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The consistent detection and quantification of protein post-translational modifications (PTMs) 

across sample cohorts is an essential prerequisite for the functional analysis of biological 

processes. Data-independent acquisition (DIA), a bottom-up mass spectrometry based proteomic 

strategy, exemplified by SWATH-MS, provides complete precursor and fragment ion information 

of a sample and thus, in principle, the information to identify peptidoforms, the modified variants 

of a peptide. However, due to the convoluted structure of DIA data sets the confident and 

systematic identification and quantification of peptidoforms has remained challenging. Here we 

present IPF (Inference of PeptidoForms), a fully automated algorithm that uses spectral libraries to 

query, validate and quantify peptidoforms in DIA data sets. The method was developed on data 

acquired by SWATH-MS and benchmarked using a synthetic phosphopeptide reference data set 

and phosphopeptide-enriched samples. The data indicate that IPF reduced false site-localization by 

more than 7-fold in comparison to previous approaches, while recovering 85.4% of the true 

signals. IPF was applied to detect and quantify peptidoforms carrying ten different types of PTMs 

in DIA data acquired from more than 200 samples of undepleted blood plasma of a human twin 

cohort. The data approportioned, for the first time, the contribution of heritable, environmental and 

longitudinal effects on the observed quantitative variability of specific modifications in blood 

plasma of a human population.

Introduction

Proteins catalyze and control essentially all biochemical functions of a living cell. Discovery 

mass spectrometry methods have identified products from the predicted protein coding 

regions (open reading frames, ORFs) for numerous species, including the human species, to 

apparent saturation1. Yet, the number of proteoforms expressed from a particular genome by 

far exceeds the number of protein coding ORFs because a multitude of processes contribute 

to increasing proteomic diversity. Among these, post-translational modifications (PTMs) 

generate an enormous, but as yet unknown expansion of the expressed proteoforms as each 

protein contains many amino acid residues that are potentially modified. For the human 

proteome it has been estimated that these processes expand the core products of the ~20,000 

ORFs to around 1 million different proteoforms2.

The detection of specific proteoforms has frequently been attempted by antibody-based 

methods3. For this, affinity reagents need to be optimized for each targeted species4. In 

reality, such reagents have frequently been of varying sensitivity and specificity5. 

Alternatively, “top-down” proteomics which uses mass spectrometry to assess intact proteins 

can differentiate individual proteoforms2, but is currently of limited throughput6. Thus, for 

many applications, liquid chromatography-coupled tandem mass spectrometry of 

proteolyzed proteins (LC-MS/MS; “bottom-up” proteomics) has been the method of choice 

for the unbiased, high-throughput identification and quantification of differentially modified 

peptides7,8, even though the information about proteoform association of thus identified 

peptides is lost during the step of enzymatic digestion.

Several “bottom-up” MS technologies have been developed that differ in their performance 

profiles9. They include discovery proteomics employing data-dependent acquisition 

(DDA)10, targeted proteomics by selected or parallel reaction monitoring (SRM11 or 
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PRM12) and data-independent acquisition (DIA)13. DIA methods, exemplified by SWATH-

MS, systematically fragment all precursor ions in a user defined retention time vs. precursor 

ion mass to charge (m/z) window, thus overcoming the stochastic precursor ion selection of 

DDA14. The favorable properties of DIA implemented on high resolution, accurate mass 

instruments include highly consistent detection of analytes across sample cohorts and 

accurate quantification over a dynamic range of more than 4.5 orders of magnitude15, and 

have contributed to the recent popularization of DIA-based methods16.

In bottom-up proteomics, the characterization of proteoforms relies on peptide level 

evidence. In analogy to Smith & Kelleher et al. 2, we herein use the term “peptidoform” to 

describe such specifically modified or mutated peptides with the same backbone amino acid 

sequence. Irrespective of the data acquisition method used, several significant challenges 

remain for peptidoform identification and quantification. They are i) correct identification of 

the peptide backbone sequence, ii) correct identification of the types of modified amino 

acids and, iii) correct localization of the modification(s) within the backbone sequence. 

Modification types have been identified by two different approaches. In the first, modified 

amino acids are included in the database search step as (optional) modification to the peptide 

sequence. In the second, peptide sequences are first identified and subsequently the 

modification mass is inferred from the measured precursor and fragment ion mass shifts to 

the theoretical masses of the unmodified peptide sequences (open or “blind” modification 

search)17. To address the problem of modification site-localization, algorithms have been 

developed which assess site-localization confidence on independent, annotated peptide 

spectrum matches (PSMs) in DDA data18. At a smaller scale, targeted analysis strategies for 

peptidoform assessment were previously used to infer site-localizations and modification 

types in SRM19 or PRM20 data.

In principle, the above methods and strategies could also be applied to the analysis of DIA 

data, either by the spectrum-centric approaches21–24 or by peptide-centric scoring25 based 

targeted data extraction methods as in SWATH-MS14,26. Particularly, the high degree of 

consistency of DIA data is expected to provide additional benefits for site-localization and 

quantification across all runs of a study. However, the structure of DIA methods presents 

additional challenges for peptidoform identification or detection that arise from the large 

precursor isolation windows used for data acquisition14. Specifically, if peptidoform 

precursors differ by modifications for which the m/z increment is below the width of the 

precursor isolation windows used, they are isolated together in the same window. This can 

lead to peak picking conflicts in the retention time (RT) dimension or lead to fragment ion 

interferences when they are co-eluting. For this reason, several studies focusing on peptide 

modifications in complex samples relied on manual inspection of extracted diagnostic 

fragment ions to differentiate peptidoforms27–30 or spectrum-centric assessment of the 

modified peptides22,24,31. However, manual inspection is prone to biases and does not 

scale to dozens or hundreds of samples with tens of thousands of peptides queried per 

sample. Further, the spectrum-centric approaches often have to apply a second peptide-

centric scoring step that is dependent on very specific peptide query parameters31. 

Therefore, there is a critical need for algorithms that can automatically and confidently 

assign peptidoforms to detected peak groups in DIA data sets29.
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Here we present IPF (Inference of PeptidoForms), an algorithm and software tool supporting 

the SWATH-MS14 methodology of data-independent acquisition and targeted data analysis. 

It is configured as a novel component of the OpenSWATH26 workflow supporting the 

analysis of peptidoforms. IPF offers the following features: i) IPF can generate peptide 

query parameters from various sources, such as DDA32 or DIA data, including pseudo 

spectra22 and open modification search results24,31; ii) IPF supports a targeted, hypothesis-

driven approach to assign peptidoforms to candidate peak groups; iii) IPF adopts a multi-tier 

scoring approach, propagating the confidence of detection and site-localization from 

precursors and transitions to peptidoform-level using a Bayesian hierarchical model, and iv) 

IPF integrates seamlessly into the existing workflows to support peptidoform-specific large-

scale experiments.

We benchmarked IPF performance on a “ground truth” sample consisting of a set of 

synthetic phosphopeptides and assessed the applicability, scalability and consistency of 

detection on both, phosphopeptide-enriched and non-enriched samples. We further 

demonstrate the application of the algorithm to a longitudinal heritability study of 

peptidoforms of human blood plasma proteins. The previously acquired data set was derived 

from plasma samples collected at two time points from 36 pairs of monozygotic and 22 pairs 

of dizygotic twins33. The data allowed us to assess the heritability, environmental and 

longitudinal effects on the observed variability of 4532 peptidoforms, and to differentiate 

between inherited and environmentally induced quantitative changes in PTMs.

Results

IPF enables peptidoform characterization from SWATH-MS data sets

The IPF algorithm was developed for the detection of peptidoforms via peptide-centric 

scoring25 of DIA or SWATH-MS data and to support the consistent scoring of distinctive 

peptidoforms across sample cohorts. It extends the scoring systems commonly used for 

unmodified peptides to the peptidoform-level and includes the capability to validate multiple 

concurrent modification types and site-localizations on the same peptide. IPF consists of 

three main components (Fig. 1, Supplementary Notes I.A – I.C):

Step 1: Query parameter generation—Peptide-centric scoring by targeted data 

extraction requires predefined peptide query parameters (also referred to as “Tier 3” 

assays34), consisting of specific transitions (precursor and product ion m/z), normalized 

fragment ion intensities and normalized retention time32. As first step, IPF uses spectral 

libraries or transition lists from prior spectrum-centric analyses of DDA or DIA data, 

processed by database and/or open modification searches as input to constitute sets of 

peptide query parameters. These empirically observed transitions are defined as “detection 

transitions”, because they can be used for the sensitive detection of peptides14. To increase 

specificity and to differentiate peak groups that could originate from closely related peptide 

species, IPF generates theoretical “identification transitions” using a defined model of 

modification residue specificity to probe the candidate peptidoform space, providing 

(weighted) evidence for or against particular peptidoforms (Supplementary Notes I.A, II.A, 

Fig. 1, Supplementary Fig. 1). The output of this step is a set of hybrid peptide query 
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parameters for each peptidoform and precursor charge state, consisting of the different 

transition types, annotated with their specific scoring attributes.

Step 2: Signal processing—Targeted data extraction from the SWATH-MS data and 

peptide-centric scoring using the detection transitions is conducted as established for the 

standard OpenSWATH workflow26. In addition, chromatograms for identification 

transitions of precursor and fragment ions are extracted from MS1 and MS2 maps and 

scored individually against the chromatograms of the detection transitions within the 

boundaries of the detected peak groups (Fig. 1, Supplementary Fig. 1-2). The output of this 

step is the set of scores for candidate peak groups, their identification transition-level 

chromatograms and their precursor signals (Supplementary Notes I.B, II.B-C).

Step 3: Statistical inference and error-rate control—To infer the set of peptidoforms 

at a q-value or false discovery rate (FDR) threshold that is detected in the SWATH-MS data 

set, a statistical inference step is conducted by IPF. This is accomplished by processing the 

scored MS1-, MS2- and transition-level signals by a multi-level, semi-supervised learning 

algorithm, followed by peptidoform inference employing a Bayesian hierarchical model 

(Fig. 1, Supplementary Fig. 1). The confidence scores computed from candidate peak 

groups, precursor ions and individual transition-level chromatograms are propagated towards 

the identification of a peptidoform (Supplementary Notes I.C, II.D-F). The scored peak 

groups can then be used by TRIC35 to propagate the peptidoform-level detection confidence 

across multiple aligned runs to generate a more complete quantitative matrix 

(Supplementary Note II.G).

In summary, IPF extends the standard OpenSWATH workflow by providing confidence 

metrics for unmodified peptide queries as well as for other peptidoforms.

Benchmarking using a synthetic reference data set

To benchmark IPF, we performed SWATH measurements (termed synthetic phosphopeptide 

reference data set) on a collection of 579 heavy isotope labeled, unpurified synthetic 

phosphopeptides corresponding to Saccharomyces cerevisiae proteins involved in a range of 

cellular processes36 (Supplementary Table 1). The synthetic peptides were spiked in a 13-

step dilution series (highest concentration: 0.002 µg/µl, see Methods) into a background 

consisting of an extract of the human cell line HEK-293 to enable assessment of the limits of 

detectability. The maximum dilution reached in the dilution series compared to the synthetic 

peptide mixture without background was 127-fold. Of the full set, 481 peptides were used as 

ground truth for benchmarking, because they were synthesized in only a single site-localized 

peptidoform. However, they contain multiple potentially modifiable residues (on average 

more than 3 modifiable residues, often near the actual modified residue).

We first generated both a comprehensive DDA library of the phosphorylated ground truth 

peptides and a DIA library of the corresponding runs, including background proteome 

(Methods). Peptide query parameters for 297 ground truth peptides were derived from the 

DDA library, which IPF used to extract precursor and fragment ion chromatograms from the 

SWATH-MS data of the phosphopeptide dilution series in the HEK-293 human cell line 

background proteome. Figure 2a depicts the receiver operating characteristic (ROC) curve, 
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where the cumulative positive (correct site-localizations) and negative detections over all 13 

measurements were used as class labels. False identifications originated from erroneous 

phospho-site localization on correctly detected backbone sequences. At a false positive rate 

of 5%, a recall of 71.6% could be reached. The estimated global false discovery rate (global 

FDR) and local false discovery rate37,38 (local fdr) (Fig. 2b) compared to the ground truth 

indicate that the confidence propagation from transition- to peptidoform-level enabled 

accurate error control in the commonly used ranges of 1-5% fdr/FDR, with a small 

underestimation of the error in the higher ranges. Detectability at a global FDR of 5% over 

the whole dilution series shows a linear relationship of peptidoform detectability confidence 

to the abundance, with 195 correctly detected peptidoforms in the sample with the highest 

peptide concentration (Fig. 2c). In direct comparison to OpenSWATH, IPF produces a 

reduction of false site localizations by 87.0%, while recovering 85.4% of the true 

OpenSWATH signals at 5% estimated FDR. Quantification of correctly detected 

peptidoforms over the dilution series normalized to the undiluted sample indicates accurate 

quantification until the 1:15 dilution step, with a slight overestimation of the abundance in 

the more diluted samples (Fig. 2d). Confidence on the peptidoform-level in general requires 

slightly more intense signals than on the peptide sequence-level, indicating that the lowered 

sensitivity of IPF compared to OpenSWATH originates from ambiguous lower intensity 

signals (Fig. 2e). Supplementary Figure 3 depicts the equivalent results using a DIA library 

generated by DIA-Umpire22, where IPF achieved similar relative performance metrics 

compared to the DDA library, but due to the lower size of the input library, the absolute 

number of detected peptidoforms was smaller.

We further used the results of the DIA-Umpire analysis to benchmark the site-localization 

component of IPF against established methods for spectrum-centric site-localization 

(Supplementary Note III.B, Supplementary Fig. 4). LuciPHOr39,40 is a recently developed 

algorithm for site localization. In addition to site-localization it also estimates the false 

localization rate (FLR). Using a version of IPF reduced to the second, site-localization layer 

of the Bayesian hierarchical model we analyzed the synthetic phosphopeptide reference data 

set to compare the correct and wrong site-localized peptides at estimated false localization 

rates with DIA-Umpire/LuciPHOr. IPF provided more sensitive results with a recovery of 

66.7% of all true site-localized peptides at 5% false positive rate, compared to 55.3% as 

achieved by DIA-Umpire/LuciPHOr.

The above results demonstrate that IPF accurately determines peptidoforms with 

modification site-localization using spectral libraries generated both by DDA- and DIA-

based methods. IPF reaches a favorable tradeoff between sensitivity and selectivity 

compared to the standard peptide-centric workflows, for example implemented in 

OpenSWATH.

Benchmarking using a data set generated from phosphopeptide-enriched samples

To assess the scalability of IPF for the analysis of thousands of peptides, we generated a data 

set of phosphopeptide-enriched samples of human U2OS cells. Cells were either treated with 

nocodazole or left untreated (control) and the resulting patterns were comparatively analyzed 

by IPF. Nocodazole arrests cells at the mitotic stage and thus has a substantial effect on 
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signaling pathways involving phosphorylation41. We acquired ten biological replicates, 

processed in parallel, each for nocodazole-treated and control samples, both in DDA and 

DIA modes (see Methods). We then used the DDA data to generate a spectral library for 

quantitative analysis by IPF on the corresponding 20 DIA runs covering 4,298 

phosphopeptides (Methods, Supplementary Notes IV.B)

We next analyzed the quantitative data matrix produced by IPF across all ten replicates of 

each condition, considering only peak groups with at least one confident detection or 

quantification per biological condition (Fig. 3). For the nocodazole treated and the control 

samples, IPF achieved both consistent detection and quantification for 62.6% (nocodazole) 

and 47.5% (control) of all phosphopeptides (Fig. 3a-b). To investigate the effect that 

consistency of quantification has in dependency of the number of replicates, we conducted 

differential expression analysis using mapDIA42 on variable numbers of sampled replicates. 

Depending on the number of replicates, more than 400 differentially expressed peak groups 

were detected (Fig. 3c, significance thresholds: FDR < 0.01 & log2(FC) > 2). Considering 

only three replicates, IPF identified 134 significant peak groups. These results demonstrate 

that IPF can achieve consistent detection and quantification for enriched phosphopeptide 

data sets across multiple samples.

Analysis of phosphopeptide-enriched samples is a frequent objective of discovery 

proteomics workflows. The performance of IPF should thus be assessed in comparison to the 

state-of-the-art; however, comparing algorithms based on different concepts and requiring 

different input data (DDA vs. DIA) is challenging (Supplementary Notes IV.A). Using the 

DDA and DIA data of the phosphopeptide-enriched samples described above and non-

enriched samples of a previously published 14-3-3 scaffold protein interactome study43, we 

conducted assessments of a DDA-based workflow and IPF (Supplementary Notes IV.B-C, 

Supplementary Fig. 5-6). The results suggest that within the parameter space tested, IPF 

using DIA data substantially improves the consistency of detection and quantification of 

phosphopeptides compared to DDA-based workflows.

Assessment of variance components of peptidoform abundance in human blood plasma

To demonstrate the utility of IPF for biological research requiring larger cohort sizes, we 

applied it to a longitudinal twin study consisting of 116 individuals (58 twin pairs), who 

donated blood plasma twice within a time span of 2-7 years. The study was designed to 

assess the effects of heritability and environment on blood plasma protein abundance33. We 

revisited the previously acquired data set of this large sample cohort to investigate the 

biological variability of 10 selected post-translational modifications (oxidation, deamidation, 

carbamylation, formylation, acetylation, methylation, carboxylation, ubiquitination, 

nitrosylation, phosphorylation) that were previously associated with blood plasma 

proteins44–48. The samples further contained 73 spiked-in stable isotope labelled (SIS) 

peptides, corresponding to 37 plasma proteins33,49, with levels generally adjusted to the 

endogenous peptides in the human plasma proteome49. The two isotope labels for arginine 

and lysine and static carbamidomethylation modification were added to the list of included 

modification types.
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As a first step we generated a spectral library by searching DDA data from chromatographic 

fractions of a pooled sample. This library was used for the analysis of the 232 samples of the 

twin study (plus 10 technical and whole-process replicates) by IPF. Figure 4a depicts the 

spectral library and IPF cumulative and average detection statistics. In summary, of the 

9,272 peptidoforms covered by the library, 7653 (82.5%) could be detected by IPF 

cumulatively across all samples with an average of 3153.7 (34.0%) per run. Of all the 

peptidoforms, 49.9% were unmodified, 48.5% carried PTMs of likely artefactual origin and 

5.5% were modified due to likely biological causes (Methods, Supplementary Table 2). 

Importantly, peptidoforms can carry both artefactual and biological PTMs.

Different peptidoforms and modification types can be differentially expressed between 

samples and conditions based on sample-specific biochemical reactions, protein abundance 

and other effects. While in general, modified peptidoforms are expressed over a similar 

range than unmodified peptidoforms (Supplementary Note V.A, Supplementary Fig. 7-8), 

abundance differences can be of the on/off type or quantitatively different between 

individuals. Accordingly, Figure 4b depicts the distribution of the observed detectability (in 

number of samples) grouped according to modification type. The spiked-in SIS peptides 

could be detected consistently across almost all the twin samples. In contrast, the median 

detectability of endogenous unmodified and modified peptides was more variable across the 

data set, ranging from ~50 – 100 samples, suggesting significant variability of peptidoform-

level abundance in undepleted blood plasma samples. We assessed the quantitative variation 

of the peptidoforms across the samples (Fig. 4c): Technical and whole-process replicates 

indicate a median coefficient of variation (CV) of <10% and <20%, respectively 

(Supplementary Fig. 9-10) 26. In contrast, peptides subject to biological variation, showed a 

median CV of 30 – 50%. Our data thus provides a complex snapshot of the peptidoforms of 

blood plasma proteins in a human cohort.

To understand the root causes, i.e. heritable, common and individual environmental and 

longitudinal effects of biological variation of endogenous human plasma peptidoforms, we 

utilized a linear mixed model approach to fit our data after imputation of background 

intensities (Methods). Queried peptidoforms were only considered if they were detected in at 

least 20 samples of the data set, resulting in 4532 peptidoforms targeted by 5829 queried 

peptides. Of these, 1755 peptidoforms (1954 peptide queries, e.g. different precursors and 

site-localizations contained within the library) contained at least one significant (q-value < 

1%) component that could be ascribed to the factors generating biological variance, 

specifically heritability, familial environment, individual environment and the 2-7 year 

longitudinal visits (Fig. 4d, Supplementary Table 3, Supplementary Data 1). Among all 

peptide queries, the longitudinal component (variance between two longitudinal visits of the 

same individual33) cumulatively was found to be the major component contributing to the 

biological variability (h2w: 15.3%), followed by heritability (h2r: 12.0%), the individual 

environmental (h2id: 8.2%), and the common environmental effects (c2: 7.8%), with the 

unexplained effects accounting for 56.7% on average. These results are consistent with the 

original study on the protein level33, where the average component effects were of similar 

magnitude (h2w: 13.5%, h2r: 13.6%, h2id: 11.6%, c2: 10.8%, e2: 50.5%).
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We further investigated the effects of the quantitative peptidoform variability on selected key 

blood plasma proteins in more detail. Human serum albumin (ALBU), the major protein 

constituent accounting for 55% of the plasma protein mass50, was represented by 440 

peptidoforms (9.7%), whereas all the other plasma proteins were covered by 11.6 

peptidoforms on average (Supplementary Table 4). In general, the individual peptidoforms 

were similarly affected by the different root causes of observed variability as compared to 

other proteins, suggesting that peptidoform diversity was mainly depending on the general 

ALBU protein abundance level in plasma (Supplementary Note V.C, Supplementary Fig. 

11-12). Further, to demonstrate the heritable or familial environmental components of 

different peptidoforms that can be efficiently dissected using the data, we investigated allele 

variants of ApoE, a protein associated with the high-density lipoprotein (HDL) class. We 

confirmed that its main biological effects can be mainly attributed to the familial 

environmental components (Supplementary Note V.D, Supplementary Fig. 13).

ApoA1 and other members of the high density lipoprotein (HDL) complex have previously 

been found to be affected by oxidative modifications introduced by myeloperoxidase 

(MPO)51,52. Oxidative modifications at specific sites, particularly oxTrp7252, were found 

to inhibit the cholesterol acceptor function of ApoA1, resulting in a dysfunctional protein 

that is associated with atherosclerosis and cardiovascular disease52. In this context, we 

investigated the heritable and environmental effects on oxidative modifications on ApoA1 

within the twin cohort. In total, the variance components of 12 oxidized (4 tryptophan, 7 

methionine, 1 tryptophan + methionine) peptidoforms could be decomposed in the data set, 

that were constituted of 3 tryptophan and 4 methionine sites from different regions of the 

protein structure53. We found oxTrp72 among the oxidized tryptophan peptidoforms, along 

with two other known sites52 in close proximity (Fig. 5a), oxTrp50 and oxTrp108, and 

found that their peptidoform abundance levels are longitudinally upregulated with a relative 

variance contribution of 19.8–29.7% (Fig. 5b, Supplementary Fig. 13). While also the 

abundances of other peptidoforms, including the unmodified ones, are longitudinally 

upregulated, the longitudinal regulation is different for peptidoforms having oxidized 

methionine residues. Two previously oxidized methionine residues, hypothetical biomarkers 

for atherosclerosis54, oxMet86 and oxMet112, were detected and quantified in our data as 

well. In contrast to the constant or upregulated oxidized tryptophan peptidoforms (Fig. 5b, 

Supplementary Fig. 14), their peptidoform abundance levels show an inverse longitudinal 

effect that could also be explained to be technical artifacts: The samples of the first visit 

were stored for a longer period of time and thus contained higher fractions of spontaneous 

methionine oxidations. These data thus support the hypothesis that oxTrp50 and oxTrp108, 

in contrast to the potential technical artefacts oxMet86 and oxMet112, are biochemically 

induced by MPO under a similar mechanism as oxTrp72 and might be useful as candidate 

biomarkers for proatherogenic processes52. Intriguingly, IPF successfully dissected the 

differential technical and biological variation of oxMet112 and oxTrp108, which was 

measured by two isobaric peptidoforms of the same peptide backbone sequence.

Discussion

Peptidoforms carrying biologically relevant post-translational modifications are often more 

difficult to measure consistently across many samples because their abundance is frequently 
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more variable than the abundance of dominating other peptidoforms, e.g. the non-modified 

peptide. Targeted data extraction was demonstrated to improve the consistency of peptide 

detection and quantification, particularly for large-scale DIA analysis22,26. Although the 

DIA analysis of peptidoforms can provide excellent quantitative performance, the medium- 

to large- precursor-isolation window configurations can result in the co-isolation of different 

peptidoforms22,55, making their discrimination very challenging, particularly in cases 

where the peptidoforms differ by site-localization.

Peptide-centric scoring using peptide query parameters is very sensitive but is frequently not 

selective enough for targeting peptidoforms. IPF improves the selectivity by integrating 

evidence on different levels to a single peptidoform confidence for each peak group. It is 

thus conceptually related to spectrum-centric site-localization applicable to DIA data, e.g. 

DIA-Umpire22,56/LuciPHOr39,40 or SWATHProphetPTM31, but with a focus on consistent 

detection and quantification. This is useful for TRIC35, which transfers the detection 

confidence across different runs based on the retention times and detection confidence of the 

candidate peak groups. If in a certain fraction of measurements, the peptidoform detection is 

less confident because of bad or missing precursor signals or missing site-determining 

transition-level chromatograms, TRIC can recover some of these signals. The seamless 

integration of IPF with TRIC confidently extends the list of peptidoforms detected and 

quantified in individual measurements to a quantitative matrix over large sample cohorts.

The functions performed by IPF are important for large-scale, complex data sets, as 

demonstrated by the peptidoform-level analysis of the twin plasma data set. Despite of its 

promise for clinical applications, blood plasma presents one of the most analytically 

challenging human-derived proteomes, due to its different tissue proteome subsets and the 

large dynamic range with only 22 proteins accounting for ~99% of the total protein 

mass50,57. IPF enabled us to study the heritable and environmental components of 

peptidoforms carrying different types of PTMs. We found that most peptidoforms are 

expectedly co-regulated with the generating proteins; however, our approach enables further 

discrimination of the effects on peptidoform-level into biological and technical causes, as 

exemplified by ApoA1 oxidation.

In conclusion, we describe, benchmark and apply a new algorithm for targeted data analysis 

of DIA data sets that is geared towards the consistent detection and quantification of 

peptidoforms based on low- to high-confidence spectral libraries from supporting hypothesis 

generating workflows based on DDA and DIA. Our generic approach is scalable to hundreds 

of samples, optimizing for peptidoform-level selectivity while maintaining high sensitivity. 

The validation based on the synthetic phosphopeptide reference data set established the 

accurate error-rate control capabilities of IPF. The application to a data set generated from 

enriched phosphopeptide samples proved the general applicability and improvements of IPF 

for commonly employed experimental designs, such as phosphoproteomic profiling. Further, 

the application to the challenging twin blood plasma data set demonstrates the utility for 

practical applications in complex samples. We expect that the availability of the algorithm in 

the open source workflow OpenSWATH, the generic utility for all modification types and 

scalability will enable confident quantification of PTMs in large-scale studies using DIA 

data.
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Online Methods

Synthetic phosphopeptide reference data set

Sample preparation

Crude synthetic peptides: To generate the synthetic phosphopeptide reference data, a set of 

579 synthetic, unpurified, heavy-isotope labeled phosphopeptides (Thermo Scientific 

Biopolymers) was used. These phosphopeptides represent biologically relevant sequences 

from S. cerevisiae proteins, and include previously published markers of cellular 

processes36. The complete peptide set contains a mixture of singly and doubly 

phosphorylated sequences with in average more than 3 modifiable residues per peptide 

(serines, threonines or tyrosines, often near each other). The complete sequence list can be 

found in Supplementary Table 1. All peptides were mixed with equal volumes and the 

concentrations were estimated to be around 0.002 µg/µl based on the vendor estimates of the 

unpurified peptides. The resulting peptide mix was either analyzed directly in DDA mode 

for spectral library generation or spiked into a human cell line background proteome in a 13-

step dilution series and analyzed in SWATH mode for the generation of the synthetic 

phosphopeptide reference data set (see below).

Human cell line background proteome: HEK-293 cell pellets were lysed on ice by using a 

lysis buffer containing 8 M urea (EuroBio), 40 mM Tris-base (Sigma-Aldrich), 10 mM DTT 

(AppliChem) and complete protease inhibitor cocktail (Roche). The resulted mixtures were 

sonicated in 4 °C for 5 mins using a VialTweeter device (Hielscher-Ultrasound Technology) 

with full power and centrifuged at 21,130 g, 4 °C for 1 h to remove the insoluble material. 

The supernatant protein mixtures were transferred and the protein amount was determined 

with a Bradford assay (Bio-Rad). Aliquots of 2 mg protein mixtures were reduced by 5 

tris(carboxyethyl)phosphine (Sigma-Aldrich) and alkylated by 30 mM iodoacetamide 

(Sigma-Aldrich). Then 5 volumes of precooled precipitation solution containing 50% 

acetone, 50% ethanol, and 0.1% acetic acid were added to the protein mixture and kept at 

-20 °C overnight. The mixture was centrifuged at 20,400 g for 40 min. The pellets were 

further washed with 100% acetone and 70% ethanol with centrifugation at 20,400 g for 40 

min. The samples were then resolved by 100mM NH4HCO3 and were digested with 

sequencing-grade porcine trypsin (Promega) at a protease/protein ratio of 1:50 overnight at 

37 °C58. Digests were combined and purified with Sep-Pak C18 Vac Cartridge (Waters). 

Peptide amount was determined by using Nanodrop ND-1000 (Thermo Scientific). An 

aliquot of retention time calibration peptides from the iRT-Kit (Biognosys) was spiked into 

the total mixture of the sample at a ratio of 1:20 (v/v) to correct relative retention times 

between runs59.

Dilution series of synthetic peptides: The heavy-labeled synthetic phosphopeptide mix 

described above was spiked in 13 defined dilution steps into a HEK293 total cellular 

proteome background (final constant background concentration in all 13 dilution samples = 

0.5 µg/µl). The 13 dilution steps of the heavy-labeled synthetic phosphopeptides were: 0, 

1:1, 1:3, 1:4, 1:7, 1:9, 1:15, 1:19, 1:31, 1:39, 1:63, 1:79 and 1:127. This dilution range was 

judged to be appropriate because at the final lowest concentration step the phosphopeptide 
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amounts loaded onto the column were approximately estimated to be in the range of tens of 

attomoles.

DDA mass spectrometry—The synthetic phosphopeptide mix (without added 

background added) was measured on a SCIEX 5600+ TripleTOF mass spectrometer 

operated in DDA mode in technical triplicates. The mass spectrometer was interfaced with 

an Eksigent NanoLC Ultra 2D Plus HPLC system as previously described14,43,60. Peptides 

were directly injected onto a 20-cm PicoFrit emitter (New Objective, self-packed to 20 cm 

with Magic C18 AQ 3-μm 200-Å material), and then separated using a 120-min gradient 

from 2–35% (buffer A 0.1% (v/v) formic acid, 2% (v/v) acetonitrile, buffer B 0.1% (v/v) 

formic acid, 90% (v/v) acetonitrile) at a flow rate of 300 nL/min. MS1 spectra were 

collected in the range 360–1,460 m/z for 500 ms. The 20 most intense precursors with 

charge state 2–5 which exceeded 250 counts per second were selected for fragmentation, and 

MS2 spectra were collected in the range 50–2,000 m/z for 150 ms. The precursor ions were 

dynamically excluded from reselection for 20 s. Acquired file names:

Type Filename

Replicate 1 chludwig_K141203_001_IDA

Replicate 2 chludwig_K141203_002_IDA

Replicate 3 chludwig_K141203_003_IDA

DIA mass spectrometry—The 13-step dilution series of the synthetic heavy 

phosphopeptide mix (spiked into a constant human background) was measured in SWATH-

MS mode on the same LC-MS/MS systems used for DDA measurements in technical 

triplicates14,43,60. In SWATH-MS mode the SCIEX 5600+ TripleTOF instrument was 

specifically tuned to optimize the quadrupole settings for the selection of 64 variable wide 

precursor ion selection windows. The 64-variable window schema was optimized based on a 

normal human cell lysate sample, covering the precursor mass range of 400–1,200 m/z. The 

effective isolation windows can be considered as being 399.5~408.2, 407.2~415.8, 

414.8~422.7, 421.7~429.7, 428.7~437.3, 436.3~444.8, 443.8~451.7, 450.7~458.7, 

457.7~466.7, 465.7~473.4, 472.4~478.3, 477.3~485.4, 484.4~491.2, 490.2~497.7, 

496.7~504.3, 503.3~511.2, 510.2~518.2, 517.2~525.3, 524.3~533.3, 532.3~540.3, 

539.3~546.8, 545.8~554.5, 553.5~561.8, 560.8~568.3, 567.3~575.7, 574.7~582.3, 

581.3~588.8, 587.8~595.8, 594.8~601.8, 600.8~608.9, 607.9~616.9, 615.9~624.8, 

623.8~632.2, 631.2~640.8, 639.8~647.9, 646.9~654.8, 653.8~661.5, 660.5~670.3, 

669.3~678.8, 677.8~687.8, 686.8~696.9, 695.9~706.9, 705.9~715.9, 714.9~726.2, 

725.2~737.4, 736.4~746.6, 745.6~757.5, 756.5~767.9, 766.9~779.5, 778.5~792.9, 

791.9~807, 806~820, 819~834.2, 833.2~849.4, 848.4~866, 865~884.4, 883.4~899.9, 

898.9~919, 918~942.1, 941.1~971.6, 970.6~1006, 1005~1053, 1052~1110.6, 

1109.6~1200.5 (including 1 m/z window overlapping). SWATH MS2 spectra were collected 

from 50 to 2,000 m/z. The collision energy (CE) was optimized for each window according 

to the calculation for a charge 2+ ion centered upon the window with a spread of 15 eV. An 

accumulation time (dwell time) of 50 ms was used for all fragment-ion scans in high-
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sensitivity mode and for each SWATH-MS cycle a survey scan in high-resolution mode was 

also acquired for 250 ms, resulting in a duty cycle of ~3.45 s. Per MS injection 2 µg of 

protein amount (i.e., 4µL of the final dilution mixture) was loaded onto the HPLC column. 

Acquired file names:

Dilution (PSGS) Filename

Dilution 1:0 chludwig_K150309_013_SW

Dilution 1:1 chludwig_K150309_012_SW

Dilution 1:3 chludwig_K150309_010_SW

Dilution 1:4 chludwig_K150309_011_SW

Dilution 1:7 chludwig_K150309_008_SW

Dilution 1:9 chludwig_K150309_009_SW

Dilution 1:15 chludwig_K150309_006b_SW

Dilution 1:19 chludwig_K150309_007b_SW

Dilution 1:31 chludwig_K150309_004b_SW

Dilution 1:39 chludwig_K150309_005b_SW

Dilution 1:63 chludwig_K150309_002b_SW

Dilution 1:79 chludwig_K150309_003b_SW

Dilution 1:127 chludwig_K150309_001b_SW

Spectral library and peptide query parameter generation—We generated a peptide 

sequence and precursor-specific (1% peptide sequence FDR) spectral library for the 

phosphorylated peptides. Peptide-centric scoring of DIA data benefits from using saturated, 

optimized spectral libraries that best cover the target peptides26. For this reason, we 

searched the 45 DDA runs of the original study36 and acquired three new replicate DDA 

runs of a pooled sample of the synthetic library without background proteome (see above). 

Then, consensus spectra for different site-localized peptidoforms were generated from the 

search output. To increase the coverage, the peptide identifications were not post-processed 

by a site-localization algorithm. This resulted in over-annotation of the peptides potentially 

contained in the sample because spectra originating from the same peptidoform could be 

assigned to different (incorrect) site-localizations. The library was used to derive sets of 

peptide query parameters for 554 peptidoforms (e.g. PEPT(Phospho)IDEK), mapping to 297 

combinations of peptide sequences and numbers of phosphorylated residues (e.g. 

PEPTIDEK + 1 phosphorylation). In parallel, to assess the application of IPF on spectral 

libraries generated directly from DIA data, a second library was generated by DIA-

Umpire22 using the 13-step dilution series DIA data, which includes a HEK-293 proteome 

background. The thus generated library contained peptide query parameters for 169 

peptidoforms, mapping to 122 combinations of peptide sequences and numbers of 

phosphorylated residues (Methods, Supplementary Fig. 3).

DDA database search and spectral library generation—All original36 and new raw 

instrument data acquired in DDA mode were centroided and converted to mzXML using 

qtofpeakpicker (ProteoWizard61 3.0.10200) as described previously32. The phosphopeptide 
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sequences were appended with a set of contaminant proteins, iRT peptide sequences and 

pseudo-reverse decoys. The files were searched using Comet62 (2015.02) using the default 

parameters for high mass accuracy instruments: peptide mass tolerance: 20 ppm 

(monoisotopic), isotope error enabled, fully tryptic digestion with max 5 missed cleavages, 

static C (Carbamidomethyl), variable M (Oxidation), variable K (Label:13C(6)15N(2)), 

variable R(Label:13C(6)15N(4)), variable STY (Phospho), max variable mods: 5. 

PeptideProphet38,63 (TPP64 5.0.0) with parameters -dDECOY_ -OAPdlIwt was run on all 

search results together and iProphet65 was used to combine all results. SpectraST66 (TPP 

5.0.0) was used to generate a spectral library of all peptide identifications at iProphet FDR 

1% with the following parameters: -cP0.8326 -c_IRR -c_IRTirtkit.txt -cICID-QTOF -

c_RDYDECOY -cAC –cM. All peptides except the synthetic phosphopeptides were 

excluded from the library. OpenMS67 (OpenMS 2.1) was used for all following steps: 

ConvertTSVToTraML was used to convert the SpectraST MRM file to a TraML. 

OpenSwathAssayGenerator was applied on the TraML with following parameters: -

swath_windows_file swath64.txt -allowed_fragment_charges 1,2,3,4 -

enable_ms1_uis_scoring -max_num_alternative_localizations 2000-

enable_identification_specific_losses -enable_identification_ms2_precursors. 

OpenSwathDecoyGenerator was applied to append decoys to the target peptide query 

parameters using the following parameters: -method shuffle -append -mz_threshold 0.1 -

remove_unannotated. All OpenMS tools were executed using the modified chemistry 

parameters for phosphorylation (OpenMS.phospho.params) (ProteomeXchange repository).

DIA database search and spectral library generation—All raw instrument data 

acquired in DIA mode were centroided and converted using the SCIEX MS Data Converter 

(Beta Version 1.3) and msconvert (ProteoWizard61 3.0.7162) using the parameters as 

suggested22. The signal extraction module of DIA-Umpire22 (1.2, 2014.10) was applied to 

the 13-step dilution series SWATH-MS data set using recommended parameters. The ORF 

protein translation FASTA database for yeast was obtained from the Saccharomyces 

Genome Database68 (2015-02-24) and appended with the non-redundant reviewed human 

protein FASTA obtained from the UniProtKB/Swiss-Prot69 (2015-02-23) and the iRT 

peptide sequences and pseudo-reverse decoys. The files were searched using Comet62 

(2015.02) using the parameters recommended for DIA-Umpire22: peptide mass tolerance: 

40 ppm (monoisotopic), isotope error enabled, fully tryptic digestion with max 2 missed 

cleavages, static C (Carbamidomethyl), variable M (Oxidation), variable K (Label:

13C(6)15N(2)), variable R(Label:13C(6)15N(4)), variable STY (Phospho), max variable 

mods: 5. PeptideProphet38,63 (TPP64 4.8.0) with parameters -dDECOY_ -OAPdlIwt was 

run independently per file and iProphet65 was used to combine all quality tier Q1 & Q3 (Q2 

were excluded) results. SpectraST66 (TPP 4.8.0) was used to generate a spectral library of 

all peptide identifications at iProphet FDR 1% with the following parameters: -cP0.7850 -

c_IRR -c_IRTirtkit.txt -cICID-QTOF -c_RDYDECOY -cAC –cM. OpenMS (https://

github.com/grosenberger/OpenMS/tree/feature/ipf @7924fc3) was used for all following 

steps: ConvertTSVToTraML was used to convert the SpectraST MRM file to a TraML. 

OpenSwathAssayGenerator was applied on the TraML with following parameters: -

swath_windows_file swath64.txt -allowed_fragment_charges 1,2,3,4 -

enable_ms1_uis_scoring -max_num_alternative_localizations 20 -
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enable_identification_specific_losses -enable_identification_ms2_precursors. 

OpenSwathDecoyGenerator was applied to append decoys to the target peptide query 

parameters using the following parameters: -method shuffle -append -mz_threshold 0.1 -

remove_unannotated. All OpenMS tools were executed using the modified chemistry 

parameters for phosphorylation (OpenMS.phospho.params) (ProteomeXchange repository).

OpenSWATH and PyProphet—OpenSwathWorkflow (OpenMS 2.1) was run with the 

following parameters -min_upper_edge_dist 1 -mz_extraction_window 0.05 -

rt_extraction_window 600 -extra_rt_extraction_window 100 -min_rsq 0.95 -min_coverage 

0.6 -use_ms1_traces -enable_uis_scoring -Scoring:uis_threshold_peak_area 0 -

Scoring:uis_threshold_sn -1 -Scoring: stop_report_after_feature 5 -tr_irt 

hroest_DIA_iRT.TraML. The following subset of scores was used on MS2-level: 

xx_swath_prelim_score library_corr yseries_score xcorr_coelution_weighted 

massdev_score norm_rt_score library_rmsd bseries_score intensity_score xcorr_coelution 

log_sn_score isotope_overlap_score massdev_score_weighted xcorr_shape_weighted 

isotope_correlation_score xcorr_shape. All MS1 and UIS scores were used for PyProphet.

PyProphet (https://github.com/grosenberger/pyprophet/tree/feature/ipf @93ec307) was run 

on a concatenated file of all 13 runs containing only the unambiguous phosphopeptides with 

the following parameters:

--final_statistics.emp_p --qvality.enable --qvality.generalized

--ms1_scoring.enable --uis_scoring.enable

--semi_supervised_learner.num_iter=20 --xeval.num_iter=20

--ignore.invalid_score_columns.

PyProphet in site-localization mode only (https://github.com/grosenberger/pyprophet/tree/

feature/ipf_flr @b92ccf9) was run on a concatenated file of all 13 runs with the following 

parameters:

--final_statistics.emp_p --qvality.enable --qvality.generalized

--ms1_scoring.enable --uis_scoring.enable

--semi_supervised_learner.num_iter=20 --xeval.num_iter=20

--ignore.invalid_score_columns --uis_scoring.disable_precursor_inference.

LuciPHOr—LuciPHOr39,40 2 (1.2014Oct10-iprophet) was modified to support iProphet65 

posterior probabilities, required for DIA-Umpire pseudo spectra identifications. Static, 

variable and target residue modifiability was defined as for the database search and neutral 

losses for phosphorylation were allowed as suggested. The fragment ion tolerance was set to 

0.025 Da and the algorithm was run in CID mode. All other parameters were set as 

suggested by the default settings.

Rosenberger et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2017 December 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/grosenberger/pyprophet/tree/feature/ipf
https://github.com/grosenberger/pyprophet/tree/feature/ipf_flr
https://github.com/grosenberger/pyprophet/tree/feature/ipf_flr


Validation using the synthetic phosphopeptide reference data set—To validate 

the IPF results on the synthetic phosphopeptide reference data set, the synthesized reference 

peptide sequences were used as ground truth. To specifically assess the global and local false 

discovery rates, only those detected peak groups were used where the unmodified peptide 

sequence, modification types (except variable methionine oxidation) and modification 

numbers matched the synthesized peptides exactly. If multiple peptide queries resulted in 

peak groups for the same peptidoform (or equal site-localization), i.e. when multiple 

precursors could be detected, only the best scoring one would be used. All perfect matches 

to the ground truth were counted as true, all others as false positives.

Statistics and visualization—Visualization of Fig. 2 and Supplementary Fig. 3 was 

conducted using the boxplot function of the R package “graphics” with the default 

parameters: The box borders represent the 25th and 75th quantile, respectively. The bold bar 

represents the 50th quantile. The whiskers are defined as following: upper whisker: 

min(max(x), Q_3 + 1.5*IQR); lower whisker: max(min(x), Q_1-1.5*IQR), with Q_1 and 

Q_3 representing the 25th and 75th quantile, respectively, and IQR representing the inter-

quantile range Q_3-Q_1.

Data set generated from phosphopeptide-enriched samples

Sample preparation

Phospho-enrichment of human cell line and sample preparation: U2OS cells were 

grown in DMEM media (Life Technologies) supplemented with 10% FCS (BioConcept), 

1% penicillin-streptomycin (Life Technologies). Cells cultures (approximately 3-4 million 

cells per plate) were treated with nocodazole (Sigma-Aldrich) at a final concentration of 

100ng/ml for 18 hours. Treated and untreated samples (ten replicates respectively) were 

collected, washed with PBS and frozen in liquid nitrogen. To include variation of the sample 

preparation, we directly processed all the cells from each plate for the protein digestion (see 

above) and phosphoproteomic analysis. Phosphopeptide enrichment was performed from 

approximately 1mg of total peptide mass according to a modified protocol70 using TiO2 

resin (GL Sciences). In short, the dried peptides were dissolved in a loading buffer (80% 

ACN, 5% TFA, 1M glycolic acid) and vortexed in a shaker for 10 min at 25°C, 1400 rpm. 

Peptide mixtures were added to equilibrated enrichment resin preloaded in a 200ul tip with a 

C8 plug (3M Empore). The resin was then washed once with the loading buffer, once with 

80% ACN, 0.1% TFA, and once with 50% ACN, 0.1% TFA. The peptides were eluted with 

a 0.6 M NH4OH solution (Sigma-Aldrich), followed by an elution from the C8 plug with 

50% ACN, 0.1% FA. The pH of the eluates was adjusted to <3 and the phosphopeptide 

samples were desalted using C18 ultramicrospin columns (Nest). Samples were re-

suspended as described above. Phosphopeptide mixture originating from ~10% of the 

starting cell materials was injected for shotgun and SWATH measurements.

DDA mass spectrometry—The samples were measured on a SCIEX 6600 TripleTOF 

mass spectrometer operated in DDA mode in ten replicates for each experimental condition. 

The samples were measured as described above with a modified LC gradient of 2-30% 

buffer during the same acquisition time. Acquired file names:
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Treatment Replicate Filename

Control 1 yanliu_I170114_001_PhosCyc1_shotgun

2 yanliu_I170114_005_PhosCyc2_shotgun

3 yanliu_I170114_009_PhosCyc3_shotgun

4 yanliu_I170114_013_PhosCyc4_shotgun

5 yanliu_I170114_017_PhosCyc5_shotgun

6 yanliu_I170114_021_PhosCyc6_shotgun

7 yanliu_I170114_025_PhosCyc7_shotgun

8 yanliu_I170114_029_PhosCyc8_shotgun

9 yanliu_I170114_033_PhosCyc9_shotgun

10 yanliu_I170114_037_PhosCyc10_shotgun

Nocodazole 1 yanliu_I170114_002_PhosNoco1_shotgun

2 yanliu_I170114_007_PhosNoco2_shotgun

3 yanliu_I170114_011_PhosNoco3_shotgun

4 yanliu_I170114_015_PhosNoco4_shotgun

5 yanliu_I170114_019_PhosNoco5_shotgun

6 yanliu_I170114_023_PhosNoco6_shotgun

7 yanliu_I170114_027_PhosNoco7_shotgun

8 yanliu_I170114_031_PhosNoco8_shotgun

9 yanliu_I170114_035_PhosNoco9_shotgun

0 yanliu_I170114_039_PhosNoco10_shotgun

DIA mass spectrometry—The samples were measured in SWATH-MS mode as 

described above on the same LC-MS/MS system used for DDA measurements in ten 

replicates for each experimental condition with the following difference: The MS1 

acquisition time for each cycle was set to 200ms and the MS2 scan range was set to 

300-2000 m/z. Acquired file names:

Treatment Replicate Filename

Control 1 yanliu_I170114_003_PhosCyc1_SW

2 yanliu_I170114_006_PhosCyc2_SW

3 yanliu_I170114_010_PhosCyc3_SW

4 yanliu_I170114_014_PhosCyc4_SW

5 yanliu_I170114_018_PhosCyc5_SW

6 yanliu_I170114_022_PhosCyc6_SW

7 yanliu_I170114_026_PhosCyc7_SW

8 yanliu_I170114_041_PhosCyc8_SW_rep

9 yanliu_I170114_034_PhosCyc9_SW
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Treatment Replicate Filename

10 yanliu_I170114_038_PhosCyc10_SW

Nocodazole 1 yanliu_I170114_004_PhosNoco1_SW

2 yanliu_I170114_008_PhosNoco2_SW

3 yanliu_I170114_012_PhosNoco3_SW

4 yanliu_I170114_016_PhosNoco4_SW

5 yanliu_I170114_020_PhosNoco5_SW

6 yanliu_I170114_024_PhosNoco6_SW

7 yanliu_I170114_028_PhosNoco7_SW

8 yanliu_I170114_032_PhosNoco8_SW

9 yanliu_I170114_036_PhosNoco9_SW

10 yanliu_I170114_040_PhosNoco10_SW

Spectral library and peptide query parameter generation—The MaxQuant 

workflow71 provides integrated site-localization of the phosphopeptides and MS1 precursor-

level label-free quantification by alignment and matching between runs and can thus 

generate a quantitative matrix at the level of phosphopeptides for DDA data sets. In total, 

MaxQuant identified 10,051 unique peptide sequences carrying phosphorylated residues, 

filtered at 1% PSM FDR for the whole data set, in at least one of the ten replicates of each 

experimental condition. From these results, we generated a library covering a subset of 

8,013 phosphorylated unique peptide sequences for the analysis of the corresponding 20 

DIA runs using IPF, because not all PSMs fulfilled the criteria for peptide queries (e.g. at 

least six annotated fragment ions).

MaxQuant analysis and spectral library generation—All raw data was analyzed in 

a combined setting with MaxQuant (1.5.6.5) using primarily the default parameters71: The 

non-redundant reviewed human protein FASTA was obtained from the UniProtKB/Swiss-

Prot69 (2016-12-19) and appended with iRT peptide sequences and searched with static C 

(Carbamidomethyl), variable M (Oxidation) and variable STY (Phospho) modifications. 

“Match-between-runs” and the MaxLFQ algorithm were enabled. All specific parameters 

are provided in the file mqpar.xml in the ProteomeXchange repository.

To derive peptide query parameters, we selected the best scoring spectrum per peptidoform 

as reported by Andromeda in the file “msms.txt”. RT calibration was conducted using the 

spiked-in iRT-kit per run. OpenSwathAssayGenerator and OpenSwathDecoyGenerator 

(OpenMS 2.1) were run as described above. For all other analyses, we used the reported 

confidence values and intensities from the file “Phospho (STY)Sites.txt”.

OpenSWATH, PyProphet and TRIC—OpenSwathWorkflow (OpenMS 2.1) and 

PyProphet (https://github.com/grosenberger/pyprophet/tree/feature/ipf @93ec307) were 

used as described above.

TRIC (msproteomicstools/master @d2b5e17) was run with the following parameters:
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feature_alignment.py: --file_format openswath --fdr_cutoff 0.01 --max_fdr_quality 0.2 --

mst:useRTCorrection True --mst:Stdev_multiplier 3.0 --method LocalMST --max_rt_diff 30 

--alignment_score 0.0001 --frac_selected 0 --realign_method lowess_cython --

disable_isotopic_grouping

Statistics and visualization—The site-localization and peptidoform FDR for MaxQuant 

and IPF were computed for phosphopeptides only as described in Supplementary Notes II.F.

Visualization of Fig. 3 and Supplementary Fig. 5 was conducted using the heatmap.2 

function of the R package “gplots” with the default parameters, but sorted by generation of a 

dendrogram on the row-level only. The intersection of peptides containing phosphorylated 

residues between IPF and MaxQuant was used for all comparisons. For the quantification 

heatmaps, the dendrograms were applied from the corresponding heatmaps for 

identification/detection.

Fig. 3c and Supplementary Fig. 5c depict only peak groups / peptide precursors reported as 

differentially expressed by mapDIA (significance thresholds: FDR < 0.01 & log2(FC) > 2). 

mapDIA42 (3.0.1) was used with the following parameters:

LEVEL=1, EXPERIMENTAL_DESIGN=IndependentDesign, NORMALIZATION=tis, 

MIN_OBS=1, MIN_DE=.01, MAX_DE=.99.

Analysis of the 14-3-3β data set

Spectral library and peptide query parameter generation—The 18 DDA runs were 

supplemented with 2 phosphopeptide-enriched DDA runs to enable mapping of potentially 

unidentified MS1 features of the biologically-relevant samples with identified MS/MS 

spectra from the two enriched runs. Of all confidently identified peptides (PSM FDR: 1%), 

MaxQuant cumulatively identified 1,286 unique phosphorylated peptide sequences, of which 

we could generate a spectral library for 1,068 peptides that was used for the analysis of the 

corresponding 18 DIA runs by IPF.

MS data analysis—The analysis of the 14-3-3β data set43 was conducted identically as 

for the enriched phosphopeptide data set. Normalization was conducted using the aLFQ 

(https://github.com/grosenberger/aLFQ/tree/develop @94dfd2b) function 

normalizeBetweenRuns against the peptides of the 14-3-3β bait protein.

Statistics and visualization—The site-localization and peptidoform FDR for MaxQuant 

and IPF were computed for phosphopeptides only as described in Supplementary Notes II.F.

mapDIA42 (3.0.1) was used with the following parameters:

Phosphopeptide-level: Level=1, EXPERIMENTAL_DESIGN=ReplicateDesign, 

MIN_OBS=1, MIN_DE=.01, MAX_DE=.99

Protein-level: Level=2, EXPERIMENTAL_DESIGN=ReplicateDesign, SDF=2, 

MIN_CORREL=0.2, MIN_OBS=1, MIN_PEP_PER_PROT=1, MAX_PEP_PER_PROT=5, 

MIN_DE=.01, MAX_DE=.99
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The 14-3-3β binding motifs computed as part of the original study43 were used to map 

motifs to phosphopeptides. Visualization of Supplementary Fig. 6b-c was conducted using 

the boxplot function of the R package “graphics” with the default parameters as described 

above.

Assessment of variance components of post-translational modifications in human blood 
plasma

Spectral library and peptide query parameter generation—We generated a 

spectral library by searching DDA data from strong anion exchange chromatography 

fractions of trypsinized, depleted plasma samples. The searches were carried out separately 

for each type of modification. This resulted in a cumulative library covering 467 non-

redundant proteins, 6,928 peptide sequences and 9,272 peptidoforms at 0.2% iProphet65 

peptide FDR, consistent with the proteome coverage of the original study33. Of all the 

peptidoforms, 49.9% were unmodified and 33.5% contained carbamidomethylated residues. 

The other modification types were respectively present at the level of 0 – 9.9% of the 

detected peptides (Fig. 4a). Based on residue specificity (see below), we conservatively 

grouped PTMs (preferring artefactual causes) to originate from artefactual or biological 

effects. 4,495 peptidoforms contain PTMs that are likely technical artefacts, whereas 511 are 

attributed with biological effects (Supplementary Table 2).

DDA database search and spectral library generation—All raw instrument data 

acquired in DDA mode were centroided and converted to mzXML using msconvert 

(ProteoWizard61 3.0.7162). The non-redundant reviewed human protein FASTA was 

obtained from the UniProtKB/Swiss-Prot69 (2015-02-23) and appended with iRT peptide 

sequences and pseudo-reverse decoys. In addition, a second FASTA was generated based on 

the first with additional sequence variants of the human ApoE protein (ProteomeXchange 

repository). The files were searched using Comet62 (2015.02) using the default parameters 

for high mass accuracy instruments: peptide mass tolerance: 20 ppm (monoisotopic), isotope 

error enabled, fully tryptic digestion with max 2 missed cleavages, static C 

(Carbamidomethyl), variable M (Oxidation), max variable mods: 5. Based on these 

parameters, for each additional variable modification type, a separate search was conducted: 

MW (Oxidation), c (Amidated), NQ (Deamidated), Kn (Carbamyl), K (Label:

13C(6)15N(2)), R (Label:13C(6)15N(4)), KnST (Formyl), EK (Carboxy), Kn (Acetyl), Y 

(Nitro), KRDEc (Methyl), STY (Phospho), Y (Sulfo), K (GG), KR (Dimethyl), ApoE. 

PeptideProphet38,63 (TPP64 4.8.0) with parameters -dDECOY_ -OAPdlIwt was run 

independently per file and iProphet65 was used to combine all results. The heavy isotope 

labeled forms of K and R were included because heavy peptide standards with established 

SRM methods49 were spiked in the plasma digest for SWATH-MS quantification. 

Specifically, these heavy peptide standards included 73 spiked-in SIS peptides, 

corresponding to 37 plasma proteins33,49, with levels generally adjusted to the endogenous 

peptides in the human plasma proteome49. Furthermore, Amidation, sulfonation and 

dimethylation were excluded at later stages of the analysis, because they did either not 

generate enough suitable detection transitions (amidation), were either not identified with 

confidence (sulfonation; potential conflict with phosphorylation due to very similar mass 

and residue specificity), or resulted in only one detected peptide (dimethylation). 
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SpectraST66 (TPP/SVN r7019, custom build with disabled hardcoded modifications) was 

used to generate a spectral library of all peptide identifications at iProphet FDR 0.2% with 

the following parameters: -cP0.9 -c_IRR -c_IRTirtkit.txt -cICID-QTOF -c_RDYDECOY -

cAC –cM. OpenMS version (https://github.com/grosenberger/OpenMS/tree/feature/ipf 

@7924fc3) was used for all following steps: ConvertTSVToTraML was used to convert the 

SpectraST MRM file to a TraML. OpenSwathAssayGenerator was applied on the TraML 

with following parameters: -swath_windows_file swath32.txt -allowed_fragment_charges 

1,2,3,4 -enable_ms1_uis_scoring -max_num_alternative_localizations 20 -

enable_identification_specific_losses -enable_identification_ms2_precursors. 

OpenSwathDecoyGenerator was applied to append decoys to the target peptide query 

parameters using the following parameters: -method shuffle -append -mz_threshold 0.1 -

remove_unannotated. All OpenMS tools were executed using the modified chemistry 

parameters for the extended modification set (OpenMS.extended.params) 

(ProteomeXchange repository).

OpenSWATH, PyProphet and TRIC—Peptide queries based on the spectral library were 

run using IPF against the SWATH-MS data set consisting of 232 samples (with additional 

replicates, see Methods). To improve the consistency of the quantitative matrix, the inter-run 

alignment algorithm TRIC35 was applied based on the peptidoform-level confidence 

estimates of IPF to transfer the confidence to aligned peak groups and to impute background 

noise values (Methods). Based on the detected peak groups for all runs, this increased the 

matrix consistency (all peak groups vs all runs) by 10.3%. Cumulatively, 82.5% of the 

peptidoforms present in the library could be detected in at least one sample and 50.3% were 

detected in at least 20 samples with a run-specific IPF peptide query FDR threshold at 1% 

(Supplementary Table 2). This recovery rate corresponds well with expectations in cases in 

which SWATH-MS data from undepleted and unfractionated plasma digest is queried with a 

sample-specific library generated from multiple fractions of the same sample 26.

All steps were applied to the complete data set consisting of the 232 samples and 

additionally the 6 technical and 4 whole process replicates and 4 repeat runs.

OpenSwathWorkflow (https://github.com/grosenberger/OpenMS/tree/feature/ipf @7924fc3) 

was run with the following parameters -min_upper_edge_dist 1 -mz_extraction_window 

0.05 -rt_extraction_window 600 -extra_rt_extraction_window 100 -min_rsq 0.95 -

min_coverage 0.6 -use_ms1_traces -enable_uis_scoring -Scoring:uis_threshold_peak_area 0 

-Scoring:uis_threshold_sn -1 -Scoring: stop_report_after_feature 5 -tr_irt 

hroest_DIA_iRT.TraML. The following subset of scores was used on MS2-level: 

xx_swath_prelim_score library_corr yseries_score xcorr_coelution_weighted 

massdev_score norm_rt_score library_rmsd bseries_score intensity_score xcorr_coelution 

log_sn_score isotope_overlap_score massdev_score_weighted xcorr_shape_weighted 

isotope_correlation_score xcorr_shape. All MS1 and UIS scores were used for PyProphet.

PyProphet (https://github.com/grosenberger/pyprophet/tree/feature/ipf @93ec307) was run 

on all runs independently with the following parameters:

--final_statistics.emp_p --qvality.enable --qvality.generalized
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--ms1_scoring.enable --uis_scoring.enable --uis_scoring.expand_peptidoforms

--xeval.num_iter=10 --ignore.invalid_score_columns.

TRIC (msproteomicstools/master@d2b5e17) was run with the following parameters:

feature_alignment.py: --file_format openswath --fdr_cutoff 0.01 --max_fdr_quality 0.2 --

mst:useRTCorrection True --mst:Stdev_multiplier 3.0 --method LocalMST --max_rt_diff 30 

--alignment_score 0.0001 --frac_selected 0 --realign_method lowess_cython --

disable_isotopic_grouping

requantAlignedValues.py: --disable_isotopic_grouping --disable_isotopic_transfer --

realign_runs lowess_cython --method singleShortestPath --do_single_run

Residue modifiability and differentiation between artefactual and biological 
PTMs—Differentiation between biological and artefactual causes is challenging for most 

modification types, because many can originate from both causes, depending on the residue 

and context. However, to provide an approximate assessment, we generated a manually 

refined list of UniMod residue modifiability:

Artefactual PTMs: C (Carbamidomethyl), Kn (Carbamyl), K (Carboxy), NQ (Deamidated), 

KST (Formyl), K (Label:13C(6)15N(2)), R (Label:13C(6)15N(4)), DE (Methyl), MW 

(Oxidation), c (Methyl)

Biological PTMs: Kn (Acetyl), E (Carboxy), KR (Dimethyl), K (GG), KR (Methyl), Y 

(Nitro), STY (Phospho), Y (Sulfo), n (Formyl)

Variance decomposition of peptidoform level—Quantitative variance decomposition 

on peptide query / peptidoform level was conducted as previously reported33 with 

normalization of the peptidoform intensities by a rank normal transformation per run. The 

input data was restricted to ensure that each peptidoform could be detected in at least 20 

samples below the threshold (1% IPF peptide query peptidoform FDR). The heritability 

analysis was conducted using SOLAR72 (7.6.4). The significance of the components was 

computed by assuming a X2 distribution of  and one degree of freedom. Correction 

for multiple testing was conducted using Storey’s q-value73.

Statistics and visualization—Visualization of Fig. 4, 5b and Supplementary Fig. 9, 10, 

12 and 14 was conducted using the boxplot function of the R package “graphics” or 

“ggplot2” as described above. Fig. 5b and Supplementary Fig. 12 and 14 indicate outliers as 

dots. The coefficient of variation (CV) values visualized in Fig. 4b and Supplementary Fig. 

9, 10 were computed using the cv function of the R package “raster”. Only CV values where 

peptidoforms were detected in at least 2 samples were considered, all others were omitted.

Supplementary Fig. 11 indicates the quantitative variability of each peptidoform as mean 

with the error bars indicating the standard deviation.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. IPF analysis workflow overview.
Step 1: Query parameter generation: Based on a spectrum-centric workflow (DDA or DIA), 

peptide query parameters consisting of detection (most intense) and identification (site 

determining) transitions for all peptidoforms are generated. Step 2: Signal processing: Using 

a multi-tier scoring approach, the detection and identification transition-level and precursor 

ion chromatograms are extracted from the SWATH maps. The chromatograms on detection 

transition-level are used to find candidate peak groups against which the chromatograms of 

the precursor ion and identification transitions are scored. The multi-tier scoring estimates 

the posterior probability (PP) for the candidate peak groups using the detection transitions. 
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In the step on precursor and transition-level, the PPs are estimated for the likelihood that 

individual precursor ions or identification transition-level chromatograms are originating 

from the peak group associated peptide. Step 3: Statistical inference: A Bayesian 

hierarchical model (BHM) integrates the precursor and transition PPs, according to residue 

specificity, to peptidoform PPs. In addition to the peptidoforms, the PP that the signal is a 

false positive is being updated.
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Figure 2. Benchmarking on the synthetic phosphopeptide reference data set.
Spiked-in synthetic yeast phosphopeptides36 were measured in a 13-step dilution series with 

a human cell line background. IPF was applied using a spectral library generated from DDA 

measurements of the synthetic peptides. a) The receiver operating characteristic (ROC) 

indicates high sensitivity at commonly used confidence thresholds with 71.6% recovery at 

5% (grey dotted line) false positive rate. b) The estimated global false discovery rate (FDR) 

or q-values are plotted against the true FDR, computed using the ground truth. The dashed 

diagonal line indicates the optimum. The estimated local false discovery rate (fdr) or 
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posterior error probability (PEP) is plotted against the actual fdr, approximated using the 

ground truth with a window size of 50037. IPF enables accurate estimation in the commonly 

used ranges of 1-5% fdr/FDR, with a small underestimation of the error in the higher ranges. 

c) The dilution series of synthetic spiked-in standard peptides against the constant human 

cell line digest and the detected true (green) and false (red) peptidoforms at 5% FDR are 

depicted. The light colors (OSW; OpenSWATH) represent the detectable peptide sequence-

specific peptide query-level candidate peak group signals. The dark colors (IPF) represent 

the corrected, peptidoform-specific signals. A high gain in selectivity with a slight drop in 

sensitivity can be observed for IPF in comparison to OpenSWATH. d) The quantification of 

the peak groups (normalized against the 1:0 sample) is compared against the ground truth 

(red line). Until dilution step 1:15 the quantification is accurate, with a slight bias for 

overestimation at lower abundance dilution steps. The numbers above the boxplots indicate 

the number of peptides per dilution steps that are also present in the 1:0 step. e) The 

boxplots depict the intensities of correct peptidoforms and background (BG) peptides at 5% 

FDR. To achieve high confidence on peptidoform-level, IPF requires slightly higher signal 

intensities than OpenSWATH on peptide-level. Supplementary Figure 3 depicts the same 

plots for a library generated using DIA-Umpire.
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Figure 3. Benchmarking using a data set generated from phosphopeptide-enriched samples.
Enriched phosphopeptide samples of a human U2OS cell line treated with nocodazole and 

without treatment (control) were measured in both DDA and DIA modes in each 10 

replicates. a) 200 peptides were randomly selected and the corresponding detected peak 

groups and peptide precursors are visualized in a heatmap (sorted by a hierarchical 

dendrogram for identification/detection by rows) for detection confidence (blue) and 

quantification (red-yellow; including alignment). IPF achieved a high level of completeness 

for both detection and quantification in individual experimental conditions (Nocodazole 

N01-N10: 62.6%; Controls C01-C10: 47.5%). b) The consistency of quantification for all 

intersecting peptides is depicted. c) Differential expression analysis was conducted using 

mapDIA (significance thresholds: FDR < 0.01 & log2(FC) > 2). For IPF on both MS2 peak 
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group (IPF-MS2) and MS1 (IPF-MS1) precursor levels, the same peptide/precursor-level 

model and parameters were used.
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Figure 4. Assessment of variance components of peptidoform abundance in human blood 
plasma.
a) The overlaid histogram of unmodified and modified peptides grouped according to 

modification type contained in the spectral library, confidently detected in at least one 

sample (shaded grey) and the average number of detected peptidoforms per sample (shaded 

black). b) The detectability in number of samples of peptidoforms grouped by modification 

types indicates a median detectability in ~50-100 samples. c) The coefficient of variation 

(CV; computed only if the peptidoform was detected in at least 2 runs) of the quantile 
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normalized peak group intensities across different modification types is depicted. Technical 

and whole-process variability are consistently lower than the intensities of unmodified and 

modified peptides across the cohort, indicating that biological variance constitutes a major 

component of the total variance. d) The cumulative relative variance contributions (RVC) of 

the heritable (h2r), common environment (c2), individual environment (h2id) and 

longitudinal (h2w) effects per peptidoform peak group grouped and ordered by effect type 

and contribution are depicted.
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Figure 5. Oxidative tryptophan modifications of ApoA1.
a) The asymmetric units form an antiparallel four-helix bundle in an elliptical ring shape53. 

The myeloperoxidase (MPO) binding site is highlighted in yellow. On the opposite site, 

oxTrp72 (h2w (longitudinal): 19.8%, h2id (individual environment): 18.3%, h2r (heritable): 

17.5%, c2 (common environment): 0%, e2 (unexplained): 44.4%), a potential biomarker for 

dysfunctional ApoA1 is highlighted in red. oxTrp50 (green; h2w: 29.7%, h2r: 13.2%, h2id: 

6.8%, c2: 0%, e2: 50.3%) and oxTrp108 (blue; h2w: 29.7 %, c2: 13.5%, h2id: 8.9%, h2r: 

0%, e2: 47.9%) are in close spatial proximity to oxTrp72. For all three modification sites, 
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the longitudinal effect is the major component. b) The boxplots depict the peptidoform 

abundance fold changes between timepoints 2 (later) and 1 (log2(NI_2/NI_1); NI: quantile 

normalized intensity) for all individuals. oxTrp50 (green) and oxTrp72 (red) are stable in 

abundance over both time points with a slight increase in intensity, which is also present for 

the other related peptidoforms. The oxTrp108 (blue) peptidoforms show the largest increase 

in abundance when comparing the second to the first visit. However, the methionine 

oxidized peptidoforms (oxMet112) show a decrease, which might be induced by the longer 

time of sample storage and thus spontaneous methionine oxidation for the samples at the 

first visits. For all sites the unmodified peptidoforms also show a longitudinal increase, 

indicating a longitudinally increasing total protein abundance.
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