NMDAR1- and
transient receptor potential vanilloid subtype 1- (TRPV1-)
mediated neurotoxicity [62]. NMDAR2 seems to have com-
plex properties, and different NMDAR2 subunits confer
distinct electrophysiological and pharmacological properties
on the receptors and couple themselves with opposing signal-
ing pathways and influences on the direction of synaptic
plasticity [85]. Specifically, NMDAR2A activation is benefi-
cial for neuronal regeneration and neuroprotection, while
NMDAR2B induces neurotoxicity and neuronal apoptosis
[85]. One study found that EA could alleviate cognitive
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dysfunction caused by ischemic injury through downregula-
tion of NMDAR2B and upregulation of NMDAR2A [86].

The effect of EA on synaptic plasticity might be related
to the parameter of stimulation. One study has found that
high-frequency EA may yield a stronger protective effect
on hippocampal synaptic plasticity compared with low- or
medium-frequency EA in AD rat models [61]. Further
research focusing on ascertaining the optimum acupuncture
parameter is required. Moreover, besides these mechanisms
described above, many synaptic-related proteins or signaling
pathways were required in maintaining synaptic structural
plasticity and synaptic transmission. Investigations of synap-
tic plasticity-related regulatory factors and signaling mecha-
nisms have been performed in many studies, and these are
going to be described in Section 4.

4. Neuroplasticity-Related Regulatory Factors
and Signaling Pathways

Multiple crucial steps are involved in the process of neuroplas-
ticity, which include many layers of regulation, composed of
both intrinsic and extrinsic mechanisms. For example, there
are a number of coordinated cell-intrinsic programs and exter-
nal signals involved in distinct stages of adult neurogenesis,
including proliferation and lineage differentiation of NSCs,
migration of neuroblasts, and integration of newborn neurons
[87]. Given the important role of related factors and signaling
pathways in neuroplasticity, ascertaining acupuncture’s effect
on them may be vital to understanding the mechanisms of
its treatment for AD and VCI.

As one of the morphogens that are critical during embry-
onic development of the nervous system, Notch is highly
conserved and serves as niche signals to regulate the prolifer-
ation of adult NSCs [88]. The regeneration of neurons from
neural progenitors may be impaired due to the abnormal
elevated Notch signal pathway. EA treatment suppressed
neuronal apoptosis and improved cognitive impairment in
AD rat models possibly via the downregulation of an abnor-
mal elevated Notch signaling pathway [89]. Moreover, EA
also was able to enhance hippocampal NSC proliferation in
VaD rat models via the activation of the Notch signaling
pathway [34].

In addition to the neurotransmitters described above, the
survival and synaptic integration of newly born cells are
subject to regulation by neurotrophic factors. As a member
of the neurotrophic factor family, the BDNF protein is syn-
thesized as pre–pro-BDNF and cleaved intracellularly into a
pro-BDNF protein encompassing two domains: the prodo-
main and the mature BDNF domain [90]. BDNF is actually
secreted in the pro- and mature form [91], which had distinct
receptors and signaling cascades resulting in opposing bio-
logical functions [92–94]. The mature BDNF preferentially
binds to phosphorylated tropomyosin receptor kinase B
(Trk-B) receptors leading to cell survival and differentiation
as well as hippocampal LTP, whereas pro-BDNF preferen-
tially binds to p75 neurotrophin receptor (p75NTR) leading
to apoptosis and hippocampal LTD [95]. It was observed that
acupuncture could upregulate the expression of Trk-B recep-
tors and could decrease the expression level of p75NTR in

AD and VaD murine models, influence the modulation and
processing of the BDNF protein from pro-BDNF to mature
BDNF [33, 96, 97], and eventually enhance the mRNA
expression levels of mature BDNF [35, 45, 54, 81]. One clin-
ical trial showed that combined scalp acupuncture and cogni-
tive training could improve the cognitive function and BDNF
levels of peripheral blood in patients with stroke during the
recovery stage [98]. Other extrinsic factors such neurotro-
phin 3 (NT3), NT4, and NT5 also play an important role in
the regulation of neuronal integration [99]. EA treatment
has been reported to increase the expression of NT4/5 and
their receptor, tyrosine receptor Trk-B, and promote OL
regeneration in association with cognitive functional
improvements in a VaD mice model [41]. In addition, acu-
puncture also could regulate intrinsic factors associated with
neuronal integration. For instance, MA was demonstrated to
restore the expression of cAMP-response element-binding
protein (CREB) mRNA in the hippocampus of rats with
cognitive impairment [81].

The typical pathological hallmarks of AD include extra-
cellular Aβ plaques and intracellular neurofibrillary tangles
(NFTs) composed of hyperphosphorylated tau proteins, both
of which resulted in the loss and morphological changes of
dendritic spines, directly leading to the damage of neuronal
synaptic function and neuroplasticity [100]. Many studies
showed that acupuncture could regulate neuroplasticity by
directly reducing Aβ deposition [56, 101], and some related
proteins and signaling pathways participated in this process.
Glycogen synthase kinase 3 beta (GSK3β) is a serine/threo-
nine protein kinase that plays a crucial role in AD pathogen-
esis, and its hyperactivity or overexpression is increasingly
shown to be closely related to Aβ generation, tau hyperpho-
sphorylation, and synaptic plasticity [102]. Inhibition of
GSK3β has been indicated to increase the number of synap-
ses and postsynaptic density thickness, and rescue the reduc-
tion of spine density in the hippocampus of an AD model. It
has been revealed that EA could promote synapse-structure
damage rehabilitation by downregulating GSK3β to improve
the learning and memory abilities of AD rat models [49, 77].
As the downstream target of GSK3β, the reactivation of
mTOR restored the acidification of the autophagy lysosome,
further promoting the autophagy clearance of pathological
Aβ plaque load [103]. Yu et al. found that EA rescued struc-
tural and functional synaptic plasticity impairments and
memory deficits in AD rat models through the inactivation
of GSK3β/mTOR signaling [21]. Moreover, β-site amyloid
precursor protein cleaving enzyme 1 (BACE1) is the key pro-
tein involved in Aβ peptide generation. One study indicated
that EA could downregulate the expression of BACE1 in one
AD mouse model [64].

There are some regulated factors and signaling pathways
directly involved in the modulation of LTP. Protein kinase A
(PKA) is a predominantly positive modulator of LTP in the
hippocampus and has been demonstrated to indispensably
participate in the efficacy of hippocampus-based memory
[104]. Tang et al. found that EA could upregulate PKA acti-
vation, enhance synaptic plasticity, and improve memory in
an AD mice model [64]. The p70 ribosomal protein S6
(p70S6) kinase/ribosomal protein S6 signaling pathway has
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been shown to promote neuronal growth and LTP [105, 106].
One study showed reduced expression of p70S6 kinase and
ribosomal protein S6 in the hippocampus of VaD rats, which
suggested that the p70S6 kinase/ribosomal protein S6 path-
way was involved in the pathogenesis of VaD [63]. EA was
demonstrated to improve the learning and spatial memory
abilities of VaD rats and facilitate LTP in the hippocampus
by upregulating expression of p70S6 kinase and ribosomal
protein S6 [63]. The p70S6 kinase was phosphorylated by
activation of the mammalian target of rapamycin (mTOR)
signal pathway, which has been shown to promote neuronal
growth and LTP [107, 108]. Acupuncture stimulation has
been indicated to promote neuroplasticity by regulating the
mTOR signal pathway in AD or VaD rats [21, 109]. More-
over, it was reported that MA could reverse the learning
and memory impairments in an AD mouse model through
upregulating eukaryotic Y-box-binding protein (YB-1)
expression [20], which enhanced the conjunction among
the synapses and promoted synaptic formation indirectly
[110]. The eukaryotic elongation factor-2 kinase/eukaryotic
elongation factor-2 (eEF2K/eEF2) pathway is also associated
with synaptic plasticity and its inhibition prevents synaptic
failure in AD. One study showed that EA improved the syn-
aptic function in AD by inhibiting the AMPK/eEF2K/eEF2
pathway in an AD mouse model [76].

Besides the above-related factors and signaling pathways,
other mechanisms, such as oxidative stress, glucose metabo-
lism, and inflammatory responses, were considered to play a
key role in acupuncture treating AD or VCI and modulating
neuroplasticity (Table 1 and Figure 1). These molecular
mechanisms support acupuncture as a potentially promising
therapy for the treatment of cognitive dysfunction in patients
with VD or VCI.

5. Brain Network Connectivity

Some previous neuroimaging researches have revealed neu-
ropathological changes and/or structural-functional reorga-
nization in AD and VCI resulting in altered connectivity
patterns in brain networks [14, 111–113]. For example, some
rapidly and reversibly increased or decreased strengths of
brain network connections, also known as altered recruit-
ments of functional connections normally devoted to per-
forming a given task or the recruitment of additional
network connections that are not typically activated by
healthy people. And the alteration of network connectivity
is a form of neuroplasticity that could indicate compensatory
mechanisms engaged to maintain a normal level of cognitive
function or promote the recovery from cognitive dysfunction
due to the primary white matter lesions and neuronal loss
[14, 114, 115].

Many neuroimaging studies showed that acupuncture
could induce neuroplastic reorganization of brain functional
networks in AD or mild cognitive impairment (MCI), the
prophase state of AD [116] (Table 2 and Figure 2). There
were several regions showing increased or decreased activi-
ties in MCI and AD patients after short-term MA or EA
stimulation, including cognitive-related areas, visual-related
areas, sensorimotor-related areas, emotion-related areas, the
basal ganglia, and the cerebellum [23, 113, 117–123]. How-
ever, there remains a lack of correlation between the changes
in cognitive function and alteration in functional connectiv-
ity. In two other long-term studies, MCI patients exhibited
improvement of cognitive performance after MA, as well as
extensive activation and deactivation in brain networks
[123, 124]. And functional connectivity strength in some
regions was negatively correlated with the changes in
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Figure 1: The locations of acupoints in mice.
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memory scores [125], which offered evidence in support of
compensatory mechanisms triggered to overcome cognitive
deficits in MCI. These findings might provide a deep under-
standing of acupuncture’s therapeutic effect in AD.

Acupuncture’s influence on brain network connectivity
might be correlated to acupoints, depth of stimulation, and
frequency of EA stimulation in AD and MCI. The synergistic
effects of different single acupoints or combined acupoints
could activate different brain areas and impact the therapeu-
tic effects of acupuncture [116]. And deep stimulation at
appropriate acupoints could perform stronger or more
extensive effective connectivity related to the therapeutic
effect compared with superficial stimulation [119, 121, 126].
Furthermore, high-frequency EA may induce more specific
targeted brain response or strengthen the functional connec-
tivity of brain networks associated with memory and cogni-
tion. Thus, the impact of acupoint specificity, needling
depth specificity, and EA parameter specificity on brain net-
work connectivity in future neuroimaging studies also needs
to be elucidated. Since few fMRI imaging studies have been

reported regarding acupuncture in patients with VCI, the
effect of acupuncture on neuroplastic reorganization of brain
functional networks in VCI is still to be established.

6. Discussion

In addition to directly attenuating the deposition, neuroin-
flammatory response, and neurotoxicity of Aβ [127] and
increasing cerebral blood flow [128], acupuncture also could
improve cognitive abilities through regulation of neuroplasti-
city (Figure 3). The improvement of the cellular/molecular
microenvironment and recruitment of unaffected or addi-
tional brain networks might play important roles in this pro-
cess. For example, the modulation of the neurotransmitter
system involved in the improvement of the cellular/molecu-
lar microenvironment may be another candidate potential
mechanism through which acupuncture could regulate neu-
roplasticity [44]. Moreover, it has been demonstrated that
other methods in popular practice could increase cognitive
reserve and resilience by regulating neuroplasticity, e.g.,

GV24

GV29 GV20
Ex-HN1

ST36

ST40

LR3

GB20

PC6

HT7

Ll4

Kl3

Figure 2: The locations of acupoints in humans.
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physical exercises, stimulating psychosocial experiences,
meditation, mind games/puzzles, or dietary changes. It will
be interesting to investigate whether acupuncture could
increase cognitive reserve and resilience in the elderly. And
the results would greatly expand the clinical application of
acupuncture. Furthermore, identification of differential
impacts of manipulation on brain networks may contribute
to understanding the mechanisms of acupuncture in neuro-
plasticity. The comparison between acupuncture and sham/-
placebo acupuncture occurred in few clinical studies [124],
which indicated increased connections between cognition-
related regions by acupuncture not sham/placebo acupunc-
ture. In the further researches, diffusion tensor imaging
(DTI) of white matter microstructure adjacent to the primary
somatosensory cortex and magnetic resonance spectroscopy
(MRS) would be used to explore potential differential mech-
anisms of manipulation.

There are still some inevitable limitations in this review.
First of all, because of differences in the quality of included
animal studies, such as sample size calculations, experimental
animals and procedures, housing and husbandry conditions,
intervention, and assessment of experimental outcomes, the
heterogeneities cannot be totally avoided (Supplementary
Table 1). Second, it is well known that the efficacy of
acupuncture stimulation was partly defined by the
characteristic sensation “de qi” clinically (a composite of
sensations including soreness, numbness, distention,
heaviness, and other sensations) [129]. The efficacy of

interventions could not be estimated in animal studies.
Third, there are differential influences on neuroplasticity due
to acupuncture manipulation. For instance, experimental
outcomes may be differently attributed to intervention
performed by the acupuncture method (i.e., MA vs. EA)
and acupoints [35, 36]. Since the number of studies was
small, some pathways affected by the manipulation of
acupuncture were not discussed, for instance,
synaptophysin expression, modulation of neurotransmitter,
and neuroplastic reorganization of brain functional
networks (Supplementary Table 2).

7. Conclusion

A growing number of contemporary studies have gradually
validated acupuncture’s traditional uses in treating AD and
VCI. In view of acupuncture’s therapeutic efficiency and reg-
ulation of neuroplasticity, it may be beneficial to develop acu-
puncture as a potentially promising therapy for AD and VCI.
However, the exact mechanisms underlying acupuncture’s
influence on neuroplasticity is still unknown. In addition,
identification of differential impacts of acupoint specificity,
acupuncture method specificity, depth specificity, cognitive
state specificity, and EA parameter specificity on neuroplasti-
city may contribute to understanding the mechanisms of
acupuncture in AD and VCI. These may be important future
challenges in standardized clinical applications.
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Figure 3: Mechanisms involved in acupuncture regulating neuroplasticity to improve cognitive function.
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