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Abstract

d three-dimensional spinal deformity with early-onset, receives
Etiology of adolescent idiopathic scoliosis (AIS), a complicate
continuous attention but remains unclear. To gain an insight into AIS pathogenesis, this review searched PubMed database up to
June 2019, using key words or medical subject headings terms including “adolescent idiopathic scoliosis,” “scoliosis,”
“pathogenesis,” “etiology,” “genetics,” “mesenchymal stem cells,” and their combinations, summarized existing literatures and
categorized the theories or hypothesis into nine aspects. These aspects include bone marrow mesenchymal stem cell studies, genetic
studies, tissue analysis, spine biomechanics measurements, neurologic analysis, hormone studies, biochemical analysis,
environmental factor analysis, and lifestyle explorations. These categories could be a guidance for further etiology or treatment
researches to gain inspiration.
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Introduction This review searched PubMed database up to June 2019,

using keywords or medical subject headings terms
Adolescent idiopathic scoliosis (AIS) is a three-dimensional
spine deformity that takes place at the early age around 11
to 18 years, which is the most common type of idiopathic
scoliosis in children. The prevalence of AIS is 0.47% to
5.20% around the world,[1] A review by Qiu[2] showed the
incidence of scoliosis in the Chinese population varied
from 0.6% to 2.0%, while 90% of them were AIS. Zheng
et al[3] from China showed the prevalence of AIS is 2.4%,
which is higher in girls.[1]

Various theories are trying to explain the pathogenesis of
AIS, which contains the initiation and the progression of
AIS. The latest papers regarding AIS pathogenesis mostly
focus on the genetic factors, while there are still numerous
theories explaining the pathogenesis from other factors.
We classified the theories into the following groups to
make a better understanding of the multifactorial
pathogenesis of AIS: genetics, mesenchymal stem cells,
tissues, spine biomechanics, neurology, hormones, bio-
chemistry, environment, and lifestyle. We also showed a
previous theory which tried to integrate multiple former
studies.
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including “adolescent idiopathic scoliosis,” “scoliosis,”
“pathogenesis,” “etiology,” “genetics,” “mesenchymal
stem cells,” and their combinations, summarized existing
literatures and categorized the theories or hypothesis into
nine aspects. Literatures relevant to AIS pathogenesis
which mainly published in recent 10 years were included.
Publications focusing on AIS diagnosis, bracing treatment
or surgical techniques were excluded.

Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs)
BM-MSCs possess multipotency of differentiating into
osteoblasts, chondrocytes, or adipocytes.[4] Decreased
osteogenetic ability of MSCs and inclination of MSCs
towards adipogenic differentiation have been revealed in
AIS patients.[5,6] The resultant low bone mineral density
status has also been reported in AIS patients,[7-9] implying
that bone marrow-derived MSCs may regulate bone mass
formation in AIS patients, thereby participating in AIS
development.

At the expression level, in a proteomic analysis of MSCs
from AIS patients, five bone growth-related proteins
including pyruvate kinase M2 (PKM2), annexin A2, heat
shock 27 k protein (HSP27), g-actin, and b-actin were
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identified to be altered.[10] In this study by Zhuang et al,[10]

up-regulated PKM2 was speculated as associated with
activated protein kinase 7 (MAPK7) was also identified in
AIS MSCs, which might result in disturbance of MSCs
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increased cell proliferation, while down-regulated annexin
A2, HSP27, g-actin, and b-actin were speculated as
associated with the diminished ossification process and
low bone mass status. In a further microarray and pathway
analysis study of Zhuang et al,[11] several differentially
expressed genes were discovered, down-regulated mito-
gen-activated protein kinase kinase 1, heat shock 70 kDa
protein 6, and up-regulated SMAD family member 3 were
speculated to inhibit the osteogenic differentiation, while
up-regulated homeobox C6/9 affected the global pattern-
ing of vertebrate axial skeleton, other dysregulated genes
including general transcription factor IIi, CREB binding
protein, phosphoinositide-3-kinase, regulatory sub-unit 2,
and dual-specificity phosphatase 2 may also play roles in
osteogenesis and bone formation. Chen et al[12] discovered
the expression of melatonin receptors in AIS MSCs were
down-regulated, which may lead to the reduction of
response to melatonin treatment, since melatonin increases
alkaline phosphatase activity and glycosaminoglycan
(GAG) synthesis and other differentiation-related genes
expression, lack of response to melatonin might alter this
process and then influence membranous and endochondral
ossification. Leptin receptors in AISMSCs were also found
to be down-regulated in another study, which might result
in hyposensitivity of MSCs to circulating leptin.[5] Thyroid
hormone-inducible nuclear protein (Spot14) and its
messenger RNA (mRNA) were found to bemore expressed
in adipogenic MSCs from AIS patients than controls, and
the higher expression was also found in the AIS patients’
adipose tissue, which also reflected the abnormal adipo-
genic differentiation.[13] Lower expression of mitogen-
Figure 1: LncAIS interacts with NF90, stabilizing the HOXD8 mRNA and further enhances the tr
MSCs: Bone marrow-derived mesenchymal stem cells; HOXD8: Homeobox D8; LncAIS: Long n
Related transcription factor 2.
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osteogenic differentiation.[14] G protein-coupled receptor
126 (GPR126) gene was showed to have higher expression
in the vertebral bodies from the convex side of scoliosis,
knocking down of GPR126 would promote MSCs
ossification.[15]

At the epigenetic level, long non-coding RNA (lncRNAs)
and microRNAs (miRNAs) were analyzed in previous
studies. LncRNAs are the transcripts that have the length
longer than 200 nucleotides, which do not contain any
functional open reading frame, lncRNAs can regulate gene
expression by interfering the chromatin modification,
transcriptional/post-transcriptional regulation. LncRNAs
are expressed differently in different types of tissues and
cells, a review has discussed the existence of relationships
between lncRNAs of MSCs and various bone-related
diseases such as osteoporosis, osteosarcoma and ankylos-
ing spondylitis, it was speculated that lncRNAs partic-
ipates in osteogenic differentiation of MSCs.[16] By
applying microarray analysis of BM-MSCs in AIS patients
and the control groups, Zhuang et al[17] have identified a
novel lncRNA (ENST00000453347) that was prominent-
ly down-regulated, which was later named as lncAIS, in
normal conditions, lncAIS was reported to maintain the
stability of Homeobox D8 mRNA by interacting with
nuclear factor 90 protein and further enhance Runt-related
transcription factor 2 (RUNX2) transcription [Figure 1],
and the down-regulation of lncAIS would inhibit RUNX2
expression, thus alter the osteogenic differentiation of
MSCs, and finally result in osteopenia in AIS patients.
RUNX2 as a transcription factor was also previously
anscription of RUNX2, which alters the osteogenic differentiation process of BM-MSCs. BM-
on-coding AIS (gene symbol: ENST00000453347); NF90: Nuclear factor 90; RUNX2: Runt-
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reported to participate in reduced bone mineral density
(BMD) in AIS patients.[18] miRNAs are also non-coding

et al[39] found a mutation of uts2ra could cause spinal
curvature in zebrafish, the mutation could down-regulate
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RNAwhich are shorter than 20 nucleotides,miRNAs target
specific mRNA and resulted in changes in gene expression.
Through analysis of miRNA expression profile, gene
ontology terms and Kyoto encyclopedia of genes and
genomes, a novel study of Hui et al[19] has identified seven
most significantly central up-regulated miRNA in AIS BM-
MSCs including miR-17-5p, miR-106a-5p, miR-106b-5p,
miR-16-5p, miR-93-5p, and miR-181b-5p, which could
suppress osteogenic differentiation and bone formation,
while miR-15a-5p could regulate cell apoptosis.

Genetics

[20]
Previous twin study of Simony et al, aiming to found

out the heritability of AIS, showed a higher concordance
rate in monozygotic pairs (0.13) than dizygotic pairs
(0.00). The higher prevalence in female inspired studies
investigating the possibility of X-linked inheritance, a
study by Justice et al[21] gave evidence of a region on the X
chromosome that might be linked to AIS, another study by
Ward et al[22] indicated the polygenic inheritance of AIS,
the study also showed male to male transmission examples
that negated the former X-linked heritance hypothesis.
Despite the controversies of inheritance pattern, current
researches showed that chromosome abnormality, varia-
tions of gene loci caused primary expressional alterations,
and the epigenetic changes resulted from environmental
factors further regulated the gene expression; these
elements worked together inducing a dysfunction of cell
activities, which further led to AIS development.

Chromosome abnormality and gene variations
85
Linkage and association studies are primary techniques to
analyze the genotype-phenotype relationship.[23] linkage
analysis identified mutants in gene loci such as MAPK7[24]

and allele marker DS1034 on chromosome 19p13.3,[25]

both of which were relevant to AIS etiology.

Genome-wide association study (GWAS) is another
powerful tool to analyze the relationship between single
nucleotide polymorphism (SNPs) in gene loci and
phenotypes, it was widely used in genetic studies of
polygenic diseases, a study by Ogura et al[26] showed
ladybird homeobox 1 (LBX1), were related to AIS
pathogenesis. GWAS was also used to analyze the copy
number variants (CNV) associated with AIS, it has been
revealed that CNV in chromosome 1q21.1, 2q13,
15q11.2, 16p11.2 harbor in AIS.[27] It is worth mentioning
that Liu et al[28] found SNPs and CNV (such as deletion in
TBX6) could also locate at one locus thus distort the
calculations of the significance in associating SNPs to AIS.

Asides from the above gene loci where SNPs harbor, other
gene loci including cell adhesion molecule L1 like, fibrillin
(FBN), GPR126, insulin-like growth factor 1, LBX1,
matrilin-1, matrix metalloproteinases-3, and interleukin-6
(IL-6), paired box 1, proteome of centrioles 5, trans-
forming growth factor beta 1 (TGFB1), VANGL planar
cell polarity protein 1 were shown to be possibly related
with the pathogenesis of AIS.[29-38] Recently, Zhang

4

the urotensin neuropeptides receptors of slow-twitch
muscle fibers of the somite and; therefore, change the
straightening of vertebrae axis process. Further researches
can investigate the expressional alterations and regulation
of these genes in AIS patients.

Epigenetics
The definition of epigenetics is the change in DNA or the
paired proteins, with DNA sequence variation excluded,
epigenetics plays roles in gene expression and cell
division.[40] A study by Fendri et al[41] using microarray
analysis and quantitative Reverse-transcription PCR
found 145 genes differently expressed in AIS osteoblasts,
which might be related with epigenetic regulation.

At the DNA methylation level, in the study by Mao
et al,[42] the positive methylation on the cartilage
oligomeric matrix protein (COMP) promoter resulted in
the low expression of the COMP gene, which influenced
the bone formation, correlating with young chronological
age and high cobb angle of main curve. Meng et al[43]

found the hypo-methylation of site cg01374129, which
located near HAS2 gene, was reported to have a negative
correlation with AIS curve severity. The positive methyl-
ation in the promoter of pituitary homeobox 1 gene was
also related to larger Cob angles of main curve.

At the non-coding RNAs level, miRNAs and lncRNAs
were also reported to be related with the pathogene-
sis,[17,19,44-46] the epigenetic alterations were located in
both peripheral blood and MSCs.

Tissues
Bone

Histological methods, computed tomography scan with
higher resolution[47] and reconstruction were used,
identified the bone formation abnormalities at morpho-
logic level which is in accordance with low BMD status. In
the study of Tanabe et al,[48] from the histological sections
of the spinous process taken from AIS patients, 67%
showed sub-normal bone volume and 76% showed a high
bone turnover rate. It has also been revealed from a study
by Wang et al[49] that AIS patients with low or normal
BMD both have abnormal bone quality and it might be
resulting from altered endocortical apposition.

Muscle
Studies of paravertebral muscles have implied the alter-
ation and asymmetry of paravertebral muscles caused the
inharmony of the posture and movement control of the
spine, thus resulted in AIS progression. A study by
Acaroglu et al[50] showed a higher concentration of
calmodulin in muscle tissue of the convex side, which
might affect the contractility of muscles. In the study by
Wang and Pessin,[51] through the biopsy fromAIS patients,
muscles of convex side have an increased portion of type I
fibers than type II while a decreased portion was found in
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the concave side, Type I fiber has higher fatigue resistant
but slower contractile speed, and may occur under long

proposed by Yang et al[62] was that the left-right
handedness and the location and gravity of heart and
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duration,[52] Stetkarova et al[53] considered that this
change might be a secondary adaption to the higher load
demand on the convex side, and are related with curve
progression. Moreover, the alterations of paravertebral
muscle have been verified at the genetic level, Buchan
et al[38] identified rare variants in FBN1 and FBN2, which
were correlated with curve progression, FBN genes were
observed to up-regulate the TGF-b signaling pathway in
paravertebral muscles. In the study of Nowak et al,[54]

muscles of the concave side showed a higher transcript
abundance of TGF-b2, TGF-3, and transforming growth
factor beta receptor 2 (TGFBR2), these genetic expressions
mostly affect the extracellular region of the paravertebral
muscles.

Spine Biomechanics
86
Relative anterior spinal overgrowth (RASO) and the
contraction from the anterior part of the torso led to
asymmetry of the spinal growth. Back to 1996, Murray
et al[55] built a simple model of idiopathic scoliosis to
analyze the possible biomechanics behind the deformity, it
was shown that the overgrowth of the anterior column
relative to the posterior one caused the model to form a
shape of idiopathic scoliosis. In the study by Shi et al,[56]

finite elements model has then been simulated, verified the
accelerated growth pattern affecting scoliotic progression,
while it has also been speculated that RASO was a
secondary change in the development of AIS since the
model with a pre-set small kyphosis in the study did not
develop scoliosis. Nevertheless, Crijns et al[57] built a
hypokyphosis model with an anterior band simulating the
contraction from the anterior muscles and ligaments,
demonstrating that even without a pre-set left-right
asymmetry of the spine, the restraining force from the
anterior of the body can cause a lateral curve, which
indicated the unmatched growth speed of the spine with
that of the anterior banding components might induce the
scoliotic deformity after the decrease of kyphosis or
increase of lordosis resulting from RASO. A study by Guo
et al[58] has revealed that the main ossification type of
vertebral bodies of AIS patients was endochondral
ossification, which was also faster than the membranous
ossification of pedicles as parts of the posterior structure,
which explained the principle of RASO.

The intervertebral discs might be another source of spinal
asymmetry. In the study of Will et al,[59] it was shown that
rather than vertebrae body, the discs wedging was found to
contributed the most to scoliosis progression at the
beginning of the growth spurt of AIS patients but gradually
reversed along with the spurt. Another study by Brink
et al[60] revealed the increase of the height of discs also
accounted for the development of RASO, but the study
considered RASO as the secondary phenomenon since
RASOwas also observed in other types of scoliosis as well.

The biomechanics between spine and other parts of the
torso might also contribute to AIS. Zhu et al[61] found out
the rib length asymmetry was most likely a secondary
change to the scoliosis deformity. Another hypothesis
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aorta might play roles in the curve patterns of AIS, it was
hypothesized that right handedness induced a stronger
right extrinsic back muscles which cannot be counteracted
by the intrinsic muscle, which caused the convexity of the
right side. While comments have also been made to
question the handedness part.[63] Another study of Chen
et al[64] found that imbalance of growth between sternum
and thoracic vertebrae might lead to scoliosis.

Neurology
Brain

The research of association between brain abnormalities
and spinal deformity focused mainly on the neuroanatom-
ical and neurofunctional alterations which were observed
in the cerebrum, brain stem, and cerebellum.

Of the studies regarding cerebrum and brain stem,
magnetic resonance imaging (MRI) images with a
morphometric study by Shi et al[65] showed white matter
attenuation in the corpus callosum and left internal capsule
of the AIS patients with left thoracic curves. In another
study by Wang et al[66] also found cerebrum abnormality
that the cortical thickness of AIS patients was different
from the normal control group, the differences were mostly
observed in the region involving in motor and vestibular
function. Opposite opinion was also given, a study by Lee
et al[67] showed no significant glucose metabolic difference
was found between AIS groups and normal groups, giving
the contrary evidence of cerebrum abnormalities taking
part in the pathogenesis of AIS. Another study by Geissele
et al[68] regarding the brain stem discovered the ventral
pons or medulla asymmetry in the area of the corticospinal
tracts from 7 AIS patients. To sum up, despite abnormali-
ties were observed in AIS patients, there is currently no
solid evidence proves the alterations in the cerebrum and
brain stem are primary changes in AIS development, nor it
has been proved that the alterations in the cerebrum found
in AIS patients affect neurological function yet.

Of the studies regarding cerebellum, it is known that
cerebellum has crucial functions to adjust or coordinate the
muscle movements and posture. In the study of Cheng
et al,[69] tonsillar ectopia was found in a small part (7.3%)
of AIS patients, this part of patients in the study had a
higher prevalence of severe curve. Another study by Lee
et al[70] showed a higher prevalence of 48% AIS patients,
whose MRI images were taken under an upright rather
than a supine position, had cerebellar tonsillar descent.
The first study analyzing the regional cerebellum volume
characteristics quantitatively revealed the enlargement of
several cerebellar regions.[71] Another study by Chau
et al[72] observed the prolonged latency of somatosensory-
evoked potential (SEP) in AIS girls, among AIS patients
with abnormal SEP, 58% were found to have cerebellar
tonsillar ectopia. This study might show the functional
impairments of morphological changes in the cerebellum
of AIS patients. With these studies, we can speculate the
possibility of cerebellum growth and functional changes
having a relationship with AIS development.
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Vestibular system endochondral ossification.[87] As mentioned above, AIS
MSCs had a lowerMT2 expression which might be related
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Deficits of the vestibular system may lead to asymmetrical
body activities and senses thus contributes to AIS
development. The vestibular system collects the postural
information which is further integrated with other sensory
information to maintain body balance. Byl et al[73]

reported a postural imbalance in AIS patients and it was
hypothesized that an asymmetric vestibular system which
causes a rise in the asymmetric paraspinal muscle tone
might play a role in the genesis of AIS.[74] Another study by
Zeng et al[75] also showed a difference in the morphology
of the vestibular system in the AIS patients. However, a
systematic review by Catanzariti et al[76] in 2014
concluded that there has not been adequate evidence
showing the unilateral contribution of vestibular dysfunc-
tion to the AIS pathogenesis. In the following study by
Hitier et al,[77] lateral semicircular canal asymmetry was
found in AIS patients, which was also associated with
functional anomalies such as lower excitability and higher
canal paresis, this asymmetry might even have developed
before birth. Novel research by Antoniadou et al[78] also
found vestibular deficits might cause verticality perception
disorder, thus described the sensorimotor integration
impairment in AIS.

Hormones
87
Melatonin and calmodulin

Whether the deficiency of melatonin accounts for the
development of AIS remains controversial since studies
have shown inter-opposite results of evaluating the serum
melatonin level.[79,80] Experiments of pinealectomy in
animals have shown a tendency to induce scoliosis, but
Man et al[81] concerned that the surgery itself accounted
for scoliosis and the differences existed between humans
and chickens which were used in the experiments. Pinchuk
et al[82] proposed that the disturbed biorhythm of
secretion, rather than the deficiency of melatonin, might
be the cause of scoliosis, which resulted from the imbalance
of the suprachiasmatic nucleus/pineal gland activities.
However, alterations in melatonin functioning may result
in imbalance of cell proliferation and differentiation in
different types of cells, thus disturb the regular bone mass
formation and might lead to AIS development. Melatonin
improves osteoblast cells proliferation and their secretion
of osteoprotegerin (OPG), OPG further inhibits the
binding of osteoclast differentiation factors to RANK,
thus reduces the differentiation of osteoclast cells.[83]

Melatonin receptor 1B (MT2) was expressed in osteoblasts
cells, a study of Yim et al[84] discovered a quantitively
lower expression of MT2 in AIS osteoblast cells than the
normal group, which was statistically related to a longer
arm span of AIS patients. Man et al[85] found AIS
osteoblasts without MT2 expression showed a weakened
proliferative ability, and gene polymorphisms of the MT2
gene such as rs4753426 were considered to be related with
the risk of AIS.[86] In addition to the osteoblasts, growth
plate chondrocytes (GPCs) were also found to had a
decreasedMT2 expression, melatonin was found to reduce
GPCs proliferation and differentiation, lack of response to
melatonin in AIS GPCs might result in an altered
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to membranous and endochondral ossification as well.[12]

Calmodulin may be related to the muscle function and
bone formation, which leads to AIS development.
Calmodulin participates in different metabolism systems
as a secondarymessenger, it is widely expressed in different
varieties of cells and takes part in the contractile system of
cells and is also an inhibitor of melatonin.[83] According to
the study of Lowe et al,[88] early studies showed an
increased concentration of calmodulin in platelets of AIS
patients, but whether it reflected the muscular changes or
spine deformity remained controversial. Imbalance of the
concentrations in the paraspinal muscles of AIS patients
was discovered, but studies showed different results of
which side has a higher concentration.[50,89] In the
articular process of AIS patients, the expression of
calmodulin was also found to be lower.[90]

Leptin
Leptin has central and peripheral functions to bone
formation, the leptin-neurology functions are central
functions, its direct interactions with bone-related tissues
are peripheral functions, alterations in these functions can
cause AIS development. Leptin is the hormone that takes
part in the regulation of bone formation, and is regulated
by hypothalamic nuclei and the sympathetic nerve
system.[91] In the study of Qiu et al,[92] decreased
circulating leptin level was found in AIS patients, and
was believed to be related with lower body mass index
(BMI) and BMD. Another study by Liang et al[5] proposed
that the circulating leptin might be a secondary alteration
caused by the low adipogenesis ability of AIS patients
which resulted from their lower fat accumulation, the
study also regarded the peripheral functions, leptin
receptors were found to be down-regulated in induced
AIS MSCs which explained their hyposensitivity to leptin
and their weakened adipogenesis ability, the study also
considered Janus tyrosine kinase 2/signal transducers and
activators of transcription defects might exist in AIS
patients. In the study of Wang et al,[93] the lower
expression of membrane leptin receptors was found in
the chondrocyte cells of AIS patients’ facet joints, it might
be resulted from an imbalance between endocytosis and
insertion of new receptors to the membrane, this alteration
may cause decreased leptin sensitivity.

Estrogen
As one of the sex hormones resides in human body,
estrogen has numerous functions, lack of estrogen leads to
deficits of bonematuration which can further participate in
AIS development. Reviews by Zhou et al and Leboeuf
et al[94,95] have discussed that the response of cells to
estrogen of AIS patients was altered and thus might result
in the delay of menarche and osteopenia, which disturbed
the maturation of bone. It was also speculated that
estrogen receptors might influence the response of growth
plates to strain which affected bone formation. The
interactions between estrogen and other hormones were
also discussed, melatonin and estrogen had opposite
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influences in the regulation of cAMP level in cells,
calmodulin might also influence the estrogen functioning

in AIS development. Vitamin D receptor (VDR) is another
research point of vitamin D metabolism. It is still
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in signal pathways. It is clear that estrogen influences the
growth pattern of spine, further research may reveal the
specific mechanism and whether other environmental
factors have effects on estrogen secretion or functions that
can induce the development of AIS.

Growth hormone
The growth hormone (GH) has been considered to regulate
the overall growth of the body, alterations in GH secretion
and functions may affect the growth of the skeleton, which
is related to AIS etiology. Studies have shown AIS patients
were relatively taller than the normal groups,[96,97] In the
study of Willner et al,[98] the basal hormone level was also
found to be higher in AIS patients. Yang et al and Zhuang
et al[99,100] identified gene polymorphisms of GH receptors
in AIS patients, which were associated with the higher GH
concentration in the blood and the low BMD condition.
However, the GH gene promoter was considered not
related to AIS etiology.[101] Through these studies we can
conclude that GHR alterations may play as amore primary
role than GH itself, despite GH still may participate in the
etiology of AIS, further studies are needed to reveal the
specific role of GH and the interactions between GH and
other hormones.

Biochemistry
[115]

patients
Bone mineral metabolism

Various mechanisms were considered to account for the
low BMD status in AIS, low BMD might also result in
stress increase and curve progression. In the study of Suh
et al,[102] imbalance of the disturbed interaction between
receptor activator of nuclear factor-kB ligand (RANKL)
and OPG has been found to be related with low spinal
BMD (LSBMD) and femoral neck BMD (FNBMD), the
serum RANLK to OPG ratio was increased. Not only in
the serum, but the increased RANKL expression was also
found in osteoblasts by Zhou et al.[103] The RANK system
plays an important role in bonemetabolism, which induces
the osteoclastic cells to generate bone resorption. In the
study of Eun et al,[104] OPG gene and IL-6 gene, which was
a candidate gene of osteopenia, were both confirmed to
have polymorphisms in AIS patients and were considered
to be associated with AIS pathogenesis. RUNX2 as an
important transcription factor regulating osteoblast dif-
ferentiation and skeletal formation, Wang et al[18] discov-
ered that the expression of Runx2 decreased in osteoblasts
cells of AIS patients and might be related to the LSBMD
and FNBMD. Using the finite element model, Song
et al[105] confirmed that low BMD in the concave side of
thoracic scoliosis could enlarge the stress to the cortical
bone, discs, and facets, altered their regular growth, thus
caused curve progression.

Vitamin D
88
Vitamin D is correlated with calcium metabolism, besides,
Ng et al[106] considered that it might also have influences
on fibrosis regulation, postural control, which might result
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controversial whether the gene polymorphism of VDR
Bsml contributes to the development of AIS.[107-109]

Further researches should be taken to define which
signaling pathway Vitamin D takes part in and whether
it acts as a causal factor of AIS.

Lipid metabolism

Disrupted lipid metabolism has been found in a serum
metabolic analysis study by Sun et al,[110] the categories of
lipids altered in the AIS patients were glycerophospholi-
pids, glycerolipids, and fatty acid esters. Since the lipid
metabolism are related with various kinds of hormones
and regulative systems, it is necessary to find out the roles
altered lipid metabolism played in the pathogenesis of AIS
and to integrate the findings to other theories.

Biochemical characteristics in scoliotic disc
The biochemical alterations may also cause histological
changes of discs, which may be accordance with some
biomechanical effects, thus result in AIS curve progression.
In the study of Ghosh et al,[111] the distribution of GAGs
was reported to shift away from its original location in
scoliotic vertebral discs, originally, the concentration
should be highest in the nucleus pulposus. Another study
by He et al[112] showed an increase of type I and type II
collagen at the convex side of the discs relative to the
concave side, which might result from the degeneration of
the discs.

Environment and Lifestyle
High environmental selenium

After gathering the information of guppy fish developed an
“S” curve deformity in the high-selenium environment,
Yang et al[113] gave the hypothesis that high-selenium
environment-induced uncoupled spinal neuro-osseous
growth, and the overgrowth of the spine relative to the
spinal cord resulted in the tethering of the spine, which
might thus cause the curvature. Another cohort study by Ji
et al[114] proved the hypothesis by giving evidence that the
relative risk was 2.88.

Chlorine and the neurotoxic influences
A hypothesis by McMaster et al postulated that the
chloroform generated from heat swimming pools has a
neurotoxic effect thus induces AIS development. It has
been observed that the normal teenagers introduced to
indoor heated swimming pools had a high prevalence
(83%) of developing vertical spinous process asymmetry,
this phenomenon was also observed in infants.[116]

Gut microbiome induced plasma proteome alterations in AIS
A novel hypothesis has been built on the findings of
different structures of gut microbiome between AIS
patients and healthy control groups.[117] It was found
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that the differences may result in alterations of the plasma
proteins, and the abundance of fecal prevotella positively

focus more on the bone formation differences of AIS
patients, the connections between different fields may be
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correlated with Cobb angles of the AIS patients. Although
there is not sufficient evidence of direct participation of
microbiome in the initiation or progression of the AIS.

Physical activities as controversial risk factors
1. Konieczny MR, Senyurt H, Krauspe R. Epidemiology of
Different physical activities with different training strate-
gies may induce different outcomes, which may be
associated with AIS etiology. Asides from the previously
described indoor swimming pool exposure, several other
physical activities have been evaluated. The better ability
of toe touching was found to have a positive correlation
with AIS occurrence, which might be resulted from
connective tissues deficits.[118] In the same study, AIS
children were shown to participated less frequently in
dance, skating, gymnastics or karate, and football or
hockey classes. Another study[119] discovered that different
physical activities had different associations with AIS, the
odds ratio of ballet training with AIS was reported to be
1.38.

Integrated theory
The double neuro-osseous theory, proposed by Burwell
et al concluded the pathogenesis theories of AIS into a
developmental disharmony between autonomic and so-
matic nervous systems of the spine and trunk, which was
further exaggerated by hormones and thus induced a
systemic skeletal overgrowth.[91] This theory postulated a
leptin-hypothalamic-sympathetic nervous system involved
in the pathogenesis of AIS, which showed the central
functions of leptin, the genetic mutations of AIS patients
induced an increased sensitivity of hypothalamus to leptin,
exaggerated by somatotropic axis, then affected the
skeletal growth. The somatic nervous system of AIS was
described as a failure to control and compensate for the
spinal deformity. As relatively low BMI was found in AIS
patients in several studies,[96,120,121] it was also integrated
into the double neuro-osseous theory, and were considered
as a substitutional measure for body fat and circulating
leptin levels.[122] The integrated theory was based on the
former studies and required later confirmation.

Conclusions
89
The management of scoliosis includes surgery and
conservative treatment[123-126]; however, the prevention
of AIS are still under research, which partly because the
etiology and pathogenesis of AIS is currently indefinite.
Despite there have already been numerous theories or
hypotheses investigating the pathogenesis of AIS, novel
findings are still emerging constantly. In this review, we
classified the known mechanisms of AIS pathogenesis and
confirmed AIS as a multifactorial disease with intrinsic and
extrinsic alterations. Limitations of our review exist
because of the relatively simple inclusion and exclusion
criteria, which may cause selective bias. According to the
review, bone formation seems to be one of the key points of
the etiology and pathogenesis of AIS, and was found to be
related with changes in almost every field we classified
from genetic to environmental factors. If further studies

4

well established. Moreover, the treatment of AIS may also
find inspiration from the alteration in BM-MSCs and
hormones. However, further studies are also expected to
clarify the controversial parts and integrate the existing
theories and findings.
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