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Abstract

Purpose

This study aimed to investigate the effectiveness of using delta-radiomics to predict overall

survival (OS) for patients with recurrent malignant gliomas treated by concurrent stereotac-

tic radiosurgery and bevacizumab, and to investigate the effectiveness of machine learning

methods for delta-radiomics feature selection and building classification models.

Methods

The pre-treatment, one-week post-treatment, and two-month post-treatment T1 and T2

fluid-attenuated inversion recovery (FLAIR) MRI were acquired. 61 radiomic features (inten-

sity histogram-based, morphological, and texture features) were extracted from the gross

tumor volume in each image. Delta-radiomics were calculated between the pre-treatment

and post-treatment features. Univariate Cox regression and 3 multivariate machine learning

methods (L1-regularized logistic regression [L1-LR], random forest [RF] or neural networks

[NN]) were used to select a reduced number of features, and 7 machine learning methods

(L1-LR, L2-LR, RF, NN, kernel support vector machine [KSVM], linear support vector

machine [LSVM], or naïve bayes [NB]) was used to build classification models for predicting

OS. The performances of the total 21 model combinations built based on single-time-point

radiomics (pre-treatment, one-week post-treatment, and two-month post-treatment) and

delta-radiomics were evaluated by the area under the receiver operating characteristic

curve (AUC).

Results

For a small cohort of 12 patients, delta-radiomics resulted in significantly higher AUC than

pre-treatment radiomics (p-value<0.01). One-week/two-month delta-features resulted in

significantly higher AUC (p-value<0.01) than the one-week/two-month post-treatment fea-

tures, respectively. 18/21 model combinations were with higher AUC from one-week delta-

features than two-month delta-features. With one-week delta-features, RF feature selector

+ KSVM classifier and RF feature selector + NN classifier showed the highest AUC of 0.889.
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Conclusions

The results indicated that delta-features could potentially provide better treatment assess-

ment than single-time-point features. The treatment assessment is substantially affected by

the time point for computing the delta-features and the combination of machine learning

methods for feature selection and classification.

I. Introduction

Radiomics is being actively investigated by computing high-dimensional quantitative features

from medical images (CT, MRI, PET, etc.) to provide predictive, prognostic, or diagnostic

decision support[1, 2]. As radiomics is based on inherent information encoded in standard-of-

care images, it could potentially become a noninvasive, low-cost, and patient-specific decision

support tool for routine clinical practice. Due to the high dimensionality and complexity of

radiomics data, machine learning has been a critical component for feature analysis in radio-

mics studies. Notable examples include predicting overall survival[3, 4], tumor staging[5],

tumor histology classification[6–8], recurrence[9, 10] and other clinical endpoints for lung[3,

7], breast[9], head and neck[4], prostate[11], pulmonary nodule[12], thyroid[13, 14], blad-

der21, and brain[15] tumors.

Features in radiomic studies are typically defined in one of two ways: (1) single-time-point

radiomics, where features are extracted from a particular image (e.g., pre-treatment)[6, 16, 17],

and (2) delta-radiomics, where features are extracted from a time series of images (e.g., pre-

and post-treatment)[18]. The latter technique reflects the temporal change of radiomic fea-

tures. In particular, delta-radiomics have been shown to be effective in assessing the response

of colorectal liver metastases to chemotherapy[19], differentiating radiation pneumonitis fol-

lowing radiotherapy (RT)[20], predicting overall survival (OS) of patients with non-small cell

lung cancer (NSCLC) treated with RT[21], and predicting OS, progression-free survival, and

early/late progressors for recurrent glioblastoma multiforme to bevacizumab treatment[22].

While delta-radiomics has therefore demonstrated promising results, there are only a few

studies that have compared its effectiveness to that of single-time-point radiomics. In particu-

lar, Zhang et. al.[23] extracted features from two follow-up MR images for brain metastases

after gamma knife radiosurgery to differentiate radiation necrosis from tumor progression.

They compared the delta-radiomics to single-time-point radiomics from the second follow-up

image, and reported the prediction accuracy of the former was slightly higher (73.2%) than

that of the latter (69.1%). Further, Fave et. al.[18] used clinical factors, pre-treatment features,

and delta-features to assess the response of NSCLC to RT and concurrent chemotherapy. They

reported that only one delta-feature, texture strength, was prognostic in predicting local-

regional recurrence, and that no delta-features were more prognostic in predicting OS or dis-

tant metastases than clinical factors and pre-treatment features. Further investigation of delta-

radiomics is warranted to better understand its potential advantages.

In previous studies that consider delta-radiomics, while statistical associations have been

studied, machine learning has not been widely used for feature analysis. For example, in many

delta-radiomics cases, statistical methods like Spearsman’s correlation and multivariate Cox

regression[18, 22, 24] or at most a single machine learning method (logistic regression) have

been performed[19–21]. One study[23] used 5 different machine learning methods, but only

for building classification models, and did not study machine learning based feature selection

techniques. Several single-time-point radiomics studies [3, 15, 25] have demonstrated a
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substantial impact of machine learning technique on both feature selection and classification.

Therefore, a systematic study regarding this impact on both feature selection and classification

in radiomics/delta-radiomics analysis is highly desirable.

This study aims to investigate the effectiveness of delta-radiomics compared to single-time-

point radiomics in predicting OS following concurrent brain radiosurgery and bevacizumab

treatment. Radiomic features were extracted from the gross tumor volume (GTV) of both

T1-weighted and T2-weighted FLAIR MR images acquired at the following time points:

(1) pre-treatment, (2) one-week post-treatment, and (3) two-month post-treatment. We used

a univariate Cox regression model and 3 machine learning methods for feature selection, as

well as 7 machine learning classification models. ROC analysis was used to compare the pre-

dictive performance of different combinations of feature selection and classification models

for 3 categories of single-time-point radiomics (pre-treatment, one-week post-treatment, and

two-month post-treatment) and 2 categories of delta-radiomics (one-week delta-radiomics,

and two-month delta-radiomics).

II. Materials and methods

II.A. Materials

In this study, we re-analyzed a specific dataset from a previous study approved by Duke Uni-

versity Health System Institutional Review Board (IRB).[26] All data were fully anonymized

before we accessed them. Twelve patients with WHO grade III or IV recurrent malignant glio-

mas treated by concurrent stereotactic radiosurgery (SRS) and bevacizumab were included.

For each patient, we analyzed information of 3D GTV from the pre-treatment, one-week

post-treatment (post1-treat), and two-month post-treatment (post2-treat) T1-weighted and

T2-weighted FLAIR (Fluid Attenuated Inversion Recovery) MR images acquired with a 1.5T

birdcage quadrature head coil MR unit (GE Medical Systems).

The OS data of this cohort was between 5.3 months and 29.4 months, with 6 patients dem-

onstrating an OS shorter than 1 year, and the others longer than 1 year. For feature analysis,

OS was assigned as the prediction endpoint and was dichotomized: OS<1 year was labeled as

class 0, and OS� 1 year was labeled as class 1.

II.B. Methods

The overall research workflow of this study is shown in Fig 1.

As shown in Fig 1, the GTV was first contoured by an experienced radiation oncologist on

the pre-treatment MR and CT images using the Eclipse treatment planning system (Varian

Medical Systems, Palo Alto). The post1 and post2 MR images were registered to the pre-treat-

ment MR images in Velocity software (Varian Medical System) using rigid body registration,

and the GTV contours delineated were transferred to the post-treatment MR images. The reg-

istration was initially performed using an automatic registration algorithm and then manually

validated by visually check. The gray scale information content of the MR images was re-

binned into 64 grey level shades.

Then, 61 radiomic features (as shown in S1 Appendix) were extracted from the GTV in

each MR image, including 22 texture features from the grey-level co-occurrence matrix

(GLCOM)[27], 11 texture features from the grey-level run-length matrix (GLRLM)[28], 13

texture features from the grey-level size-zone matrix (GLSZM)[29], 5 features from the neigh-

boring grey-level difference matrix (NGLDM)[30], 6 morphological features, and 4 intensity

histogram-based features. The features were extracted by an in-house feature extraction tool

developed based on MATLAB 2017a (MATLAB Co. Ltd) using standard mathematical formu-

lae[31]. The delta-features were then computed as the relative changes of post-treatment
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features to pre-treatment features:

½ΔF1¼ðFpost1� FpreÞ=Fpre� ð1Þ

½ΔF2¼ðFpost2� FpreÞ=Fpre� ð2Þ

where, Fpre refers to the features extracted from pre-treatment MR images, Fpost1 and Fpost2
refer to features computed from post1-treat MR images and post2-treat MR images, respec-

tively. ΔF1 and ΔF2 refer to delta-features computed between Fpost1 or Fpost2 and Fpre, respec-

tively. To ensure normalized units, each of the 5 feature categories (Fpre, Fpost1, Fpost2, ΔF1, and

ΔF2) was converted to a z-score distribution prior to feature analyses.

Next, each of the 5 feature categories (Fpre, Fpost1, Fpost2, ΔF1, and ΔF2) was separately ana-

lyzed for building feature selection and classification models. Leave-one-out cross validation

(LOOCV) was adopted to reduce overfitting for this small cohort of patients. The features

were sequentially selected using a two-step process: (1) First, a univariate Cox regression

model[32] was used, which evaluated whether a model built on this single feature was a better

fit than the null model [18]. Only significant features in the univariate Cox regression model

(p-value<0.1) were selected. (2) Second, one of the following multivariate machine learning

models was used: out-of-bag permutation random forest (RF), neural networks (NN), or

L1-regularized logistic regression (L1-LR). The features were selected according to their

importance in deciding the OS in each algorithm. In the out-of-bag permutation random RF

algorithm[33], the importance of each feature was indicated by the out-of-bag loss. In the NN

method, a three-layer back propagation NN was built and the input features were disabled

one-by-one for feature selection. “Disable” here means that all weights related to this feature
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Fig 1. Overall research workflow.

https://doi.org/10.1371/journal.pone.0226348.g001
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were set to 0, as shown in Fig 2. The importance of the feature was indicated by the classifica-

tion error when this feature was disabled. In the L1-LR method, the importance of each feature

was indicated by the absolute value of the weights in the model. In this experiment, we limited

each machine learning feature selection model to select N features. The number N was varied

from 1 to 3 in order to choose the optimal parameter for building classification models.

The selected features were then used to build binary classification models using seven com-

monly used machine learning algorithms: (1) random forest (RF) classifier, built by the “fitcen-

semble” function in MATLAB 2017a (MathWorks, Natick, MA, USA) with 100 decision trees;

(2) L1-regularized logistic regression (L1-LR) classifier, with a sigmoid function as the active

function; (3) L2-regularized logistic regression (L2-LR), also with a sigmoid function as the

active function; (4) Linear support vector machine (LSVM) classifier, built by the “fitcsvm”

function in MATLAB 2017a; (5) Kernel support vector machine (KSVM) classifier, with

Gaussian radial basis function as the kernel function; (6) Three-layer back-propagation neural

network classifier (NN) [34], with 10 hidden units in the hidden layer; and (7) Naïve bayes

Fig 2. A diagram illustration the neural network structure for feature selection.

https://doi.org/10.1371/journal.pone.0226348.g002
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classifier (NB) which is based on Bayes’s rule with a strong assumption that features are inde-

pendent of each other within each class. Although this assumption is hard to be satisfied, naïve

bayes appears to work well in practice even when that independence assumption is not valid

[35, 36]. These classification models are the commonly used techniques used in previous

radiomics studies. [3, 25] The output of each classification model was the score of the predicted

class label being equal to 1. Here, score refers to the posterior probability, which describes the

probability of predicted class being 1 with the given feature values.

The performance of the models was evaluated via ROC analysis based on the area under the

curve (AUC), which is one of the most prevalent evaluation criteria in radiomics studies. Once

the feature selection and classification models were built with the training group, the validation

group was used to test the models. The scores of the validation groups, after LOOCV, were

pooled and then dichotomized by a given decision threshold. The true positive fraction (TPF)

and false positive fraction (FPF) were calculated based on the threshold. Then, the decision

thresholds varied to obtain all distinct TPFs and FPFs. In practice, the thresholds were selected

as all distinct scores. Finally, the AUC was calculated by trapezoidal approximation with all

distinct TPFs and FPFs.

Each feature selection and classification model combination was trained and tested for 50

iterations to avoid the random effect. We compared the average AUC of each model combina-

tion among Fpre, Fpost1, Fpost2, ΔF1, and ΔF2 by paired-sample t-test.

III. Results

The AUC values derived from different combinations of feature selection and classification

models are shown in Fig 3. Box plot was used for better illustration of the results in Fig 4,

Fig 3. AUC values for all tested feature selection model and classification model combinations.

https://doi.org/10.1371/journal.pone.0226348.g003
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where each box indicates the median and range of AUC values resulted from combinations of

a feature selection model with all 7 classification models based on a certain feature category.

Based on paired-sample t-test, models built with ΔF1 or ΔF2 showed significantly higher

AUCs than those built with Fpre (p-value < 0.01). Meanwhile, models built with ΔF1 and ΔF2

showed significantly higher AUCs than Fpost1 and Fpost2 (p-value< 0.01), respectively. These

results indicate that delta-radiomics may provide better treatment assessment than single-

time-point radiomics.

As shown in Figs 3 and 4, the time point for calculating delta-radiomics and machine learn-

ing methods used affected model performance. When RF and NN were used for feature selec-

tion, ΔF1 resulted in higher predictive performance than ΔF2, independent of the type of

machine learning algorithm used for classification (p-value < 0.01). When L1-LR was used for

feature selection, ΔF1 resulted in higher AUC values than ΔF2 with KSVM, NN, and NB classi-

fiers, and resulted in lower AUC values than ΔF2 with L1-LR, L2-LR, LSVM, and RF classifiers.

The model combinations of RF+KSVM and RF+NN showed the highest AUCs (AUC = 0.889)

with ΔF1. The number of features selected for each model combination is provided in S2

Appendix. During feature selection for two-month post-treatment features, only 2 features

were selected by the univariate Cox regression model in one fold of the leave-one-out cross-

validation. Therefore, only up to 2 features were tested from two-month post-treatment fea-

tures. For the maximum AUC achieved, 3 features were selected in RF+KSVM combination

and 2 features were selected in RF+NN combination. The frequencies of the features selected

Fig 4. A box plot to display the AUC value range for each feature selection model with seven classification models for each feature category.

https://doi.org/10.1371/journal.pone.0226348.g004
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during LOOCV for these two model combinations is illustrated in Figs 5 and 6. As shown in

the figures, T1 GLCOM correlation and T1 GLSZM variation of intensity are the two most fre-

quently selected features for this cohort of patients. The ROC curves for the two model combi-

nations are shown in Fig 7.

IV. Discussions

This study compared single-time-point features with delta-features for the assessment of con-

current brain SRS and bevacizumab treatment outcomes using different machine learning

methods. Data in Fig 3 indicated that the single-time-point features (Fpre, Fpost1, ΔF1) and

delta-features (ΔF1, ΔF2) resulted in different predictive performance for this assessment. The

delta-features displayed higher predictive performance than single-time-point features. One-

week delta-features resulted in better prediction than two-month delta-features for most of the

tested model combinations. However, it should be noted that the results were based on a small

cohort of patients. Although it is difficult to generalize the results from this small dataset, we

can reasonably infer that delta-features potentially provided better predictive decision support

than single-time-point features. Additionally, the time point for computing delta-features was

shown to affect model performance, indicating that the time at which radiomic features are

extracted may be of particular importance. These conclusions remain limited, however, further

analysis on a larger dataset is required to fully validate this result.

Image acquisition and pre-processing could affect feature extraction and analysis results. In

this study, the MR image quality was maintained stable by following strict quality control

(QC) and quality assurance (QA) procedures. QC of the MR scanner followed 2015 ACR MRI

Fig 5. Feature selection frequency in RF + KSVM. 3 features selected in each fold of LOOCV.

https://doi.org/10.1371/journal.pone.0226348.g005
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Fig 6. Feature selection frequency in RF + NN. 2 features selected in each fold of LOOCV.

https://doi.org/10.1371/journal.pone.0226348.g006

Fig 7. ROC curves for RF+KSVM and RF+NN combinations. Both AUC = 0.889.

https://doi.org/10.1371/journal.pone.0226348.g007
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Quality Control Manual. Daly QA was executed and key factors like gain factor were recorded.

The rigid body image registration error was initially performed using an automatic registration

algorithm in the Velocity software and then manually validated by checking the anatomical

structures between two data sets (typically the accuracy is within 0.5mm). The GTV contours

were transferred from pre-treatment images to post-treatment images. No modifications were

made for GTV, because the feature change within the whole GTV region could be informative

to treatment outcome. Since the same GTV was used for radiomics feature calculation, the

morphological delta-features were 0 and were not selected in the feature selection process. The

intensity/texture delta-features were informative by revealing the intensity/texture change

within the pre-treatment GTV contour.

Few studies were found that compared single-time-point features to delta-features. A study

by Zhang et. al.[23] also showed better performance of delta-features (accuracy: 73.2%) than

that of features at the second time point (69.1%), which agrees with our findings. One limita-

tion of this study is that the time separation between the two MR scans was different for each

patient (9–119 days). Our study avoided this limitation by incorporating MR images at unified

time differences. In the study by Fave et. al.[18], delta-radiomics were not prognostic in pre-

dicting OS or distant metastases, and only one delta-radiomics feature was prognostic in pre-

dicting local-regional recurrence. This result could be related to the limited delta-features used

for building models, since delta-features were reduced when the corresponding pre-treatment

features were not prognostic in their study. In our study, this limitation was minimized by

applying feature selection directly on delta-features.

One limitation of this study is the limited size of the dataset. Constrained by the small sam-

ple size, selecting an appropriate number of features to build classification models is challeng-

ing. Some studies have shown that the number of features selected affected the classification

model performance.[3, 4, 20, 37] From some previous experience[1, 15], 10 observations per

feature have been shown to be needed to build a binary classification model using a cross-vali-

dation scheme. However, Hua et al. [38] reported the optimal number of features relies on the

correlation among features, the type of classification method, and the size of dataset. For exam-

ple, they reported that one can safely use a large number of features for a small dataset for lin-

ear and polynomial SVM. They also mentioned that the optimal feature number did not

monotonically increase with the sample size for some classifiers like SVM and 3-nearest-neigh-

bor. Considering both opinions and attempting to explore the effect of number of features

selected for a small dataset, we included 1 to 3 features to build the classification models. Dur-

ing feature selection for two-month post-treatment features, only 2 features were selected by

the univariate Cox regression model in one fold of the leave-one-out cross-validation. There-

fore, only up to 2 features were tested from two-month post-treatment features. The variation

of AUCs with the number of features selected for each feature category and each model combi-

nation was shown in S2 Appendix. The AUCs reported in Fig 3 were the highest AUCs when

the optimal number of features selected for each model combination. When the same AUC

was achieved by classification models built with different groups of features, the model with

the smallest number of features should be selected to alleviate the overfitting problem.

The z-score normalization was used for each feature across the whole patient dataset. Con-

ventionally, one would normalize features of training dataset to z-score distribution and then

shift the features of validation dataset to share the mean and standard deviation of the training

set. [39] This method is built based on the assumptions that the training dataset and validation

dataset share the same distribution and the training dataset is large enough to describe the dis-

tribution. However, for a small dataset, the mean and standard deviation of z-distribution are

easily influenced by a few extreme values. Normalizing the whole dataset would be better to

guarantee this assumption in case the appearance of few outliers.[3, 6],22
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To mitigate the limitation of dataset, we used leave-one-out cross-validation (LOOCV) and

a two-step feature selection process. Cross-validation has been shown as an efficient method to

provide an unbiased estimation on survival prediction.[40] Within each individual validation

of LOOCV, the features were first selected by univariate Cox regression and then by multivari-

ate machine learning methods. The univariate Cox regression model initially selected features

which could be predictive to OS to reduce the overfitting of machine learning feature selection

model. The number of features selected by univariate Cox regression model ranged from 11 to

58 during LOOCV. To avoid overfitting of classification models, the number of features

selected was further reduced by multivariate machine learning feature selection models. The

univariate Cox regression model did not consider the combined effect of two or more features,

but this deficiency was offset by the following multivariate machine learning feature selection

which considered both the relevancy between features and overall survival as well as the com-

bined effect among the features. The AUCs calculated using the univariate Cox regression

model for feature selection and using the two-step process for feature selection for delta-fea-

tures are displayed in Table 1. When the two-step feature selection process was used, the

AUCs in Table 1 are the highest AUCs resulted from the 3 feature selection models. As we can

see from Table 1, the AUCs were overall improved with machine learning feature selection.

In this study, ROC analysis was used to evaluate the performance of each model combina-

tion. Conventionally, ROC curves are generated when the decision threshold varies for models

with fixed weights. In this study, the AUCs were used to compare the predictive performances

of different model combinations.[41, 42] Therefore, ROC analysis was reasonably used, although

the weights in machine learning models adapted to different feature values during LOOCV.

This study emphasized on the methodology for feature extraction (delta-radiomics) and

feature analysis (machine learning feature selection and classification). However, image acqui-

sition and segmentation are also important and have substantial impacts on the performance

of radiomics studies. For example, variations in image acquisition and reconstruction parame-

ters could introduce non-biological changes into the images.1 For image segmentation, many

ROIs have indistinct borders, and there are controversies on the ground truth and reproduc-

ibility of image segmentations. In this study, the GTV contours of post-treatment images were

registered from those of pre-treatment images, which may have an impact on the final deci-

sion. Those should be thoroughly investigated in the future studies while planning for compre-

hensive clinical trials.

V. Conclusions

This study compared single-time-point features (pre-treatment features, one-week post-treat-

ment features, and two-month post-treatment features) and delta-features (one-week delta-

Table 1. Comparison of AUCs with/without machine learning feature selection for delta-features.

AUC Feature selection:

Cox

Feature selection:

Cox + Machine Learning

Classification ΔF1 ΔF2 ΔF1 ΔF2

L1-LR 0.806 0.556 0.806 0.833

L2-LR 0.778 0.583 0.778 0.833

LSVM 0.887 0.112 0.861 0.750

KSVM 0.698 0.230 0.889 0.750

RF 0.759 0.540 0.833 0.834

NN 0.607 0.531 0.889 0.556

NB 0.264 0.292 0.819 0.528

https://doi.org/10.1371/journal.pone.0226348.t001
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features and two-month delta-features) in assessing brain tumor radiosurgery with machine

learning approaches.

The analysis results from the limited dataset implied that delta-features provide higher pre-

dictive performance than single-time-point features for this cohort of patients and may poten-

tially be more valuable for treatment assessment than single-time-point features. The time

point of computing the delta-features may also be a significant factor for the model perfor-

mance. With a univariate Cox regression model as the first step for feature selection, the

model combinations of RF feature selection with KSVM classification and RF feature selection

with NN classification provided the highest AUCs with one-week delta-features. A larger data-

set to validate the results of this study is highly desirable.
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