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Abstract: Vascular endothelial growth factor A (VEGF-A) signaling is essential for physiological and
pathological angiogenesis. Alternative splicing of the VEGF-A pre-mRNA gives rise to a pro-angiogenic
family of isoforms with a differing number of amino acids (VEGF-Axxxa), as well as a family of
isoforms with anti-angiogenic properties (VEGF-Axxxb). The biological functions of VEGF-A proteins
are mediated by a family of cognate protein tyrosine kinase receptors, known as the VEGF receptors
(VEGFRs). VEGF-A binds to both VEGFR-1, largely suggested to function as a decoy receptor, and
VEGFR-2, the predominant signaling receptor. Both VEGFR-1 and VEGFR-2 can also be alternatively
spliced to generate soluble isoforms (sVEGFR-1/sVEGFR-2). The disruption of the splicing of just
one of these genes can result in changes to the entire VEGF-A/VEGFR signaling axis, such as the
increase in VEGF-A165a relative to VEGF-A165b resulting in increased VEGFR-2 signaling and aberrant
angiogenesis in cancer. Research into this signaling axis has recently focused on manipulating the
splicing of these genes as a potential therapeutic avenue in disease. Therefore, further research into
understanding the mechanisms by which the splicing of VEGF-A/VEGFR-1/VEGFR-2 is regulated will
help in the development of drugs aimed at manipulating splicing or inhibiting specific splice isoforms
in a therapeutic manner.
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1. Introduction

Angiogenesis comprises the formation and maintenance of blood vessels. A variety of signaling
molecules are involved in the regulation of angiogenesis, including vascular endothelial growth factor
(VEGF), which is essential both for physiological and pathological angiogenesis [1]. The biological
functions of VEGF proteins are mediated by a family of cognate protein tyrosine kinase receptors,
known as the VEGF receptors (VEGFRs) [2]. Activation of the VEGF pathway has been implicated in
a large number of disease processes ranging from cancer to autoimmunity.

There are several VEGF proteins; VEGF-A binds to and signals through VEGFR-1 (Flt-1) and
VEGFR-2 (KDR/Flk-1), VEGF-B signals solely through VEGFR-1, and VEGF-C and VEGF-D have a high
affinity to VEGFR-3 (Flt-4) [1,2]. In addition, there are two neuropilin receptors, which are transmembrane
glycoproteins, that function in the VEGF-VEGFR axis [2]; neuropilin-1 (NRP-1), a non-kinase co-receptor
for VEGFR-2, functions to enhance the binding and signaling of certain isoforms of VEGF-A. NRP-2,
on the other hand, is a non-kinase co-receptor for VEGFR-3. Since VEGFR-1 and VEGFR-2 are the
receptor tyrosine kinases specific for VEGF-A, this review will focus on the splice variants of these two
receptors only.
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2. VEGFR Splice Variants and Functions

VEGF-A binds to two tyrosine kinase VEGFRs, VEGFR-1 and VEGFR-2. There are several isoforms
of these VEGFRs that arise as a result of alternative splicing of the VEGFR pre-mRNA, which can
alter the protein function, as detailed below (Figure 1). Both VEGFR-1 and VEGFR-2 have seven
extracellular immunoglobulin (Ig)-like domains, which consist of a tetramer of two light chains and
two heavy chains linked by disulphide bonds, a single transmembrane region, and an intracellular
tyrosine kinase sequence interrupted by a kinase insert domain [3]. VEGF-A binds to the extracellular
domain and the kinase insert domain acts as a binding site for intracellular proteins to carry out
specific signaling cascades in response to ligand binding.
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kinase activity and is not required for endothelial cell function [5]. VEGFR-1 binds VEGF-A with high 
affinity but there is conflicting evidence for the role of VEGFR-1 as it appears to signal differently 
depending on the cell type and stage of development [5]. VEGFR-1 gene expression is regulated by 
hypoxia in human umblical endothelial cells; the VEGFR-1 promoter contains a binding site for 
hypoxia inducible factor (HIF)-1α [6]. Relatively little is known about the function of VEGFR-1. 
Constitutive knock-out (KO) of VEGFR-1 results in embryonic lethality between embryonic days 8.5 
and 9 [7]. This was later found to be the result of increased endothelial cell outgrowth and angioblast 
commitment, which prevented proper organization of the vascular network [8]. Previous reports 
have labelled VEGFR-1 as a decoy receptor, decreasing the amount of VEGF-A readily available to 
bind to and phosphorylate VEGFR-2 [9]. Further evidence for this is that deletion of just the 
intracellular kinase domain for VEGFR-1 resulted in normal vascular development in mice [9]. 

Figure 1. Alternative splice variants of VEGFR-1 and VEGFR-2. (A) Alternative splicing gives rise
to five known splice variants of VEGFR-1: full length VEGFR-1, intron 13 retention (sVEGFR-1_i13),
intron 14 retention (sVEGFR-1_i14), terminal exon 15a (sVEGFR-1_e15a), and terminal exon 15b
(sVEGFR-1_e15b). The soluble isoforms only contain the extracellular (EC) domain and are missing
the transmembrane (TM) and kinase (K1 and K2) domains. (B) Alternative splicing gives rise to two
known splice variants of VEGFR-2: full length VEGFR-2 and sVEGFR-2, which result from intron 13
retention. The sVEGFR-2 only contains the EC domain.

2.1. VEGFR-1 Signaling

VEGFR-1 was the first receptor tyrosine kinase for VEGF-A to be identified in COS cells [4]
and has since been reported to be widely expressed on many cell types; however, it has very poor
tyrosine kinase activity and is not required for endothelial cell function [5]. VEGFR-1 binds VEGF-A
with high affinity but there is conflicting evidence for the role of VEGFR-1 as it appears to signal
differently depending on the cell type and stage of development [5]. VEGFR-1 gene expression is
regulated by hypoxia in human umblical endothelial cells; the VEGFR-1 promoter contains a binding
site for hypoxia inducible factor (HIF)-1α [6]. Relatively little is known about the function of VEGFR-1.
Constitutive knock-out (KO) of VEGFR-1 results in embryonic lethality between embryonic days 8.5
and 9 [7]. This was later found to be the result of increased endothelial cell outgrowth and angioblast
commitment, which prevented proper organization of the vascular network [8]. Previous reports have
labelled VEGFR-1 as a decoy receptor, decreasing the amount of VEGF-A readily available to bind
to and phosphorylate VEGFR-2 [9]. Further evidence for this is that deletion of just the intracellular
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kinase domain for VEGFR-1 resulted in normal vascular development in mice [9]. Therefore, VEGFR-1
is hypothesized to sequester VEGF-A, preventing it from binding to its functional receptor, VEGFR-2.

2.2. Function of sVEGFR-1

The VEGFR-1 pre-mRNA can be alternatively spliced to produce the full-length
membrane-spanning receptor described above, or the truncated soluble VEGFR-1 (sVEGFR-1), which
includes the seven N-terminal immunoglobulin-like extracellular domains but not the transmembrane
spanning or intracellular kinase domains, thus has a specific 31-amino acid c-terminus [1]. Full-length
VEGFR-1 mRNA consists of 30 exons, whereas sVEGFR-1 only contains the first 13–14 exons due to
intron retention and usage of an alternative polyadenylation signal and stop codon (isoforms detailed
below). sVEGFR-1 is suggested to form non-signaling complexes with VEGFR-2, thus functioning as
a modulator of VEGF-A signaling [10]. Like full length VEGFR-1, sVEGFR-1 has also been shown to
act as a decoy receptor; VEGFR-1 KO mice die from vasuclar overgrowth due to increased signaling of
VEGF-A through VEGFR-2; however, the administration of sVEGFR-1 to VEGFR-1 KO mice partially
rescues this phenotype as it reduces the levels of VEGFR-2 phosphorylation [11].

There are currently five known VEGFR-1 protein coding isoforms (reviewed in [12]) (Figure 1A).
Isoform 1 is denoted by the full-length VEGFR-1. Isoform 2 is termed sVEGFR-1, which comprises
the 656 N-terminal residues followed by a specific 30-amino acid C-terminus and appears to have
ubiquitous expression throughout most tissues [12]. Isoform 3 is a second soluble form generated by
alternative splicing downstream of exon 14, termed sVEGFR-1_i14, which has been predominantly
detected in the testes and brain [12]. Isoforms 4 and 5 result from the use of a new terminal exon,
termed exon 15a and 15b, which is derived from an intronic sequence. These isoforms have been found
to be highly expressed in the placenta [12]. Alternative splicing of VEGFR-1 involves cis-regulatory
elements in the VEGFR-1 pre-mRNA within intron 13 [13]. Hypoxia is reported to increase the
expression of transmembrane VEGFR-1 [6]; however, the effect of hypoxia on sVEGFR-1 expression is
not so clear. In endothelial cells, hypoxia was shown to downregulate the expression of sVEGFR-1,
which was not directly attributable to HIF-1α [14]. In contrast, exposure of macrophages/monocytes
to granulocyte-macrophage colony-stimulating factor (GM-CSF) under hypoxic conditions results in
HIF-2α-dependent changes in sVEGFR-1 expression [15]. In cytotrophoblasts, where the sVEGFR-1_i14
isoform is most commonly expressed, hypoxia increases both sVEGFR-1_i14 and sVEGFR-1 mRNA,
which is proposed to be through HIF-1α [16]. Furthermore, sVEGFR-1_i14 secretion was shown to
increase under hypoxic conditions through activation of the growth arrest and DNA damage-inducible
45a (Gadd45a) factor and p38 phosphorylation [17]. Several drugs and protein factors have been shown
to modulate sVEGFR-1 expression, including Jumonji domain-containing protein 6, which interacts
with the splice factor U2AF65 resulting in augmented levels of sVEGFR-1 in hypoxic conditions [18].
In addition, hnRNP D and arginine methylation have also been reported to play important roles in the
regulation of sVEGFR-1 mRNA alternative polyadenylation [19]. Interestingly, VEGF-A can increase
the expression of sVEGFR-1 through VEGFR-2-dependent activation of protein kinase C [20].

2.3. VEGFR-2 Signaling

VEGFR-2 is the main signaling receptor for VEGF-A. It is primarily located on endothelial cells
and is essential for endothelial cell biology both during development and during physiological and
pathological processes in adults. Like VEGFR-1, all VEGF-A isoforms contain residues that enable
them to bind to VEGFR-2 and all bind with the same affinity. However, the affinity of VEGF-A for
VEGFR-2 is 10-fold lower than that for VEGFR-1 [21,22]. A constitutive KO of VEGFR-2 results in
embryonic lethality on day 8.5–9.5; mice lack mature endothelial and hematopoietic cells [23]. This is
similar to the phenotype observed in VEGF-A KO mice [24]. Therefore, unlike VEGFR-1, VEGFR-2
signaling is crucial for vascular development.

Proteolytic hydrolysis of membrane-bound VEGFR-2 results in the generation of soluble VEGFR-2
(sVEGFR-2) [12]. sVEGFR-2 is proposed to function as an inhibitor of angiogenesis by binding to and
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sequestering VEGF-A, blocking canonical VEGF-A-VEGFR-2 signaling [25,26]. A further sVEGFR-2
isoform generated by intron 13 retention has been described; as with VEGFR-1, retention of intron
13 yields a truncated transcript whose protein variant lacks the transmembrane and intracellular
kinase domain of full length VEGFR-2 [27] (Figure 1B). This splice variant is reported to play a role in
lymphangiogenesis by blocking VEGF-C [27]. Little is known regarding the mechanisms controlling
this alternative splicing event.

3. VEGF-A Splice Variants

The human VEGF-A pre-mRNA consists of eight exons and seven introns. Alternative splicing of
the VEGF-A pre-mRNA gives rise to a family of isoforms with a differing number of amino acids due
to the exclusion/inclusion of various exons (e.g., VEGF-A121, VEGF-A165, VEGF-A189, and VEGF-A206,
collectively known as VEGF-Axxxa where xxx denotes the number of amino acids) (Figure 2). Such
isoforms are widely known to be pro-angiogenic, pro-permeability factors. In addition, the selection
of an alternative 3′ splice site, known as the distal splice site, in exon 8 of the VEGF-A pre-mRNA
results in a new family of VEGF-A isoforms, termed VEGF-Axxxb [28]. The resulting VEGF-Axxxb
proteins differ in the C-terminal sequence by only six amino acids, resulting in radically different
functional properties (Figure 2). In comparison to VEGF-Axxx, VEGF-Axxxb isoforms are collectively
anti-angiogenic and reduce vessel permeability (anti-permeability). Sixteen isoforms of VEGF-A
have been identified, including an additional isoform, VEGF-Ax, which arises from translational
read-through of the VEGF-A transcript beyond the canonical stop codon (programmed translational
read-through) [29].
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Figure 2. Alternative splicing of VEGF-A. The VEGF-A pre-mRNA is comprised of 8 exons.
Inclusion/exclusion of exons 6a,b and 7a,b gives rise to VEGF-A isoforms with differing numbers
of amino acids. The use of an alternative 3′ splice site in exon 8 results in a differing c-terminal
sequence of amino acids (VEGF-Axxxb isoforms). The VEGF-Axxxa family of isoforms have
pro-angiogenic, pro-permeability properties whereas the VEGF-Axxxb isoforms are anti-angiogenic
and anti-permeability. Figure adapted from Stevens et al. 2018.

VEGF-A splicing is predominantly regulated by a group of RNA binding proteins known as
serine/arginine (SR) proteins. SRSF1, SRSF2, SRSF5, and SRSF6 have all been reported to play
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a role in VEGF-A alternative splicing [30]. Upon phosphorylation of multiple serine/arginine and
proline/serine repeats, SR proteins are translocated from the cytoplasm to the nucleus where they
bind to exonic sequence enhancers within the VEGF-A pre-mRNA, resulting in the splicing out of
an exon [31]. The inclusion/exclusion of certain exons result in the different isoform properties of
each VEGF-A protein. Exons 1–5 are constitutive exons; they encode a single sequence (exons 1/2),
a glycosylation site (Asp74), a potential plasmin cleavage site (Arg110 and Ala111), as well as VEGFR
binding residues [32,33]. Whereas exons 1–5 are present in all isoforms of VEGF-A, exons 6 and 7 are
alternatively spliced. Heparin sulfate (HS) glycoproteins are present in the extracellular matrix (ECM)
and can interact with both VEGF-A and VEGFRs, thus they are suggested to regulate the bioavailability
of VEGF-A. Residues in exon 6a and 7 of VEGF-A are responsible for the interaction with HS [34].
VEGF-A145, VEGF-A189, and VEGF-A206 all contain exon 6a and 7 resulting in a high affinity for HS;
this results in these longer isoforms being tethered to the ECM. On the other hand, VEGF-A111 and
VEGF-A121 lack exon 6 and 7, so they are unable to bind HS, making them freely diffusible in the ECM
and more bioavailable [35]. The most dominant isoform is VEGF-A165, which contains exon 7 but
not 6. Therefore, VEGF-A165 has an intermediate bioavailability as approximately 50% remains cell- or
ECM-bound [36].

Regarding exon 8 of the VEGF-A gene, selection of either the proximal or distal splice site has been
reported to be dependent on the type of external stimulus; proximal splice site selection is promoted
by insulin like growth factor (IGF1) and tumor necrosis factor alpha (TNFα), whereas distal splice
site selection is promoted by tumor growth factor beta 1 (TGF-B1) [37]. A widely reported example of
exon 8 splicing regulation involves serine/threonine-protien kinase 1 (SRPK1) and CDC-like kinase 1
(Clk-1). SRPK1 activation has been shown to phosphorylate SRSF1, resulting in proximal splice site
selection and the translation of VEGF-Axxxa proteins [38]. On the other hand, Clk-1 signaling results in
the phosphorylation of SRSF6, with the distal splice site being subsequently selected and VEGF-Axxxb
proteins translated [37]. Other reported regulators of VEGF-A exon 8 splicing are E2F1 and SRSF2,
which were both shown to increase the VEGF-Axxxb/VEGF-Axxxa ratio [39].

4. VEGFR Signaling

4.1. Role of VEGFR-1 Signlaing and sVEGFR-1 Isoforms

As mentioned previously, the role of VEGFR-1 in vasculogenesis and angiogenesis has been ascribed to
VEGF-A binding, thus regulating the amount of VEGF-A available for vascular development. VEGFR-1 is
widely expressed but has poor kinase activity and is not required for endothelial cell function. Further
evidence for this hypothesis arose from mice with a homozygous deletion of the VEGFR-1 tyrosine
kinase domain developing healthy vasculature [9]. Therefore, the primary role of VEGFR-1 in embryonic
angiogenesis is restricted to its extracellular region and is independent of its tyrosine kinase activity.
As sVEGFR-1 contains the extracellular domain, it also acts as a decoy receptor [40]. sVEGFR-1 is also
proposed to form non-signaling complexes with VEGFR-2 [10].

A study using VEGFR-1 KO embryonic stem cells showed that sVEGFR-1 is important for the
modulation of endothelial cell migration and vascular sprouting during development [41]. During
vessel morphogenesis, endothelial cells are suggested to form a VEGF-A gradient via the interaction
of VEGF-A with sVEGFR-1, resulting in sequestration of VEGF-A and local inactivation of VEGFR-2
signaling [42]. Therefore, sVEGFR-1 is proposed to act as a guidance molecule during vessel sprouting,
i.e., inactivating VEGF-A either side of the sprout to provide a VEGF-A-rich corridor for the emerging
vessel [43]. sVEGFR-1 present in the ECM is also reported to play a role in α5β1 integrin signaling
regarding the cell adhesion pathway [44]; however, these signaling pathways are not related to VEGF-A
and are beyond the scope of this review.

Recent studies have highlighted that VEGF-B and PIGF are able to signal through VEGFR-1,
eliciting a pro-angiogenic effect independent of VEGF-A [45,46]. In addition, increased levels of
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sVEGFR-1 have been observed in vascular pathologies [45], indicating that VEGFR-1 may act as more
than a decoy receptor/VEGFR-2 inhibitor.

The role of sVEGFR-1 in tumor development and progression has been widely reported.
The expression of sVEGFR-1 has been found to be increased in many types of cancer, including glioblastoma,
melanoma, breast, hepatocellular, lung, leukemia, colorectal, renal, and head and neck [47–55]. Increased
circulating sVEGFR-1 is often correlated with poor prognosis; however, the balance between VEGF-A
and sVEGFR-1 may be more important when considering the clinical outcome. For example, increased
sVEGFR-1 and VEGF-A are correlated with poor prognosis in lung cancer patients [51]. On the other hand,
increased VEGF-A combined with low levels of sVEGFR-1 are associated with a poor prognosis in breast
cancer [56]. In addition to being a marker for tumor progression, sVEGFR-1 has also been shown to serve
as a biomarker for tumor response to therapy. Using the example of bevacizumab, increased plasma
levels of sVEGFR1 were reported to be inversely correlated with treatment response in breast cancer [57].
However, this appears to be dependent on the type of cancer as the sVEGFR-1 expression level was found
to be decreased upon treatment of metastatic colorectal cancer [58].

Excess circulating soluble isoforms of VEGFR-1 have been shown to contribute to the pathogenesis
of pre-eclampsia in pregnant women [59,60]. The sVEGFR-1_i14 isoform is presumed to be a major
contributor to this condition because it is selectively expressed by placental cytotrophoblasts; the increased
sequestration of platelet-derived growth factor (PIGF) and VEGF-A by excess sVEGFR-1_i14 results in
endothelial dysfunction and altered neutrophil activation and migration, ultimately causing hypertension,
proteinuria, and glomerular endotheliosis in patients [60,61]. Indeed, increased levels of circulating
sVEGFR-1_i14 is used as a biomarker for the development of pre-eclampsia [62].

As described above in pregnant women with pre-eclampsia, increased circulating levels of
sVEGFR-1 is linked to endothelial dysfunction in the glomeruli of the kidney. VEGF-A is secreted
by the glomerular epithelial cells (podocytes) to signal to VEGFR-2 on the glomerular endothelial
cells, a process that is tightly regulated to maintain proper functioning of the glomerular filtration
barrier. Plasma levels of sVEGFR-1 are higher in patients with chronic kidney disease (CKD), which
are correlated with cardiovascular disease [63,64]. On the other hand, inducible over-expression of
podocyte sVEGFR-1 has been shown to be therapeutic in a model of diabetic nephropathy where
excess VEGF-A expression is observed [65]. In addition, sVEGFR-1 has been reported to bind to lipid
microdomains in podocytes, which can alter cell morphology and the function of the glomerular
filtration barrier [66].

sVEGFR-1 has also been shown to play a role in ocular pathologies through the inhibition
of VEGF-A, including the preservation of cornea avascularity [67]. In addition, reduced levels
of sVEGFR-1 where observed in patients with age-related macular degeneration [68]. Regarding
inflammation, increased levels of sVEGFR-1 in the blood is indicated to act as a potential new
biomarker of sepsis [69], and a predictor of endothelial dysfunction/activation of coagulation in
acute pancreatitis [70].

On the other hand, in mouse xenograft models of melanoma, lung cancer, fibrosarcoma,
and glioblastoma, exogenous administration of sVEGFR-1 (either transfection, recombinant protein,
or adenovirus infection) inhibited tumor growth and neoangiogenesis, increasing the survival
rate [71–74].

4.2. VEGF-Axxxb Activation of VEGFR-1

Information on VEGFR-1 activation and signaling is sparse; however, a recent study has shown
that VEGF-A165b inhibits VEGFR-1 signaling in ischemic muscle in mice, and that VEGF-A165b
inhibition induces activation of VEGFR-1 [75]. Furthermore, in vitro studies showed that VEGF-A165b
failed to induce the activation of VEGFR-1-Y1333, reducing VEGFR-1-STAT3 signaling [75].
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4.3. Mehcanisms of VEGFR-2 Signaling

As mentioned above, all VEGF-A isoforms can bind to VEGFR-2 with similar affinity; however,
different isoforms result in different activation and signaling outcomes [32] (Figure 3). Upon binding of
VEGF-A to its orthosteric ligand binding site, VEGFR-2 undergoes dimerization and a conformational
twist in the extracellular region results in the rotation of transmembrane helices [76,77]. Both VEGF-A165

and VEGF-A165b have been shown to result in VEGFR-2 dimerization [77]. Conformational changes
in the intracellular domain of VEGFR-2 follows; ATP binds to the flexible N-lobe cleft facilitating the
intrinsic kinase activity of the receptor and phosphorylation of the tyrosine residues in the C-lobe [78].
Upon phosphorylation of these tyrosine residues, certain cytoplasmic proteins bind and distinct
signaling pathways are initiated, included those involved in cell survival, migration, proliferation,
vasodilatation, and permeability (reviewed in [79]). The tyrosine residues include Y1054 and Y1059 in
the activation loop, which are required for maximal kinase activity of VEGFR-2 [80]; Y951 in the kinase
insert domain, which serves as a binding site for T cell-specific adapter molecule (TSAd) [81], and is
vital for HUVEC migration in response to VEGF-A [82]; and Y1175 and Y1214 in the COOH-terminal
tail. Y1175 phosphorylation mediates cell proliferation through binding of phospholipase C (PLC)-γ [83].
VEGFR-2 is dephosphorylated by protein phosphatase 1b (PTP1b) in the endoplasmic reticulum, which
highlights the importance of spatiotemporal trafficking on the activation of VEGFR-2 [84,85].
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Figure 3. VEGF-Axxxa and VEGF-Axxxb signaling through VEGFR splice variants and NRP1. Both
VEGF-Axxxa and VEGF-Axxxb can bind and dimerize VEGFR-2. VEGF-Axxxa recruits NRP1, a co-receptor
for VEGFR-2, which results in phosphorylation of the tyrosine kinase domains of VEGFR-2, producing
pro-angiogenic and pro-permeability intracellular signaling cascades. In contrast, VEGF-Axxxb is unable to
recruit NRP1, resulting in weak, transient phosphorylation of VEGFR-2 and some pro-survival signaling
cascades. Soluble isoforms of NRP1, as well as sVEGFR-2 and sVEGFR-1 lack transmembrane domains
and act as decoy receptors, sequestering VEGF-A.

4.4. VEGFR-2 Signaling in Angiogenesis

During sprouting angiogenesis, endothelial cells within existing vessels form an angiogenic
sprout towards a chemotactic stimulus, such as VEGF-A. The angiogenic sprout is orientated with
a leading tip cell and trailing stalk cells. The extent of sprouting in neighboring endothelial cells is
regulated by delta-like ligand 4 and Notch via lateral inhibition [86]. Lumen formation occurs once two
sprouts anastomose, and the new vessel is stabilized by smooth muscle cell and basement membrane
deposition [87].
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Cell proliferation is required for angiogenesis. VEGF-A activates VEGFR-2 and stimulates
proliferation through the activation of RAS, which then activates RAF kinase to phosphorylate
mitogen-activated protein kinases (MAPK/ERK) [88]. VEGFR-2 stimulates ERK activation via
Y1175-dependent phosphorylation of PLC-γ, resulting in the subsequent activation of protein kinase
C (PKC) [82]. Mutation of Y1175 or administration of and antibody specific to Y1175 decreased
VEGF-A-dependent cell proliferation in vitro [89]. Furthermore, mutation of Y1175 in mice results in
embryonic lethality on day 5–9 due to a lack of blood vessel formation [90].

Endothelial cell migration is also essential for angiogenesis. One VEGFR-2 signaling pathway
that has been implicated in endothelial cell migration is initiated via the phosphorylation of Y951,
which allows for the binding of T cell specific adapter protein (TSAd) [81]. Both mutation of Y951
and knock-down of TSAd are reported to inhibit VEGF-A-mediated actin reorganization, and thus
migration in cultured endothelial cells; however, proliferation remained unaffected [81]. Another
example of a VEGFR-2 signaling pathway involves phosphorylation of Y1175 to induce focal adhesion
kinase (FAK)-mediated endothelial cell migration [91].

4.5. VEGFR-2 Signaling in Cell Survival

VEGF-A activation of VEGFR-2 is associated with increased endothelial cell survival. VEGFR-2
activates phosphoinositide 3-kinase (PI3K), which enables membrane recruitment and phosphorylation of
protein kinase B (PKB/AKT) [92]. Activation of the cell survival factor AKT results in the phosphorylation
of Bcl-2 associated death promoter (BAD), inhibiting the activity of pro-apoptotic factors such as Bcl-2
and caspase 9 [93].

4.6. VEGFR-2 Signaling in Permeability

VEGF-A activation of VEGFR-2 induces extravasation of proteins and leukocytes in vivo [94].
This is suggested to occur through two mechanisms: the formation of transcellular endothelial pores
and the transient opening of paracellular junctions [95]. However, the exact signaling mechanisms
regulating these events are not yet clear. One suggested mechanism involves VEGF-A-dependent
endothelial nitric oxide synthase (eNOS) activation through PLC-γ and AKT, resulting in the activation
of the pro-permeability factor nitric oxide (NO) [96,97].

4.7. Role of sVEGFR-2

The alternatively spliced sVEGFR-2 isoform has been reported to act as an endogenous VEGF-C
antagonist, preventing it from binding to VEGFR-3 and consequently inhibiting lymphatic endothelial
cell proliferation [27]. In addition, like sVEGFR-1, sVEGFR-2 is a natural circulating decoy receptor for
VEGF, thus acting as a ligand trap [98].

4.8. VEGF-A Isoform Specific Activation of VEGFR-2

The canonical VEGF-Axxxa isoforms are widely described as pro-angiogenic, pro-permeability
factors as they activate the aforementioned signaling pathways via VEGFR-2 binding and dimerization.
On the other hand, VEGF-Axxxb isoforms are anti-angiogenic and anti-permeability, which is due to
their effect on VEGFR-2 activation. Like VEGF-Axxxa, VEGF-Axxxb is still able to bind and dimerize
VEGFR-2, but whether they result in phosphorylation of the tyrosine residues in the intracellular
domain is not clear. The six-amino acid frame shift that occurs when the distal splice site is selected
in the VEGF-A pre-mRNA results in the replacement of a positively charged arginine residue with
neutral aspartic acid and lysine, which are predicted to decrease VEGFR-2 activation [99]. In pulmonary
arterial endothelial (PAE) cells, VEGF-A165b was shown to induce VEGFR-2 activation (Y1052, Y1057)
compared to untreated controls, but not to the same extent as that induced by VEGF-A165 [99].
Another report suggested that recombinant VEGF-A165b can induce Y1175 activation to almost
the same extent as VEGF-A165 in HEK293-VR2 cells [100]. In addition, VEGF-A165b can induce
VEGFR-2 Y1175 phosphorylation to the same extent as VEGF-A165 in endothelial cells [75]. However,



Cells 2019, 8, 288 9 of 19

anti-VEGF-A165b treatment of HUVECs and cultured visceral adipose tissue resulted in increased
Y951 phosphorylation [101,102], indicating that VEGF-A165b antagonized Y951 phosphorylation.
Furthermore, treatment of glomerular endothelial cells with VEGF-A165b did not result in any increases
in the overall phosphorylated state of VEGFR-2 (immunoprecipitation of VEGFR-2 followed by
immunoblotting with a phospho-tyrosine antibody) [103]. Taken together, these findings indicate
that VEGF-A165b acts as a VEGFR-2 partial agonist/antagonist via the differential modulation of
site-specific phosphorylation on VEGFR-2.

In some pathologies, VEGF-A165b expression has been shown to be down-regulated relative to
VEGF-A165a. For example, in the late stages of human diabetic nephropathy when the kidney is not
filtering properly, kidney VEGF-A165b levels are down-regulated relative to VEGF-A165a; however,
during the early stages of diabetic nephropathy when the kidney is functioning well, the VEGF-A165b
isoform is increased [104]. Therefore, VEGF-A165b may play a protective role in early nephropathy
but when the expression is decreased, increased angiogenesis and permeability occur, resulting in
a worse phenotype. Indeed, several studies in mouse models have shown the VEGF-A165b isoform
to have reno-protective effects regarding glomerular permeability [103–106]. These protective effects
are indicated to be due to VEGF-A165b decreasing the phosphorylation of VEGFR-2, which has
been shown in glomerular endothelial cells [103]. Decreased levels of VEGF-A165b have also been
observed in certain cancers, including colon cancer and renal cell carcinoma [28,107]. This reduction in
VEGF-A165b is often accompanied by an increase in the pro-angiogenic VEGF-A165a, which contributes
to angiogenesis within the tumor. Administration of VEGF-A165b, or manipulation of VEGF-A splicing
to promote VEGF-A165b expression (such as with SRPK1 inhibitors), has been shown to be therapeutic
in many tumor models through inhibition of VEGF-Axxxa mediated angiogenesis [108,109]. On the
other hand, VEGF-A165b has also been shown to promote lung tumor progression and specific
knock-down of just the VEGF-A165b isoform reduced tumor growth in lung cancer cells [110]. Thus,
the role of VEGF-A165b signaling may depend on the tissue it is expressed in.

VEGF-A121a is a shorter freely diffusible VEGF-A isoform. In contrast to VEGF-A165a, VEGF-A121a
has been shown to exhibit both partial and full agonist effects. On one hand, VEGF-A121a acts as
a partial agonist of VEGFR-2 in both in vivo and in vitro measurements of angiogenesis and signaling,
respectively [5,99], as well as slowing HUVEC proliferation and reducing sprouting in comparison
to VEGF-A165a [111,112]. In contrast, VEGF-A121a-induced angiogenic sprouting ex vivo has been
reported to be both comparable [33] and reduced [113] in comparison to VEGF-A165a. Similar trends
are seen regarding vascular permeability [114–116].

VEGF-A145a and VEGF-A189a are ECM-bound isoforms that also show reduced agonistic effects
on VEGFR-2 signaling in comparison to VEGF-A165a. In HUVECs, VEGF-A145a had a reduced effect
on proliferation and permeability relative to VEGF-A165a, but comparable effects on migration [114].
This was indicated to be due to reduced phosphorylation of VEGFR-2 in addition to reduced activation
of AKT and ERK [114]. Similarly, VEGF-A189a resulted in decreased cell survival and proliferation in
BAECs, but comparable effects to VEGF-A165a on migration [117,118].

5. VEGFR Signaling Complexes

5.1. VEGFR Heterodimerization

Computational modeling has predicted VEGFR-1/2 heterodimers to comprise 10–50% of
signaling VEGFR complexes, which are favored over VEGFR-1 homodimers when the VEGFR-2
abundance is higher [119]. There is evidence that suggests that VEGF-A stimulation of VEGFR-2
homodimers, VEGFR-1 homodimers, and VEGFR-1/2 heterodimers results in different efficacies of
signal transduction; the pattern of Ca2+ flux was found to be unique for each type of receptor dimer
in porcine aortic endothelial cells [120]. VEGF-A, VEGF-C, and VEGF-D have also been shown to
induce the heterodimerization of VEGFR-2/3, which is required for certain ligand-dependent cellular
responses mediated by VEGF-C and VEGF-D [121].
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5.2. Roles of Neuropilins NRP1 and NRP2

Neuropilins can function as coreceptors with VEGFR-1 and VEGFR-2. There are two homologs
of NRP, NRP1 and NRP2, which consist of a single transmembrane spanning domain with a small
cytoplasmic domain lacking intrinsic catalytic function [122]. NRP1 was firstly suggested to bind
in exon 7 of VEGF-A, which is present in isoforms such as VEGF-A165, forming a ternary complex
with VEGFR-2 [112], thus primarily acting as a co-receptor for VEGFR-2. More recent studies have
implicated the exon 8a-encoded arginine residue in the binding of VEGF-A to the b1 domain of
NRP1 [123]. Binding of VEGF-A to NRP1 enhances VEGF-A signaling in endothelial cells with
respect to migration and survival [124–126]. Furthermore, NRP1 is reported to be essential for
VEGF-A-induced vessel sprouting and branching in angiogenesis [127]. NRP1 has also been shown to
be associated with the adapter Synectin (GIPC), which is associated with the intracellular trafficking
of VEGFR-2 [125]. In contrast, NRP2 acts as a co-receptor for VEGFR-3 and is therefore not involved
with VEGF-A signal transduction [128]. In mice, both overexpression and disruption of NRP1 results
in embryonic lethality on E12.5-13.5 due to vascular abnormalities [129]. Furthermore, siRNA [113]
or antibody [112] blocking of NRP1 led to a decrease in VEGF-A165a-induced phosphorylation of
VEGFR-2 in vitro.

In contrast to VEGF-A165, VEGF-A189, and VEGF-A145, fluorescent real-time ligand binding assays
revealed that VEGF-A165b and VEGF-Ax are unable to bind to NRP1 as they lack the exon 7-8a-encded
residues [130]. This provides further evidence for the lack of VEGFR-2 singling induced by the weak
agonist VEGF-Axxxb isoforms. There is conflicting data regarding the binding of VEGF-A121a to NRP1
as it lacks exon 7, with most studies suggesting that although VEGF-A121a can bind NRP1, albeit at
a lower affinity, it is unable to bridge the NRP1/VEGFR-2 complex (reviewed in [131]).

5.3. NRP1 and NRP2 Splice Variants

NRP1 exists as a full-length membrane-bound form in addition four soluble isoforms. Full-length
NRP1 is comprised of 17 exons. On the other hand, two soluble splice variants, s12NRP1 and s11NRP1,
are generated during pre-mRNA processing via intron read-through in the NRP1 gene, resulting in
proteins that lack transmembrane and cytoplasmic domains of full-length NRP1 [132,133]. Functionally,
these soluble isoforms of NRP1 were reported to bind VEGF-A165, although not VEGF-A121, thus
inhibiting VEGF-A165-induced phosphorylation of VEGFR-2 in endothelial cells resulting in reduced
tumor growth (anti-tumor properties) [133]. Therefore, s12NRP1 and s11NRP1 appear to act as
VEGF-A165 antagonists. Two further soluble isoforms of NRP1 have also been described, sIIINRP and
sIVNRP, which are proposed to have similar biological and biomechanical properties as s12NRP1 and
s11NRP1 [134]. The sIIINRP1 isoform results from the deletion of exons 10 and 11, while exon 12 is still
present, followed by retention of the beginning of intron 12 (28 bp). The sIVNRP1 isoform is missing
exon 11, also resulting in intron 12 retention [134]. Both sIIINRP and sIVNRP have been shown to be
expressed in normal and cancerous tissues and are capable of binding VEGF-A165, indicating that these
two isoforms are antagonists for NRP1-mediated cellular activities [134]. The final isoform of NRP1 is
NRP∆E16, which results from the skipping of exon 16 and replacement with an “AAG” Arg triple;
however, this isoform does not have a functional difference to full length NRP1 [135].

NRP2 can also exist as a membrane bound or soluble form. The membrane bound form of NRP2
has two splice variants, NRP2a and NRP2b, which differ in the last 100 amino acids of the c-terminus.
Therefore, these two splice variants are proposed to bind different proteins and govern different
molecular pathways [132]. NRP2b has been reported to have a prometastatic role in non-small cell
lung cancer, whereas NRP2a in promoting metastasis and therapy resistance [136]. However, further
studies are needed to clarify the roles of each of these splice variants with respect to VEGF-A binding
and signaling.
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6. Regulation of Splicing as a Therapeutic Intervention

Research into the VEGF-A-VEGFR signaling axis in disease has recently taken a new direction
focused on manipulating the splicing of these genes as a potential therapeutic avenue. One example
of this is the regulation of the VEGF-Axxxa/VEGF-Axxxb ratio. Small molecule inhibitors of SRPK1,
known as SRPIN340 and SPHINX31, have been shown to upregulate the VEGF-Axxxb isoforms
relative to VEGF-Axxxa, which had a therapeutic effect in animal models of retinopathy [137,138].
Furthermore, a natural blueberry extract as also been shown to increase VEGF-A165b/VEGF-A164a
in the kidneys of diabetic mice, exerting a therapeutic effect through a decrease in kidney fibrosis
and permeability [139]. Regarding the VEGFRs, exogenous administration of sVEGFR-1 (either
transfection, recombinant protein, or adenovirus infection) was reported to inhibit tumor growth and
neoangiogenesis, increasing the survival rate in mouse xenograft models of melanoma, lung cancer,
fibrosarcoma, and glioblastoma [71–74]. Therefore, further research into the regulation of VEGFR
splicing is warranted to explore the potential therapeutic benefits of switching VEGFR splicing.

7. Conclusions

The VEGF-A-VEGFR axis is critical in both physiological and pathological angiogenesis and vessel
permeability. The disruption of the splicing of just one of the genes involved in the VEGF-A-VEGFR
axis (VEGF-A, VEGFR-1, VEGFR-2) can result in changes to the entire signaling axis, such as the
increase in VEGF-A165a relative to VEGF-A165b resulting in increased VEGFR-2 signaling and aberrant
angiogenesis in cancer. Further research into understanding the mechanisms by which the splicing of
VEGF-A/VEGFR-1/VEGFR-2 is regulated will help in the development of drugs aimed at manipulating
splicing or inhibiting specific splice isoforms in a therapeutic manner.
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