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Abstract

The cellular energy metabolism is one of the most conserved processes, as it is present in

all living organisms. Mitochondria are providing the eukaryotic cell with energy and thus their

genome and gene expression has been of broad interest for a long time. Mitochondrial gene

expression changes under different conditions and is regulated by genes encoded in the

nucleus of the cell. In this context, little is known about non-model organisms and we provide

the first large-scaled gene expression analysis of mitochondrial-linked genes in laying hens.

We analysed 28 mitochondrial and nuclear genes in 100 individuals in the context of five

life-stages and strain differences among five tissues. Our study showed that mitochondrial

gene expression increases during the productive life span, and reacts tissue and strain spe-

cific. In addition, the strains react different to potential increased oxidative stress, resulting

from the increase in mitochondrial gene expression. The results suggest that the cellular

energy metabolism as part of a complex regulatory system is strongly affected by the pro-

ductive life span in laying hens and thus partly comparable to model organisms. This study

provides a starting point for further analyses in this field on non-model organisms, especially

in laying-hens.

Introduction

Understanding the impact of the genetic background and developmental processes on gene

expression are of broad general interest to understand organismic function. Through the pro-

cess of oxidative phosphorylation (OXPHOS), mitochondria are generating 90% of the cellular

energy [1]. In addition, these organelles are involved in the maintenance and regulation of

intracellular energy metabolism and signalling [2], apoptosis [3, 4] and have major importance

in cell cycle regulation [5] and ageing processes [6]. Mitochondria received particular attention

in relation to ageing as a modulator of both, the production of damaging reactive oxygen spe-

cies (ROS) that can cause cellular damage [1] and the synthesis of energy in form of adenosine

triphosphate (ATP) via electron transfer mediated by nicotinamide adenine dinucleotide

+ hydrogen (NADH) [7]. The nuclear encoded Superoxide dismutase (SOD2) is converting
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superoxide anions (O2
●-), (which are the most produced ROS during OXPHOS [8]) to hydro-

gen peroxide [6, 9]. An increase in the production of ROS in the mitochondrion is linked to

the process of ageing in many species [10] and the increase of SOD2-expression protects the

mitochondrion from damage, which would otherwise lead to the death of the cell (Santos

et al., 2018 [10], Yin et al., 2018 [11] and cited references within).

Evidence of diminished performance of mitochondria during the course of life span have

been frequently found [12, 13]. To maintain their functionality and their ability to react to

external influences, the mitochondrial gene expression is part of a network of transcription

factors and other gene products from the nuclear genome [14, 15], supporting the view of an

intimate interaction of mitochondria with nuclear genomes.

Within this complex framework of interaction, mitochondria play a crucial role as power-

house of the cell that have been studied in a variety of model organisms such as in fruit flies

(Drosophila) and mice [16, 17] but in a much smaller proportion of livestock such as cattle or

pigs [18, 19].

In our experimental setup, we use two different strains of laying hens, with the benefit of

having a highly bred species for the specific purpose of egg laying, but represented in two

genetically distinct lineages at the same time [20]. Since the focus and thus the need for energy

and metabolites changes during the hens’ life span, we sampled at five different points, cover-

ing growth and egg laying as well the shift between these two phases, and the changes during

the laying phase towards its end. Related to this, it is an utmost importance to gain a better

understanding of the utilization of phosphorus (P) and calcium (Ca) and the metabolism of

myo-inositol (MI) during life span within the animals [21, 22]. Since the mitochondrial process

of OXPHOS is directly linked to the availability of P [23], and the energy metabolism is closely

linked to the animals’ fitness, mitochondrial gene expression is of highest interest in this

framework. Furthermore, we included nuclear encoded subunits of OXPHOS complexes such

as UQCRC1, which is a component of the ubiquinol-cytochrome c oxidoreductase and thus

part of the mitochondrial electron transport chain [24], and other nuclear genes such as e.g.

AMP-activated protein kinase (AMPK), which is linked to the regulation of mitochondrial

biogenesis and the energy metabolism [25]. AMPK acts as an activator of PGC1α in case of

energy deficit, to increase mitochondrial gene expression [26]. In addition, its activation inhib-

its MTOR [27], which in addition regulates the expression of PGC1α and other transcription

factors linked to mitochondria [28] and a decrease in its expression has been linked to an

extension of life span in Drosophila [29] and yeast [30] as a response to nutrients. The reactions

of PGC1α, subunits of AMPK and MTOR have also been described in broilers in the context

of feed efficiency and muscle growth [31]. To cover not only the mitochondrial gene expres-

sion itself, but also the complex regulatory network, these genes were included in the study as

well.

We follow three main hypotheses:

1. Due to the different (mitochondrial) genetic background [20] and different measured per-

formance [21] of the two strains, differences in gene expression are expected as well.

2. Due to the observation in other species [12, 13] and the metabolic changes during the

observed time period a change or decrease in mitochondrial gene expression with the ongo-

ing productive lifespan is expected.

3. These changes include a visible change when the hen’s focus shifts from growth to egg lay-

ing (period 2 to 3) and after the peak of egg laying towards the end (periods 4 and 5).

In this study, we explore the gene expression differences and changes during life span of

two strains of laying hens and provide insight into the genetic machinery linked to the
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complex energy metabolism of a domesticated animal. Our study benefits from the known

genetic background and low mitochondrial diversity of the two strains [20], which provides a

robust data base for the analysis of gene expression differences between groups.

Material and methods

Animals and experimental setup

The animal experiments were performed at the Agricultural Experiment Station of the Univer-

sity of Hohenheim, Germany. They were approved by the Regierungspräsidium Tübingen, Ger-

many (Project no. HOH50/17TE) in accordance with the German Animal Welfare Legislation.

We used 100 laying hens: 50 brown (Lohmann brown classic) and 50 white (Lohmann LSL

classic) white leghorn hybrids contributed by Lohmann Tierzucht (Cuxhaven, Germany). The

hens originated from an experiment addressing the utilization of P and Ca in different periods

of the hens’ life [21]. The experimental setup is described in detail in Sommerfeld et al., 2020

[21] and will only be outlined briefly in the following.

The hens were reared together under standard conditions, with diets according to the

requirements of each period, based on soy and corn meal with no difference to the recommen-

dations as described in Sommerfeld et al., 2020 [21]. Ten father lines per strain were selected

based on the average bodyweight of the female offspring prior to the start of the first experi-

mental phase. After 8, 14, 22, 28, and 58 weeks ten hens per strain were selected and placed

into metabolism units, to monitor feed intake and collect excreta on an individual basis. The

hens were weighed at the beginning and end of this period, to calculate changes in body

weight. After the end of this period (10, 16, 24, 30, and 60 weeks) the animals were slaughtered

at the Agricultural Experiment Station of the University of Hohenheim [21].

Samples and RNA extraction

We used fives tissues from each individual: breast muscle, duodenum, ileum, liver and ovary.

Samples were directly taken after slaughtering when the hens were 10, 16, 24, 30 and 60 weeks

old (denoted in the following as period 1 to 5, respectively) as described by Sommerfeld et al.,

2020 [21] and were immediately placed on dry ice. The samples were stored at -80˚C until the

extraction of RNA.

RNA was extracted from 25mg tissue using TRIzol Reagent (Thermo Fisher scientific Inc.,

Massachusetts, USA) according to the manufacturers’ instructions. The samples were homoge-

nized using steel beads at 5.5m/s for 40 seconds on a FastPrep24 (MP Biomedicals, Thermo

Fisher scientific Inc., Massachusetts, USA) and a centrifugation step was included afterwards, as

recommended for samples with high fat content. Samples were dissolved in nuclease-free water

and RNA concentration and quality was measured using a NanoDrop 2000/2000c Spectropho-

tometer (Thermo Fisher scientific Inc., Massachusetts, USA). In addition to the 260/280 and 260/

230 ratios provided by NanoDrop for all samples the integrity of the extracted RNA was checked

via gel-electrophoresis [32] and on a Qubit 4 (Thermo Fisher scientific Inc., Massachusetts, USA)

using the Qubit RNA IQ Assay Kit (Thermo Fisher scientific Inc., Massachusetts, USA) of a ran-

dom but representative subset (including all tissues, strains an periods as well as different concen-

trations and 260/230 ratios). The samples were stored at -80˚C until further processing.

Real time PCR

We selected 33 genes including all mitochondrial encoded genes (13), nuclear encoded genes

(20), which includes genes important for life span and mitochondrial biogenesis. During the

course of PCR evaluation and quality checks, six genes (two mitochondrial and four nuclear
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encoded ones) needed to be excluded due to suboptimal performance or due to low number of

successful reactions (the final subset of genes can be found in Table A in S1 File). A list of the

final genes and their abbreviations used in this work can be found in Table 1. Thus, for all sub-

sequent analyses we remain with a set of 27 gene assays. Additionally, we included three poten-

tial nuclear encoded reference genes: Actin beta (ACTB), Peptidyl-prolyl cis-trans isomerase A

(PPIA) and Glycerinaldehyd-3-phosphat-Dehydrogenase (GAPDH) that have been used in

previous studies for this purpose [33, 34].

Assay design and evaluation. All primers were designed using Primer3 [35] based on ref-

erence sequences from NCBI except the primer-pair for GAPDH [34] (Table A in S1 File).

Prior to real time PCR all primers were tested using standard PCR with the same conditions as

used for the final analysis (Table B in S1 File). DreamTaq Green (Thermo Fisher Scientific)

was used according to the manufacturers manual, and the resulting fragments were visualized

by standard agarose gel-electrophoresis and sequenced bidirectional using Sanger technique

(performed by Microsynth AG (Balgach, Switzerland)) to test for specificity.

All real time PCR analyses were performed on a Biomark HD system (Fluidigm Corpora-

tion, San Francisco, USA), following the protocols of the supplier for gene expression analysis.

The evaluation of the performance of the assays was done on FlexSix GE integrated fluidic cir-

cuits (IFCs) in duplicates per assay. A 12-step 10-fold dilution series (starting with a concentra-

tion of 16.6ng/μl) of the previously sequenced specific PCR product was used to determine

limits of detection, linear dynamic detection range, variation at detection limit, PCR efficiency

and melting curves of the products (via standard curve as described in Bustin et al., 2009 [36]).

The PCR cycling conditions were the same as for the final experiments and can be found in

supplementary Table C in S2 File. The efficiency was above 90% for 27 primers and above 80%

for four of our primer pairs (Table A in S1 File). Melting and standard curves can be found in

the S2 File.

Final qPCR runs. The analysis was performed on six 96.96 IFCs using the Delta Gene

Assays protocol with the manufacturers standard protocol for fast PCR and melting curve as

described in supplementary Table C in S1 File. Remaining DNA was digested using DNAse I

(Thermo Fisher scientific Inc., Massachusetts, USA) using 2μg RNA extract in each reaction.

For reverse transcription 1μl (= 166.67ng) of this RNA was used in each reaction using the

Fluidigm Reverse Transcription Master Mix containing a mixture of poly-T and random

Table 1. Genes used in this study with abbreviations and genome in which they are encoded.

Abbreviation Genome Gene

ACTB Nuclear Actin beta

ATP6, ATP8, ATP5F1 Mitochondrial Nuclear ATP-synthase F0 subunits

COX1, COX2, COX3, COXC6, COX5A Mitochondrial Nuclear Cytochrome oxidase subunits

CytB Mitochondrial Cytochrome b

GAPDH Nuclear Glycerinaldehyd-3-phosphat-Dehydrogenase

IGF-1α Nuclear Insulin-like growth factor 1α

MTOR Nuclear mechanistic target of rapamycin

ND1, ND4, ND4L, ND5, ND6, NDUFB6 Mitochondrial Nuclear NADH:ubiquinone oxidoreductase subunits

PGC1α Nuclear Peroxisome proliferator-activated receptor gamma coactivator 1-α

PPIA Nuclear Peptidyl-prolyl cis-trans isomerase A

AMPK (PRKAA1, PRKAA2, PRKAB2, PRKAG2) Nuclear AMP-activated protein kinase and its α1, α2, β2 and γ2 subunits

SDHA. SDHB Nuclear Succinate dehydrogenase complex subunits

SOD2 Nuclear Superoxide dismutase

UQCRC1, UQCRC2 Nuclear Cytochrome b-c1 complex subunits 1 and 2

https://doi.org/10.1371/journal.pone.0262613.t001
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oligonucleotides. Pre-amplification with the Fluidigm Preamp Master Mix was performed

with 1.25μl (~41.6ng) cDNA for 10 cycles using pooled primers that were the same as used for

the final qPCR runs. A multiplex control was performed including five samples of different tis-

sues, strains, period and RNA qualities with and without the pre-amplification step. After Exo-

nuclease I digest of the primers the samples were diluted five-fold. In each well of the IFC

2.25μl of the diluted Exo I digested sample were added, resulting in 3.015nl in each reaction

chamber. Negative controls were included throughout all preparation steps and on the final

qPCR runs as well to test for contamination of the primers and reagents. Additionally, an

internal control was used on each chip, to detect potential intra-run variance. All qPCRs were

performed in duplicates and the samples were placed randomly on the chips, only grouped by

individual to avoid any bias of sample arrangement.

Data preparation

Quality controls. For data evaluation and quality controls the Fluidigm Real-Time PCR

analysis software (version 4.5.2) was used. Only Cq-values from reactions with logarithmic

increase of fluorescence and specific melting points were used for the following analyses. After

the automatic quality check of the software, the results were evaluated by eye and revised man-

ually if necessary. The quality threshold was set to 0.65 and the peak ratio threshold to 0.8.

The results of the internal control were used to detect possible variation due to technical

issues.

Reference gene evaluation. To evaluate if the three candidate genes for normalization

(ACTB, PPIA and GAPDH) were constant under our experimental conditions, Normfinder

[37] was used. As input we used the quality checked data of one brown and one white individ-

ual per period and included all five tissues to cover all factors of the experiment. Normalization

was tested for tissue type and period.

Calculating relative gene expression. Means of duplicates were calculated of all samples

with two successful runs. For samples that only had one successful duplicate this run was used.

Gene expression relative to the reference genes was calculated using the Pfaffl-method [38] as

optimized for multiple reference genes [39, 40]:

rel: gene expression ¼
RQGOI

geomean½RQrefs�

Where RQ = EΔct and E = (primer efficiency [%]/100) + 1.

Δct was calculated as the difference between the average cycle threshold (ct) of the internal

control to the ct of the corresponding sample.

Statistical analyses

Hierarchical clustering. Two-way hierarchical clustering analyses were performed in

JMP Pro (Version 15, SAS 199 Institute Inc., Cary, NC, 1989–2019) using Ward’s minimum

variance method [41] based on relative gene expression values of all 29 genes. The data were

not standardized and only samples without missing data were included. To estimate the best

number of clusters the cubic clustering criterion [42] was used as implemented in the program.

The process was done for both strains together, and for each strain separate.

Analysis of individual genes. A linear mixed effects model was implemented and used

for all genes:

Y � strainþ period þ tissueþ tissue � strainþ tissue � periodþ strain � periodþ tissue
� strain � periodþ individualþ father þ ε
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Where Y is relative gene expression, ε is the residual error, strain, period and tissue are fixed

effects, with individual and father as random effects. All modelling was performed in R (R

Core Team 2019, Version 3.6.1) using the lmerTest package [43]. A three factorial analysis of

variance (anova) was performed to evaluate the influence of fixed effects and pairwise tukey

posthoc tests (package emmeans [44]) were performed to detect differences between strain,

period and tissues in various combinations based on the estimated marginal means (emmeans)

derived from the model. The fulfilling of normal distribution and the homogeneity of variance

were evaluated using QQ and residual plots. Outliers were removed for each dataset using the

interquartile range prior to the statistical analysis except for SDHA, MTOR, PRKAG2 and

GAPDH where a removal would lead to a strong bias of the analyses.

Means and standard derivations were calculated over the emmeans of all genes to compare

the gene expressions between tissues and periods in general. To avoid performing statistical

tests on the results of other statistical tests and generating hardly interpretable results, the

means were used only for visualization.

Results

Sample quality

RNA concentrations ranged from 340ng/μl to 10556.5ng/μl. The results of the NanoDrop and

Qubit measurements can be found in the (S3 File). The 260/280 ratios for all samples were

close to the optimum of 2, while the ratios were lower for older individuals from period 5 in

comparison with the other periods. The same observation was made for the 260/230 ratio

where the values decreased with increasing age of the animals and were more diverse in gen-

eral. Since all samples were treated equally, the differences might result from the age of the

individuals themselves, since age related changes in tissues are described for connective tissues

[45] and in context of lipofuscin [46]. During the downstream processes no dependencies

between lower ratios and qPCR success were observed. The IQ values were above 8 for all

except one tested sample independent of the concentration, 260/230 or 260/280 ratios. The

high IQ value indicate a proportion from more than 80% of large or/and structured RNA

(mRNA, tRNA, rRNA). Samples with high concentrations were diluted previously to the

DNAse treatment, which also dilutes the concentration of potential contaminants such as phe-

nol or carbohydrates. Due to the dilutions, no pattern of low performance in combination

with low 260/230 ratios or RNA degradation was observed; thus all samples were used for the

statistical analysis.

Final dataset

We identified gene expression of PPIA and ACTB to be most consistent for using them as ref-

erence genes for the normalization of our dataset. The expression of GAPDH showed high var-

iation between tissues, and was thus included in our study as nuclear candidate gene instead as

reference gene.

After the removal of low-quality Ct values, we received a dataset of 12,628 relative gene

expression values including 493 from 500 samples and 28 candidate genes. For 252 samples all

genes were run successful, for all other samples values for at least one gene were missing. Miss-

ing values originated from the previous filtering or failed runs, whereas we observed no depen-

dencies between sample quality, RNA concentration or sample group (tissue, strain, period)

and missing values. Due to the stringent filtering criteria applied to the dataset prior to the

analysis, and the filtering for outliers of each gene separately during statistical analysis,

together with the high number of samples, we decided to analyse the complete dataset. On
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average 447.5 samples per gene (min. 296 for ND5 and max. 486 for CytB) entered the final

analysis. A detailed table including sample numbers per gene can be found in S2 Table.

The calculated ΔCt values ranged from -7.339 (min for COX1) to 11.89 (max for GAPDH).

The calculated ΔCt values can be found in S5 File.

Hierarchical clustering

The hierarchical cluster analysis of the merged dataset was performed on 252 samples, contain-

ing 54 breast muscle, 55 duodenum, 60 ileum, 44 liver, and 39 ovary samples, 134 samples

from brown, and 118 from white individuals. All five periods were included. The CCC esti-

mated 26 as the best number of clusters. All breast muscle samples formed one coherent clus-

ter, containing no other tissue type (Fig 1). A second coherent cluster was built by 39 liver

samples. The other tissue types formed smaller clusters but were more admixed compared to

breast muscle and liver. The same observation was made for strain and period: no bigger clus-

ter contained only samples of one strain or period. The clusters containing breast muscle tissue

showed higher gene expression values compared to the other tissues, especially in PRKAA2,

PRKAB2 and GAPDH. The hierarchical cluster analyses on the separated datasets showed the

same pattern as described above for both strains but the number of clusters decreased to 14 in

brown and 12 in white (S1 Fig). In the white strain, the ovary samples formed a third larger

cluster.

Influence of strain, period and tissue

The linear mixed model showed that all genes were significantly influenced by the tissue, while

the influence of the period was affecting 17 and strain only four genes. The detailed results of

all analysed genes can be found in S1 Table. The most frequent interaction was between tissue

and period (20 genes), followed by strain�tissue�period (7), and the interaction of strain�tissue

(4) while strain�period was only influencing the expression of one gene (NDUFB6).

Gene expression differences between tissues

Independent of the period, the gene expression was highest in breast muscle tissue, followed

by liver tissue and was lowest in the ileum (Fig 2). Since gene expression differed between peri-

ods for many genes in our dataset, the scattering represented by the standard derivation is

high but general trends can be observed.

The gene expression was highest in breast muscle tissue for all genes, except for IGF-1α and

PRKAG2 where liver tissue had the highest expression. However, the difference between breast

muscle and all other tissues was significant for all tested genes (p<0.0001).

Gene expression differences between periods

The period had less influence on gene expression than the tissue, and not all tissues behaved

the same way during the periods (Fig 3). In breast muscle tissue the mean gene expression of

all genes decreased from period 1 to period 2 followed by an increase and peak in period 4. In

liver, the expression was lower in period 4 and 5 compared to the first three periods, in ovary

and duodenum the gene expression increased in period 5. The ileal gene expression declined

in period 2 and reached a peak in period 3. As described before, the gene expression was high-

est in breast muscle and liver tissue throughout all periods.

From the 17 genes that were influenced by period, the expression of ATP5F1, GAPDH,

IGF-1α, MTOR, PRKAA1, PRKAB2, UQCRC1, and PGC1α decreased, while the expression of

ATP6, COX1, COX3, ND1, ND4, ND4L, CytB, NDUFB6 and SOD2 and increased with period
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Fig 1. Heat map of two-way hierarchical cluster analysis of the gene expression of 252 samples. 28 Mitochondrial and nuclear genes

(Table 1) were used for five tissues obtained from 94 laying hens. Ward’s minimum variance method [41] was used, the number clusters

was estimated using the cubic clustering criterion [42]. Colours of branches of the right indicate clusters, coloured bars on the left tissue

types.

https://doi.org/10.1371/journal.pone.0262613.g001
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(Fig 4). In all decreasing genes (except PRKAA1 and PRKAB2), the difference between period

1 and 5 was significant (p values in Table A in S4 File). In ATP5F1 the expression in period 2

was significantly higher as in period 5 (p = 0.0181) as well as in PRKAA1 (p = 0.0085). In

PGC1α the expression in period 1 was significantly lower than in period 4 (p<0.0001). Most

significant differences between periods were observed for IGF-1α: the expression in period 5

was significantly lower than in all other periods and the expression in period 4 was signifi-

cantly lower than in the first two periods.

All genes with increasing gene expression showed decreasing gene expression in period 2

and a significantly lower expression compared to period 5. In COX3 and ND1 the difference

in expression between period 2 and 3 was significant (p = 0.0329 for COX3 and p = 0.0208

for ND1), too. A table with detailed gene expression and p-values can be found in Table B in

S4 File.

Gene expression differences between strains

From our variables of interest, strain had the lowest effect on gene expression. Over all periods

and tissues only SOD2, GAPDH, ND6 and PGC1α were differently expressed between the two

strains, with significant higher expression in the brown strain (Fig 5). When testing on the

period level, the number of differently expressed genes between the strains increased from two

or three genes in the first three periods towards five and nine genes in the last two periods.

Most differences between the strains were found in breast muscle tissue, not exclusively for

genes that were influenced by strain in general.

Fig 2. Relative gene expression of all analysed genes per tissue. Shown are means and standard derivation of emmeans over the

course of strain and period, calculated using the linear mixed model. Number of samples per group can be found in S2 Table. No

statistical test was applied on the shown means of emmeans.

https://doi.org/10.1371/journal.pone.0262613.g002

PLOS ONE Mitochondrial-linked gene expression among tissues and life stages in laying hens

PLOS ONE | https://doi.org/10.1371/journal.pone.0262613 January 13, 2022 9 / 19

https://doi.org/10.1371/journal.pone.0262613.g002
https://doi.org/10.1371/journal.pone.0262613


More in detail, most of the strain differences appeared in PGC1α expression (Table 2): The

gene expression was significantly higher in the brown strain in all periods, except for period 2

and was also higher in liver and breast muscle tissue. The expression of SOD2 was significantly

higher in the brown strain in period 4, period 5 and in liver tissue (Table 2). The only gene

expression differences with lower gene expression in the brown strain compared to white

appeared in IGF-1α in period 5 (Table 2).

Discussion

In our experimental setup we were able to analyse a vast number of mitochondrial-linked

genes in the context of changes during life span and differences between representative tissue

samples in two strains.

Contrasting gene expression of mitochondrial and nuclear genes during life

span

Contrary to our expectation, we observed no decrease in mitochondrial gene expression in the

course of our experiment. Instead, the expression of mitochondrial genes that were influenced

by period, increased. Interestingly, all the genes followed the same pattern: a decrease in period

2 followed by a constant increase. Manczak et al., 2005 [13] described a similar pattern for

genes of the complexes I, III, IV and ATP6 in mice brains: an increase in 12 and 18 months old

individuals, followed by a decrease in 24 month old mice (compared to the expression with

Fig 3. Relative gene expression of all analysed genes per tissue and period. Shown are means of emmeans over the level of

strain, estimated by the statistical model with standard derivations. Number of samples per group can be found in S3 Table. No

statistical test was applied on the shown means of emmeans.

https://doi.org/10.1371/journal.pone.0262613.g003
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Fig 4. Relative gene expression of genes influenced by period. (A) increasing gene expression (B) decreasing gene expression.

Shown are emmeans and standard error, averaged over strain and tissue, calculated using the statistical model. Number of

samples per group can be found in S4 Table.

https://doi.org/10.1371/journal.pone.0262613.g004
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two month). Even if the time points chosen in the studies differs, the different life expectations

of mice and hens suggest, that the observed increase in gene expression might be followed by a

decrease later in life, since our study covers the life span that is of agricultural interest, and not

the complete potential life span of the birds.

The nuclear encoded SOD2 gene was also decreasing in the second period and increased in

the following periods. SOD2 protects the cell from oxidative damage deriving from the pro-

duced ROS during oxidative phosphorylation, which might explain the increase in gene

expression in later periods. This theory is supported by the simultaneously increase of the

expression of subunits of complex I and III, which are the main producers of ROS in mito-

chondria [6]. The observed higher increase of SOD2 expression in the brown strain, especially

in the later periods indicates a different reaction to oxidative stress and might suggest, that the

brown strain is better coping with this situation.

The observed increase in mitochondrial gene expression during the productive life span,

towards the peak of egg laying (period 4) and towards the end of the laying phase might sug-

gest, that the energy-requirement and related need for ROS detoxification increases with ongo-

ing egg-laying.

Beside the genes that are involved in the process of OXPHOS and ROX detoxification, six

genes showed a decrease with ongoing life-stages, which all belong to a complex network:

PGC1α, IGF-1α, two subunits of AMPK and MTOR
PGC1α is a known key regulator of both, the expression of genes involved in the respiration

chain and mitochondrial biogenesis [15] and the expression of detoxifying ROS such as SOD2

[47, 48]. The higher expression of both PGC1α and SOD2 in the brown strain in the later

Fig 5. Gene expression differences between the strains. Shown are emmeans and standard errors averaged over the levels of

tissue and period for genes with different relative gene expression between both strains. Statistical significance was declared when

p< 0.05.

https://doi.org/10.1371/journal.pone.0262613.g005
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periods support our hypothesis that the different strains are reacting differently in the course

of their development. Consequently, with an increase of ROS production during life span the

expression of enzymes coping with the oxidative stress is needed. On the other hand, PGC1α is

down regulated in our experimental setup, while the expression of many genes that are affected

by the PGC1 family including SOD2 are up regulated or not affected by the age of the birds.

IGF-1α is another important player within this network, which can be inhibited by AMPK

[49] or increase the expression of AMPK [50] under different conditions and work as a nutri-

ent sensitive regulator [6]. However, the regulatory mechanisms between IGF-1, AMPK and

PGC1α are poorly understood yet [50]. IGF-1α is an important growth-factor, which is a plau-

sible explanation for the decreasing expression after the first two periods (with significant dif-

ferences between the first and the last two periods), when the physiology of the hen switches

from growth to egg laying.

Breast and liver tissue represent high levels of gene expression

As expected, we observed a strong influence of tissue on the expression of all genes in our

study. However, we were surprised to find the highest gene expression in breast muscle tis-

sue, especially since we are investigating laying hens, which are not bred to primarily gain

weight. Interestingly, we observed no increase of gene expression in ovary tissue during the

shift from growth to egg laying (period 2 to 3), but an increase towards the end of the laying

period (Fig 3).

Gene expression differences between the strains

We hypothesized to observe differences between the two strains, and also included the father

as a random factor, because the individual genetic background might influence gene

Table 2. Gene expression differences in four genes that are influenced by strain. Shown are emmeans with stan-

dard error and p-values, calculated by the statistical model.

Brown (emmean± SE) White (emmean± SE) p

GAPDH
Period 5 2.52±0.111 2.16±0.117 0.0273

Breast muscle 9.1389±0.113 8.5348±0.119 0.0003

ND6
Period 1 1.191±0.247 0.458±0.273 0.0489

Period 5 1.127±0.227 0.426±0.242 0.0379

Ileum 0.27145±0.189 -0.39683±0.215 0.0214

PGC1α

Period 1 2.46±0.126 2±0.129 0.0124

Period 3 1.95±0.124 1.56±0.121 0.0275

Period 4 1.68±0.126 1.26±0.122 0.0197

Period 5 1.69±0.119 1.3±0.135 0.0322

Breast muscle 5.16±0.123 4.287±0.121 <0.0001

Liver 1.808±0.126 1.251±0.141 0.0036

SOD2
Period 4 1.308±0.121 0.774±0.120 0.0024

Period 5 1.429±0.119 1.023±0.125 0.0208

Liver 1.81813±0.11 1.23718±0.112 0.0003

IGF-1α

Period 5 0.707±0.166 1.271±0.178 0.0229

https://doi.org/10.1371/journal.pone.0262613.t002
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expression. Interestingly, the strain had the least influence on gene expression as shown by the

statistical model. However, we observed that even if both strains are following the same pattern

of tissue and period differences, there are differences in some genes. The differences in SOD2
have already been discussed in the section about contrasting gene expression. In all four genes

with significant strain differences independent of period and tissue (GAPDH, ND6, PGC1α,

and SOD2) the brown strain shows higher expression. The fact, that GAPDH is one of these

genes supports our initial decision to exclude it as reference gene, additionally to the observed

differences between tissues, which have already been shown in human [51]. Interestingly,

PGC1α showed the most strain differences, while the genes which are regulated by this factor

do not differ. However, the fact that two important genes regulating mitochondrial biogenesis

(PGC1α) and the reduction of oxidative stress (SOD2) are significantly higher expressed in the

brown strain suggests, that both strains differ in the way they react to changes during the pro-

ductive life span, especially in the later periods and in highly active tissue such as liver.

An important aspect we expected but did not observe in the broad panel of our data set

were differences in the expression of IGF-1α. Despite the significant differences in body weight

while showing no difference in feed intake observed by Sommerfeld et al., 2020 [21] in the

same animals, we only observed strain differences in period 5, where the lighter white strain

shows significantly higher expression (Table 2). As a growth factor, IGF-1α has been linked to

body weight in chicken [52] but seems not to be one of the key players in our experimental

setup.

Gene expression of subunits from the same complex differs

Interestingly, not all subunits of a complex followed the same expression pattern over the dif-

ferent periods. For most complexes, the affected subunits (COX1 and COX3, ND1, ND4, ND4L
and NDUFB6) followed the same pattern, however, the rest of the subunits of the same com-

plex were not affected by time. The only exception was CytB and UQCRC1, where the expres-

sion of mitochondrial subunit was increasing, while the expression of the nuclear subunit

decreased. For the complexes of the respiration chain, studies showed, that the majority of the

genes belonging to the same complex seem to be co-expressed and thus, follow the same pat-

tern among different conditions [53]. However, the expression regulation of mitochondrial

genes depends on several factors, and expression differences between subunits of complex I

have been observed in mice brains [13]. The authors suggested, that the up regulated subunits

might be more sensitive to oxidative damage, and thus the organism tries to compensate the

resulting loss of mitochondrial function with increased gene expression. In addition, it is

known that not all subunits of protein-complexes are regulated in the exact same way [53] and

thus, the expression of single subunits can work as a regulatory mechanism of the whole com-

plex [54, 55].

Conclusion

We performed the first large scale study investigating mitochondrial gene expression in the

course of productive life span of laying hens. Our data provided insights into the complexity of

this regulatory network by including both, mitochondrial and mitochondrial-linked nuclear

genes. In addition, we were able to show, that mitochondrial gene expression is increasing dur-

ing the productive life span of laying hens, including the ROS detoxifying gene SOD2. These

findings suggest, that the energy requirements might change during the phase of egg-laying

and the organism reacts with an increase in mitochondrial gene expression. The reaction to

this increased oxidative stress differs in case of the expression of SOD2. The complexity and

number of included genes provide a first, initial insight into mitochondrial linked gene
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expression, whereas for exploring the full expression pattern and underlying regulatory

netorks more in detail, transcriptomic analyses are the next logical step as recently shown in

Omotoso et al., 2021 [56].
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