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Clinical significance of serum PSA in breast
cancer patients
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Abstract

Background: Recent preclinical data suggest that androgen receptor (AR) signaling plays a significant role in
subsets of breast cancer. Clinical trials testing AR-targeting therapies in breast cancer have been conducted.
Assessment of AR-signal in breast cancer tissue maybe useful for treatment selections. Prostate specific antigen
(PSA) is the product of an androgen-responsive gene. Serum PSA (sPSA) can be detected in women by a highly
sensitive assay although the concentration is much lower than that observed in males. We investigated if sPSA
reflects tumor biology, including AR signaling in breast cancer patients.

Methods: In this study, 132 healthy controls and 144 breast cancer patients were enrolled. sPSA was evaluated by
the chemiluminescent enzyme immunoassay (CLEIA) method. Correlations between sPSA and the various
clinicopathological factors were analyzed.

Results: In post-menopausal state, sPSA detection rate was significantly higher in breast cancer patients compared
with controls (27.4% vs 11.3%: p = 0.0090), but not in the whole cohort (29.2% vs 25.8%: p = 0.5265) or pre-menopausal
subgroup (37.0% vs 42.6%: p = 0.6231). In post-menopausal breast cancer cases, higher sPSA value was associated with
clinic-pathological factors including the expression of AR protein in primary legion. In a correlation analysis of
quantitative data limited to post-menopausal metastatic breast cancer (MBC), sPSA was positively, albeit weakly
correlated with clinic-pathological features including serum testosterone levels and AR positivity.

Conclusions: Our data suggest that sPSA may reflect tumor biological properties including AR activity in post-
menopausal breast cancer.
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Background
Breast cancer is the most common malignancy in
women worldwide and one of the leading causes of can-
cer death. While specific therapeutics have been devel-
oped and treatment outcomes have improved, about a
third of patients treated for apparently localized breast
cancer develop metastatic disease [1–3]. Therefore, it is
necessary to further improve the outcome of initial
treatment and to develop more effective treatment strat-
egies for recurrent, metastatic disease.

The majority of breast cancers are hormone-dependent
and estrogen deprivation therapy is the major treatment
strategy [1, 2]. Although in the adjuvant setting, women
can be treated with selective estrogen receptor modulators
(SERMs) or aromatase inhibitors (AIs), some patients ex-
hibit de novo resistance and some develop acquired resist-
ance over time [1–4]. Recently, to model AI-resistant
breast cancer we generated variant cell lines from the es-
trogen receptor (ER)-positive T-47D breast carcinoma cell
line under estrogen-depleted, excess androgen conditions.
These variant cell lines had increased androgen receptor
(AR) and exhibited decreased expression of ER and no
growth response to estrogen. Furthermore, androgen
markedly induced proliferation in these cell lines [5–7]. In
another study, AR overexpression led to tamoxifen resist-
ance in in vitro models of breast cancer, implicating the
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involvement of AR signaling in tamoxifen resistance [8].
Therefore, it is hypothesized that a possible resistance
mechanism could be tumor adaptation from ER depend-
ence to AR dependence [4, 9–11]. AR-targeting therapies
for ER-positive breast cancer (NCT02910050 for bicaluta-
mide, NCT01597193, NCT02955394, NCT02953860,
NCT02007512 for enzalutamide, respectively) are cur-
rently being conducted.
AR dependency has also been suggested in a subset of

ER-negative, AR-positive breast cancers [12–15]. Triple
negative breast cancer (TNBC) is defined by the lack of
estrogen and progesterone receptors as well as an ab-
sence of HER2 (human epidermal growth factor receptor
2) amplification. Because of the lack of specific targeted
therapy, 30–40% of patients with early-stage TNBC
develop metastatic disease and succumb to the cancer,
despite receiving standard multi-agent adjuvant chemo-
therapy [16, 17]. Both molecular and immunohistochemi-
cal analyses demonstrate that a subset of TNBC expresses
AR. Recently, numerous preclinical studies have vali-
dated the use of AR modulation in limiting cell prolif-
eration, growth on soft agar, and tumor initiation
in vivo [14, 15, 18–20] and there are ongoing clinical
trials evaluating the efficacy of AR antagonists in ER-
negative breast cancer (NCT00468715, NCT03055312,
NCT03090165, NCT02605486 for bicalutamide,
NCT02750358, NCT02689427, NCT01889238,
NCT02457910 for enzalutamide, respectively).
AR functions as a transcription factor upon binding to

androgen, and regulates the transcription of target genes
[21]. Because AR signaling plays pivotal roles in prostate
cancer, AR targeting therapies are widely used for pros-
tate cancer treatment [22]. Prostate specific antigen
(PSA) is a serine protease encoded in humans by the kal-
lilrein related peptidase 3 (KLK3) gene [23]. The tran-
scription of the KLK3 gene is positively regulated by AR
[21]. Therefore, PSA is one of the most widely used
serum biomarkers for the diagnosis and follow-up of
prostate cancer [24]. Although widely thought to be ex-
clusively produced in prostate gland [25], extra-prostatic
production of PSA has been reported in various condi-
tions including normal breast tissue and benign and ma-
lignant breast tumors [26]. Furthermore, it was reported
that serum PSA (sPSA) can be detected in breast cancer
patients by highly sensitive assay [23, 27, 28]. If sPSA
levels reflect the amount of AR signaling or AR depend-
ency of the tumor in breast cancer patient, it may be
useful for effective treatment selection. However, its bio-
logical significance in relation to breast cancer has not
been established.
In this study, we investigated whether sPSA might re-

flect tumor biology, including AR signaling. Using blood
samples from both healthy controls and breast cancer
patients, individuals were enrolled regardless of age,

clinicopathological factor or treatment history. sPSA was
evaluated by chemiluminescent enzyme immunoassay
(CLEIA) method at various timepoints for each case.
Then correlations between sPSA and clinicopathological
factors were analyzed.

Methods
This study was conducted in Suwa Red Cross Hospital,
Suwa Central Hospital, Okaya City Hospital and Koyama
Clinic during August 2017 to January 2018. All proce-
dures performed in this study involving human part-
icipants were conducted with approval of the Suwa Red
Cross Hospital ethics committee (reference number: 29–
40) in accordance with the ethical standards of the insti-
tutional research committee and with the 1964 Helsinki
declaration and its later amendments. Written informed
consent was obtained from all participants for protocols
including blood collection, reviewing case records and
use of archival samples.

Subjects
Breast cancer patients, with the exception of cases with-
out relapse after surgery, were enrolled regardless of age,
clinicopathological factor or treatment history. Pre-
operative stage 0 - III, de novo stage IV and recurrent
breast cancer cases were included. Healthy women who
performed a mammography examination in annual gen-
eral checkup were enrolled as healthy controls. Due to
the short period of the study, it was not possible to
match breast cancer patients and healthy controls by age
or menopause status. It is reported that sPSA may show
higher values in benign breast disease including mam-
mary cysts and fibroadenoma [26]. However, since the
purpose of this analysis was not to verify whether sPSA
is a marker for breast cancer detection or discrimination
of malignancy from benign breast disease, but to deter-
mine whether sPSA reflects breast cancer biological
characteristics, patients with benign breast disease were
excluded from this analysis. Women with current mor-
bidity or history of uterine fibroids, polycystic ovary syn-
drome, benign ovarian tumor, hirsutism, malignancy
other than breast cancer, use of oral contraceptive and
hormone replacement therapy were also excluded re-
gardless of breast cancer group or healthy control group
in this study, because these diseases are reported to have
higher sPSA values [26]. Breast cancer patients with only
ipsilateral axillary recurrence or loco-regional recurrence
were excluded. Women who had any abnormality in
mammography were excluded from healthy controls.

Data collection
Clinical data including age, menopausal state, clinical
stage, disease status and treatment history were collected
by reviewing patient case records. At the time of blood
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sample collection, subjects who had amenorrheic for
more than 1 year were defined as postmenopausal,
whether this was natural or post-chemotherapy. All
other subjects were defined as premenopausal. Clinical
stage was assessed based on UICC TNM classification
[29]. Anastrozole, letrozole, and exemestane were de-
fined as AIs, tamoxifen and toremifene as SERMs, and
fulvestrant as selective estrogen receptor degrader
(SERD). Recurrence during adjuvant endocrine therapy
or within 12months after completion of adjuvant endo-
crine therapy and disease progression during treatment
for metastatic disease were defined as drug resistant.

Blood samples
Blood samples from Stage 0 - III breast cancer patients
other than patient who underwent pre-operative adju-
vant chemotherapy were obtained within one month
before surgery for primary lesion (n = 62). Blood samples
from patients who underwent pre-operative adjuvant
chemotherapy (n = 5) were obtained after the core nee-
dle biopsy of the primary lesion within one month be-
fore starting the chemotherapy. Blood samples from
MBC including de novo stage IV and recurrent breast
cancer patients were obtained before starting treatment
(n = 12) or on treatment (n = 65) for metastatic disease.
Blood samples were collected by venipuncture in a plain
plastic tube. After centrifugation at 2000×g for 7 min;
the sera were stored frozen (− 80 °C) until analysis. At
the start of the study, a pilot study was conducted for
ten samples using five sPSA testing kits, and the kit
which showed highest sPSA detection rate was selected
for further study (Additional file 1 Table S1). Sandwich-
type CLEIA was performed for serum total PSA quanti-
tation according to the manufacturer’s standard protocol
using TOSOH PSA kit AIA pack CL (TOSOH CO.,
LTD., Tokyo, Japan). Briefly, the monoclonal antibody
against PSA was immobilized on a microtiter plate and
serum samples were added. After incubation at RT, the
alkaline phosphatase-linked secondary antibody for PSA
was added. After another incubation, DIFURAT® was
added as substrate. Chemiluminescent was detected by
the automated AIA®-CL2400 platform ((TOSOH CO.,
LTD., Tokyo, Japan). The detection limit of immunoas-
says is 3 ng/L. Intra-assay and inter-assay CVs are 2.0–
3.1% and 3.2–3.7%, respectively. For quantitation of
serum estradiol and testosterone the competitive-type
electrochemiluminescence immunoassay was performed
according to the manufacturer’s standard protocol using
an Elecsys® Estradiol IV test kit and an Elecsys® testoster-
one II test kit (Roche, Basel, Switzerland), respectively.
The detection limits for estradiol and testosterone are 5
pg/mL and 0.025 ng/mL, respectively. With regard to
testing for sPSA, estradiol and testosterone, samples
showing the value under the detection limit of each test

were considered as inferior as this value, non-parametric
tests were performed during statistical analysis including
these test values. Values of 0 in the graph represent sam-
ples below the detection limit.

Tumor samples
Tumor samples from breast cancer patients, other than
de novo stage IV, were obtained during surgery for pri-
mary lesion. In the case of de novo stage IV tumors,
specimens were collected from the core needle biopsy of
the primary tumor. All specimens were fixed with 10%
formalin and embedded in paraffin wax.
Pathological data including histological type, ER / PgR

/ HER2 / Ki67 status and nuclear grade were collected
by reviewing patient case records. ER, PgR, and HER2
statuses were evaluated by IHC staining. The cut-off
value for ER and PgR positivity was set at ≥1% [30]. Tu-
mors were considered to overexpress HER2 if they were
given a score of 3 following IHC staining, or if they
showed ≥2.0-fold amplification of the HER2 gene, as
assessed by fluorescence in situ hybridization (FISH).
FISH testing was only performed for tumors that scored
2 during IHC staining [31]. The cut-off value of Ki67
was set at 20% in this study [32]. The nuclear grade
composed of nuclear atypia and mitotic counts were
evaluated based on the Japanese Classification of Breast
Cancer [33, 34].
Expression of AR and PSA in primary lesion was eval-

uated by IHC method using archival samples. Mouse
monoclonal antibodies for AR (clone AR441) and PSA
(clone 35H9) were purchased from Agilent Technolo-
gies (Santa Clara, CA, USA) and Leica Biosystems
(Wetzlar, Germany), respectively. The IHC staining was
performed using the Ventana Benchmark LT
automated IHC device (Roche Diagnostics, Basel,
Switzerland) and the reaction product was detected
with Ventana iVIEW DAB Universal kit (Roche Diag-
nostics). The antigen-antibody complex was visualized
with diaminobenzidine (DAB) and counter-stained with
hematoxylin. AR immunoreactivity was detected in the
nuclei of breast carcinoma cells, and the percentage of
immunoreactive cells, i.e., labeling index (LI), was de-
termined [18]. The median of AR LI, 20%, was taken as
the cut-off value for the AR expression. PSA immuno-
reactivity was considered positive if any cytoplasmic
staining was observed in the carcinoma cells [5].

Statistical analysis
Statistical analyses were performed using the StatFlex
6.0 software program (Artech Co., Ltd., Osaka, Japan).
In comparison between groups, sPSA-detected cases and
non-detected cases were defined as sPSA positive and
negative, respectively. Chi-squared test was used for
comparison of these group. Spearman’s rank correlation
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coefficient was applied for correlation between quantita-
tive data and sPSA values using absolute values of sPSA
but, for visualization, log-transformed values of sPSA
were used for the graphs. Representative values of sPSA
were shown in Median (Inter-quartile range). Mann-
Whitney U test or Kruskal Wallis test were used for
comparison of sPSA among two group or multiple
groups respectively. Samples with unknown values were
excluded from the statistical analysis. Values of P < 0.05
were considered statistically significant. Actual p values
are shown in figures for all of statistical testing.

Results
sPSA value in breast cancer patients and healthy controls
In present study, 132 healthy controls (53.8% were post-
menopausal) and 144 breast cancer patients (81.3% were
postmenopausal) were enrolled. Characteristics of breast
cancer cases and healthy controls are shown in Table 1.
sPSA was detected in 29.2 and 25.8% of breast cancer
patients and controls, respectively, with no statistically
significant difference between groups. Similarly, there
was no statistically significant difference in the levels of

sPSA between breast cancer patients and controls (0 [0–
4.0] ng/L vs 0 [0–3.0] ng/L; p = 0.3409). In subsequent
analyses sPSA values from pre- and post-menopause
subjects were separated. In pre-menopausal state, there
was no significant difference in sPSA detection rate
between breast cancer patients and controls (37.0% vs
42.6%: p = 0.6231). However, in the post-menopausal
state sPSA detection rate was significantly higher in
breast cancer patients compared with controls (27.4% vs
11.3%: p = 0.0090). (Fig. 1, Table 2). Similar results were
also obtained in the comparison of the levels of sPSA
(Additional file 1 Table S2).

sPSA value in post-menopausal breast cancer patients
In analysis limited to post-menopausal breast cancer
cases, sPSA detection rate was significantly higher in
MBC compared with non-MBC (36.1% vs 13.3%: p =
0.0072). Similarly, sPSA detection rate was significantly
higher in high AR (≥ 20%) cases compared with low AR
(< 20%) cases (39.0% vs 14.5%: p = 0.0034). sPSA detec-
tion rate was higher in low Ki67 (< 20%) cases compared
with high Ki67 (≥ 20%) (36.5% vs 19.4%: p = 0.0400).

Table 1 Clinical and histopathological characteristics of 132 healthy controls and 144 breast cancer patients

Healthy control
(n = 132)

Breast cancer
(n = 144)

No of cases (%) No of cases (%)

Age (mean ± SD) 53.1 ± 10.7 62.9 ± 13.2

Menopausal status Pre-menopausal 61 (46.2) 27 (18.8)

Post-menopausal 71 (53.8) 117 (81.3)

sPSA detection rate 25.8% 29.2%

sPSA ng/l (Median [IQR*]) 0 (0–3) 0 (0–4)

Clinical stage Non-MBC; Stage 0-III – 67 (46.5)

MBC; Stage IV, Recurrence – 77 (53.5)

Histological type Invasive ductal carcinoma – 102 (70.8)

Ductal carcinoma in situ – 9 (6.3)

Invasive lobular carcinoma – 11 (7.6)

Lobular carcinoma in situ – 0 (0)

Special type – 22 (15.3)

Subtype Luminal; ER+ / HER2- – 99 (68.8)

Luminal HER2; ER+ / HER2+ – 16 (11.1)

HER2 enriched; ER- / HER2+ – 8 (5.6)

TNBC; ER- / HER2- – 21 (14.6)

Histological grade 1 – 82 (56.9)

2 – 40 (27.8)

3 – 22 (15.3)

Ki67 positivity < 20% – 60 (41.7)

≧20% – 81 (56.3)

Unknown – 3 (2.1)

*: inter-quartile range
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There was no significant difference in sPSA detection
rate due to histological type, tumor subtype, PSA expres-
sion by IHC and nuclear grade in primary lesion
(Table 3). Similar results were also obtained in the com-
parison of the levels of sPSA (Additional file 1 Table S3).

Correlation between sPSA and various clinicopathological
factors in post-menopausal MBC
We performed a correlation analysis of various quantita-
tive data and sPSA in post-menopausal MBC cases, since
these patients showed high sPSA values in the above
analysis suggesting that sPSA of these patients are more
likely to be derived from breast cancer tissue. In these
patients, sPSA was weakly but positively correlated with
age (rS = 0.25, p = 0.0377), serum testosterone levels (ng/
ml) (rS = 0.28, p = 0.0178) and AR positivity (%) (rS =
0.48 p < 0.0001). Likewise, sPSA was negatively

Fig. 1 Serum PSA detection rate in breast cancer patients and healthy controls (n = 276). The X axis shows sPSA detection rate. The difference
between two groups were analyzed by Chi-squared test. Values of p < 0.05 were considered statistically significant

Table 2 sPSA detection rate in breast cancer patients and
healthy controls

sPSA positive (%) sPSA negative (%) p value

All cases (n = 276) 0.5265

Healthy control 34 (25.8) 98 (74.2)

Breast cancer 42 (29.2) 102 (70.8)

Pre-menopausal cases (n = 88) 0.6231

Healthy control 26 (42.6) 35 (57.4)

Breast cancer 10 (37.0) 17 (63.0)

Post-menopausal cases (n = 188) 0.0090

Healthy control 8 (11.3) 63 (88.7)

Breast cancer 32 (27.4) 85 (72.6)
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correlated with Ki67 (rS = − 0.25, p = 0.0178). sPSA did
not correlate with the serum estrogen level, disease free
interval, number of metastatic organs, number of previ-
ous chemotherapies the number of previous endocrine
therapies or total number of therapies (Fig. 2).

Difference in sPSA value due to previous endocrine
therapy
In the analysis limited to post-menopausal ER positive
MBC, although there was no statistical difference in sPSA
detection rate due to resistance to AIs, SERMs or SERDs
(Fig. 3, Table 4), AI-resistant cases have significantly
higher sPSA levels compared with non-AI resistant cases
(0 [0–29.5] ng/L vs 0 [0–1.0] ng/L; p = 0.0473) (Additional
file 1 Table S4). Although there were no statistically sig-
nificant differences, sPSA detection rate and their levels
tended to be higher in AI-resistant cases compared with

non-AI resistant cases, regardless of whether they were on
AI therapy at the time of the blood sample collection
(Fig. 4 and Additional file 2 Figure S1).

Discussion
As mentioned above, the recent use of ultrasensitive
PSA immunoassays has enabled detection of PSA in nor-
mal female serum, even if at extremely low concentra-
tions compared with that of males [35]. In the context of
breast cancer, sPSA was reported to be higher in breast
cancer patients compared with healthy control and
decreased in the serum of breast cancer patients after
surgery [27, 28] indicating that PSA derived from breast
cancer tissues can be detected in serum. In our study,
the above findings indicate that under normal physio-
logical conditions sPSA was detectable before meno-
pause and is low to non-detectable following menopause

Table 3 sPSA detection rate in post-menopausal breast cancer patients (n = 117)

n sPSA positive (%) sPSA negative (%) p value

Clinical stage 0.0072

Non-MBC; Stage 0-III 45 6 (13.3) 39 (86.7)

MBC; Stage VI, Recurrence 72 26 (36.1) 46 (63.9)

Histological type 0.9320

Invasive ductal carcinoma 82 21 (25.6) 61 (74.4)

Ductal carcinoma in situ 6 2 (33.3) 4 (66.7)

Invasive lobular carcinoma 10 3 (30.0) 7 (70.0)

Special type 19 6 (31.6) 13 (68.4)

Subtype 0.3028

Luminal; ER+ / HER2- 83 19 (22.9) 64 (77.1)

Luminal HER2; ER+ / HER2+ 13 6 (46.2) 7 (53.8)

HER2 enriched; ER- / HER2+ 7 2 (28.6) 5 (71.4)

TNBC; ER- / HER2- 14 5 (35.7) 9 (64.3)

Androgen receptor 0.0034

< 20% 55 8 (14.5) 47 (85.5)

≥ 20% 59 23 (39.0) 36 (61.0)

Unknown 3 1 (33.3) 2 (66.7)

PSA (IHC of primary lesion) 0.1271

Positive 64 21 (32.8) 43 (67.2)

Negative 50 10 (20.0) 40 (80.0)

Unknown 3 1 (33.3) 2 (66.7)

Nuclear grade 0.7405

1 67 18 (26.9) 49 (73.1)

2 36 9 (25.0) 27 (75.0)

3 14 5 (35.7) 9 (64.3)

Ki67 (LI) 0.0400

< 20% 52 19 (36.5) 33 (63.5)

≥ 20% 62 12 (19.4) 50 (80.6)

Unknown 3 1 (33.3) 2 (66.7)
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(Fig. 1, Table 2). Notably, in breast cancer patients sPSA
was detected after menopause, which suggests that sPSA
in these post-menopausal patients may be from the
tumor itself. However, in this study there were no sig-
nificant difference in sPSA between breast cancer pa-
tients and normal control in the global analysis except
for post-menopausal women. This differs from previous
reports showing the higher sPSA levels in both of pre-
and post-menopausal breast cancer patients compared
with control [36]. This may be due to the relatively few
premenopausal cases. Therefore, further investigation is
needed. Subsequent analyses were done only for the
post-menopausal case. In addition, in the previous study
[27, 28], sPSA levels are associated with younger age,
premenopausal status regardless of health condition, and
larger tumor size in breast cancer cases, which corre-
sponds well with our results that sPSA was higher in the
pre-menopausal state and in advanced disease, such as
MBC (Fig. 1, Tables 2, 3). Although, in our study, sPSA
values were under the detection limit in more than 70%
of samples and showed large data deviation, similar
trends were found in the other reports from Black et al.
[27]. Existing research about sPSA in breast cancer had
focused on its diagnostic value [27, 28, 36, 37]. Its cor-
relation to biological features associated with breast can-
cer have not been fully established, especially in the
context of the association of androgens or AR signaling.
Therefore, this is the first study which analyzed in detail

the relationships between sPSA and various biological
characteristics of breast cancer and, in particular, the re-
lation to serum androgen level and AR expression in the
primary tumor tissue.
In our analysis limited to post-menopausal breast can-

cer cases, sPSA values were significantly higher in MBC
(de novo stage IV and recurrence) compared with non-
MBC (stage 0 – III) (Table 3). This seems to reflect the
tumor volume rather than biological characteristics of
the tumor. Black et al. reported that sPSA was signifi-
cantly associated with larger breast tumor size [27]. The
most interesting result was that sPSA was positively cor-
related with serum testosterone levels and AR positivity
in post-menopausal MBC (Fig. 2) suggesting that sPSA
might function as a readout of AR activity in tumors.
On the contrary, tissue PSA expression in the primary
tumor did not correlate with sPSA levels (Table 3). This
may be because many cases were treated prior to blood
sample collection, so tumor biological features might
have changed with treatment. The evaluation of PSA by
IHC in breast cancer has not been fully established and
positive rates of PSA vary greatly depending on reports
[5, 38, 39]. It may be useful to verify by combining quan-
titative methods such as time resolved immunofluoro-
metric assay or Mass Spectrometry-Based Proteomic
Profiling [40, 41]. In the present study, we found a nega-
tive correlation between sPSA and Ki67 in post-
menopausal MBC (Table 3, Fig. 2). In the majority of

Fig. 2 Correlation between sPSA and various clinicopathological factors in post-menopausal MBC (n = 72). The vertical axis shows Log conversion
of the sPSA value. Lines in the graph indicate the regression line. The relationship between these two values was analyzed by Pearson’s
correlation. Values of p < 0.05 were considered statistically significant. Actual p values are shown in the figures when the p value was between
0.05 and 0.10. Values of p > 0.10 are shown in figures as not significant (NS)
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studies, AR expression in ER-positive tumors or TNBCs
has been associated with favorable characteristics includ-
ing lower Ki67 positivity [42–44]. Therefore, assuming
that sPSA reflects the function of AR in the tumor, this
result is consistent with our result. Next, we focused on
sPSA values in various endocrine therapy-resistant
breast cancers. As mentioned above, it has been sug-
gested that tumors may shift their dependence from ER
to AR as a possible endocrine therapy resistance mech-
anism [4, 9–11]. We hypothesized that if sPSA acts as a
readout of AR signaling in tumors, then sPSA levels
might change during endocrine therapy. Therefore, we
compared sPSA levels in patients with resistance to
endocrine therapies. It is known that the androgen

Fig. 3 Difference in sPSA values due to previous endocrine therapy (n = 58). The X axis shows sPSA detection rate. The difference between two
groups were analyzed by Chi-squared test. Values of p < 0.05 were considered statistically significant

Table 4 Difference in sPSA detection rate due to previous
endocrine therapy (n = 58)

n sPSA positive (%) sPSA negative (%) p value

Aromatase inhibitor resistance 0.1389

Yes 37 16 (43.2) 21 (56.8)

No 21 5 (23.8) 16 (76.2)

SERM resistance 0.4584

Yes 23 7 (30.4) 16 (69.6)

No 35 14 (40.0) 21 (60.0)

SERD resistance 0.2643

Yes 12 6 (50.0) 6 (50.0)

No 46 15 (32.6) 31 (67.4)
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concentration in the tumor can increase with AI treat-
ment [45]. However, in our analysis, sPSA tended to be
higher in AI-resistant cases compared with non-AI
resistant cases, regardless of whether patients were on
AI therapy at the time of the blood sample collection
(Fig. 4. Additional file 1 Figure S1). These findings sug-
gest that elevation of sPSA was not simply caused by in-
crease in androgen following AI treatment and that
some of the ER-positive post-menopausal MBC may
switch from ER-dependent to AR-dependent as a mech-
anism of resistance to traditional endocrine therapies,
particularly AI. All of the above results show that sPSA
may reflect tumor biological properties, including andro-
gen signals and changes associated with treatment in
post-menopausal breast cancer.
In metastatic or recurrent breast cancer, treatment

selection is made based on the biological information
obtained from primary lesion; however, after treatment,
tumor biology evolves during the course of treatment.
However, it is difficult to take a biopsy of metastatic le-
sions frequently. Serum PSA can be assessed by blood
exam which is a minimally invasive examination. Based
on the result of present study, we hypothesize that PSA
may be useful for effective treatment selection, especially
for AR-targeting therapies in post-menopausal breast
cancer patients. However, because this analysis is an
observational study, it is difficult to verify whether sPSA
reflects AR signal of the tumor in a strict sense. There-
fore, further analysis using in-vitro and in-vivo models,
including interventional clinical studies using AR-
targeted therapies, should be performed.

Conclusion
Tumor derived sPSA was detectable in a portion of post-
menopausal breast cancer patients (27.4%). Serum PSA

levels were weakly associated with serum testosterone
levels and AR positivity in primary tumors suggesting that
sPSA may reflect some tumor biological properties includ-
ing androgen signals in post-menopausal breast cancer.
Thus, serum PSA may be useful for identifying patients
with tumors expressing active AR.
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