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Background: Ginsenoside Rg1 has been shown to clear senescence-associated beta-galactosidase (SA-b-
gal) in cultured cells. It remains unknown whether Rg1 can influence SA-b-gal in exercising human
skeletal muscle.
Methods: To examine SA-b-gal change, 12 young men (age 21 � 0.2 years) were enrolled in a randomized
double-blind placebo controlled crossover study, under two occasions: placebo (PLA) and Rg1 (5 mg)
supplementations 1 h prior to a high-intensity cycling (70% VO2max). Muscle samples were collected by
multiple biopsies before and after cycling exercise (0 h and 3 h). To avoid potential effect of muscle
biopsy on performance assessment, cycling time to exhaustion test (80% VO2max) was conducted on
another 12 participants (age 23 � 0.5 years) with the same experimental design.
Results: No changes of SA-b-gal were observed after cycling in the PLA trial. On the contrary, nine of the 12
participants showed complete elimination of SA-b-gal in exercised muscle after cycling in the Rg1 trial
(p < 0.05). Increases in apoptotic DNA fragmentation (PLA: þ87% vs. Rg1: þ133%, p < 0.05) and CD68þ

(PLA:þ78%vs. Rg1:þ121%,p¼ 0.17) occurred immediatelyafter cycling inboth trials.During the 3-h recovery,
reverses in apoptotic nuclei content (PLA:þ5%vs. Rg1:�32%,p< 0.01) and increases in induciblenitrate oxide
synthase and interleukin 6 mRNA levels of exercised muscle were observed only in the Rg1 trial (p < 0.01).
Conclusion: Rg1 supplementation effectively eliminates senescent cells in exercising human skeletal
muscle and improves high-intensity endurance performance.
� 2018 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ginseng is one of the most popular ergogenic and antiaging
supplements, while its efficacy remains controversial [1e4]. The
discrepancy among existing literature may be associated with the
inconsistent profiles of components due to seasons, in which two
batches of ginseng present different ginsenoside profiles with
divergent metabolic outcomes [5]. Among the components of
ginseng, Rg1 has been reported to have significant ergogenic action
in humans. About 20% improvement in cycling time at high in-
tensity (80% VO2max) was observed after two doses of Rg1
chemistry, University of Taipei, 101
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supplementation before exercise challenge [6]. Recently, Rg1 has
also been shown to decrease cell senescence in vitro [7,8]. Accu-
mulation of senescent cells in adult tissues implicates functional
decay in adults [9]. However, the effect of Rg1 from Panax ginseng
on senescent cells of human skeletal muscle against physical
challenge has not been documented in the past. Cell senescence in
tissue can be measured using SA-b-gal staining [10,11], reflected by
beta-galactosidase activity at pH 6.0 [11].

Cells in human body age at different rate and are replaced by new
cells to evolve a large multicellular system with a wide range of cell
ages [12]. In skeletal muscle, myofibers are long-lived, and
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endothelial cells in capillary have extremely short lifespan (half-
lifew 2 weeks) [12,13]. Phagocytosis by macrophage is a recognized
mechanism to selectively eliminate senescent cells at a rapid pace
[14]. One way to attract macrophage into skeletal muscle is to
perform a session of resistance exercise containing eccentric muscle
contractions [15,16]. CD68þ macrophage infiltration into the chal-
lenged tissues is essential for recognition and elimination of
damaged cells during phagocytosis [17,18]. This process helps to
establish an ideal microenvironment for tissue regeneration [19]. In
addition, P. ginseng has been reported to activate phagocytic action of
macrophage via a nitric oxideemediated mechanism [20]. Among
the ginsenoside components of P. ginseng, Rg1 is a component that
mediates the macrophage activation [21]. This component has been
shown to eliminate senescent cells in vitro [7,8]. In the present study,
the changes of SA-b-gal signal, apoptotic DNA content, and
CD68 þ macrophage in human skeletal muscle after aerobic cycling
were examined under Rg1-supplemented condition.

2. Materials and methods

2.1. Ethical approval

The human trials were approved by the Institutional Review
Board of University of Taipei (IRB-2015-004) in accordancewith the
Declaration of Helsinki. Before commencing the study, participants
gave their written informed consent after explanation about the
experimental procedure and potential risks and benefits of
participation.

2.2. Participants

The first part of study aimed to determine SA-b-gal, apoptotic
DNA fragmentation, and macrophage infiltration of human skeletal
muscle after high-intensity cycling exercise under placebo (PLA) and
Rg1 supplemented conditions. Twelve recreationally activemen (age
21 � 0.2 years, height 171 � 2.2 cm, body mass 65 � 3.7 kg; VO2max
48� 1.1 ml kg�1 min�1) volunteered to participate in this study. The
second part of study recruited another 12 male participants (age
23 � 0.5 years, height 173 � 0.9 cm, body mass 66 � 2.0 kg; VO2max
45� 2.5 ml kg�1 min�1) to confirm ergogenic effect of Rg1 reported
previously at higher dose frequency [6].

2.3. Ginsenoside Rg1

To circumvent potential variation due to seasons and cultivated
soils of P. ginseng, the ginseng component Rg1 (5 mg) was used in
the study (NuLiv Science, Inc., Brea, CA, USA). The dosage is based
on a previous study showing significant ergogenic effect at high
intensity [6].

2.4. Procedures

Participants were familiarized with the experimental proced-
ures used in each experiment, and then measured the VO2max in
incremental test on a cycloergometer (Monark 839E, Stockholm,
Sweden) before the trial. Participants warmed up for 1 minwith no
load before the test and then performed the incremental test
starting at 100 W and increasing by 25 W every 3 min until
exhaustion. Pulmonary gas exchange was measured during the test
with a gas analysis system (Cortex Biophysik GmbH, Leipzig, SN,
Germany). Participants maintained a cadence at 60 rpm during the
test. The cessation of test was judged when pedaling frequency fell
below 50 rpm for two times despite verbal encouragement or a
plateau in the oxygen uptake despite an increased power output
and a respiratory exchange ratio above 1.1.
Both parts of the studywere conducted in a randomized double-
blind placebo controlled crossover manner. Participants attended
to the laboratory and assigned into one of two conditions: PLA and
Rg1, with a washout period of at least 4 weeks between each trial.
Participants were provided a standard isocaloric diet 12 h prior to
each trial. Biopsied muscle samples were collected immediately
and during 3 h recovery.

Participants received Rg1 or PLA 1 h before exercise on a
cycloergometer (Monark 839E, Stockholm, Sweden). Participants
exercised 1 h always on the same bike ergometer at the power
output of 70% VO2max with cadence 60 rpm. Participants consumed
a high carbohydrate (GI: 80) meal (80% carbohydrate, 8% fat, and
12% protein) containing 1.5 g carbohydrates per kg body weight.
They were allowed to drink additional water ad libitum. The meal
was consumed within 10 min after exercise.

2.4.1. Endurance performance (cycling time to exhaustion)
To determine endurance performance, separate 12 participants

received Rg1 or PLA 1 h before the test. Participants warmed up for
5 min at a work rate (watt) of 60% VO2max and then pedaled on the
same Monark cycle ergometer at 80% VO2max until exhaustion with
the same experimental design as the first study.

2.5. Muscle biopsy

Muscle biopsies were taken from vastus lateralis muscle under
local anesthesia (2% lidocaine) using a 18G Temno disposable cut-
ting needle (Cardinal Health, Waukegan, IL, USA) inserted into the
vastus lateralis positioned at 3 cm depth, 20 cm proximal to knee
cap. Baseline muscle biopsy (Pre) in the vastus lateralis was con-
ducted 4 weeks before exercise challenge in the first part of the
study. Two additional muscle biopsies were conducted again
immediately after and 3 h after 1 h cycling at 70% VO2max on
contralateral leg at the same position. Muscle tissue was quickly
removed from the needle and disposed into a conical vial con-
taining 10% formalin. Paraffin-embedded tissue was sectioned in
parallel with trials. Other biopsied samples were frozen directly in
liquid nitrogen and stored for later biochemical determination of
mRNA expression.

2.6. Phagocytic macrophage and SA-b-gal positive cells

Immunofluorescence and hematoxylin and eosin staining are
used together to identify phagocytic macrophage (CD68þ) infil-
tration. VECTASTAIN� Universal Quick Kit (PK 8800) (Vector Lab-
oratories, Burlingame, CA, USA) was used for CD68þ analysis.
Immunohistochemistry was used to detect SA-b-gal positive cells.
Universal DAB Detection Kit (REF 760-500) (Ventana Medical Sys-
tems, Tucson, AZ, USA) was used for SA-b-gal analysis at pH 6 ac-
cording to the manufacturer’s instruction. Primary antibodies used
were rabbit anti-human CD68þ (1:200, ab955) (Abcam, Cambridge,
MA, USA) and mouse anti-human beta-galactosidase-1/GLB1 anti-
body (1:150, NBP2-45731) (Novus Biologicals Europe, Abingdon,
OXF, UK). The slides were reviewed at a magnification of �200
and �400 by a certified pathologist. Cells positive markers were
quantified and expressed as positive signal number/total skeletal
muscle fiber number (%). A total of 600muscle fibers were included
for analysis. All data are repeated by a certified pathologist from
Taipei Institute of Pathology and a specialist at University with
similar results.

2.7. Apoptotic DNA fragmentation

Apoptotic DNA fragmentation was identified by a fluorometric
TUNEL (Terminal deoxynucleotidyl transferase (TdT) dUTP nick end



Fig. 1. Senescence-associated b-galactosidase (SA-b-gal) in human muscle after exercise. (A) Representative immunohistochemical staining images showing SA-b-gal (brown stain
indicated by arrows) in vastus lateralis muscle of a participant. Scale bar ¼ 50 mm. (B) Rg1 supplementation 1 h before exercise decreases SA-b-gal in vastus lateralis muscle after a 1-
h cycling at 70% V

,
O2max. Values are presented as number of positive signal in 100 muscle fibers (%).

*Significant difference from Pre, p < 0.05. All data are repeated by a certified pathologist and a specialist at the University with similar results.
PLA, placebo; Rg1, ginseng Rg1.
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labeling) detection kit (Mebstain Apoptosis Kit Direct, #8445)
(Medical & Biological Laboratories, Woburn, MA, USA) according to
the manufacturer’s instructions for both muscle cross-sections.
Briefly, tissue sections were incubated with a fluorescein-conju-
gated TUNEL reaction. Negative control experiments were per-
formed by omitting the TdT enzyme in the TUNEL reaction mixture
on the tissue sections. After TUNEL labeling, the muscle sections
were mounted with 40,6-diamidino-2-phenylindole (DAPI, H-1200)
(Vector Laboratories, Burlingame, CA, USA). TUNEL and DAPI-
positive nuclei staining were captured under a fluorescence mi-
croscope (Olympus BX51, Olympus Corporation, TKY, Japan). The
number of TUNEL and DAPI-positive nuclei was counted from
overall cross-section at 20� objective magnification. Only the
TUNEL-positive nuclei overlapping fiber nuclei were quantified as
apoptotic nuclei. The TUNEL labeling was quantified as the number
of TUNEL-positive nuclei per 600 muscle fibers.
2.8. Leukocyte infiltration

For histological analysis, hematoxylin and eosin stainingwas used
to identify leukocyte infiltration into muscle tissues on cross-
sections. Leukocyte infiltration was judged by visible inflammatory
cell invasion, hypercontraction, or coagulative cytoplasm. We calcu-
lated the percentage of leukocyte infiltration fibers from a total 600
fibers. The sections were observed under a light microscope
(OlympusBX51,OlympusCorporation, TKY, Japan), anddigital images
were taken covering the entire cross section of the vastus lateralis.

2.9. RNA analysis

Frozen muscle samples (about 15 mg) were homogenized, and
total RNAwas extracted using the TRI Reagent (T9424-200) (Sigma,
St. Louis, MO, USA), followed by precipitationwith isopropanol, two



Fig. 2. Apoptotic DNA fragmentation in human muscle after exercise. (A) Representative images for apoptotic DNA fragmentation (green, indicated by arrows) and DAPI (40 ,6-
diamidino-2-phenylindole) nuclei (blue) in vastus lateralis muscle cross-section. Scale bar ¼ 100 mm. (B) Exercise increases the number of apoptotic nuclei for both PLA and
Rg1 trials (values normalized to Pre). (C) Rg1 supplementation 1 h before exercise reverses apoptotic nuclei in vastus lateralis muscle during a 3-h recovery (values normalized to
0 h postexercise). Values are presented as number of positive signal in 100 muscle fibers (%).
*Significant difference from Pre, p < 0.01.
ySignificant difference from PLA, p < 0.01.
PLA, placebo; Rg1, ginseng Rg1.
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ethanol washes, drying, and suspension in 20 ml nuclease-free
water. The total RNA was quantified and verified spectrophoto-
metrically at absorbance of 260/280 nm (Thermo Fisher Scientific,
Madison,WI, USA). Onemicrogram of RNA in a total volume of 20 ml
was used to reverse transcribe by using iScript cDNA Synthesis Kit
(#170-8890) (Bio-Rad, Hercules, CA, USA) according to manufac-
turer’s instruction and then stored at �20�C for subsequent quan-
titative polymerase chain reaction (PCR) analysis.

Real-time PCR was performed using MyiQ Single Color Real-
Time PCR Detection System (Bio-Rad, Hercules, CA, USA), TaqMan
Probe (Sigma-Aldrich, Singapore), and iQ Supermix kit (#170-8860)
(Bio-Rad, Hercules, CA, USA). A relative RT-PCR method using 18S
ribosomal RNA as an internal standard was used to determine
relative expression levels of the target mRNAs. The primers and
probe used to amplify target mRNA are 18S ribosomal (18S): For-
ward (50-30): ACAGGATTGACAGATTGATAGCTC, Reverse (50-30):
TCGCTCCACCAACTAAGAACG, Probe (50-30): TGCACCACCACCCACG-
GAATCGAG; interleukin 6 (IL-6): Forward (50-30): CAGTGGACAG
GTTTCTGA, Reverse (50-30): TTCGGCAAATGTAGCATG, Probe (50-30):
CCATTAACAACAACAATCTGAGGTGC; and inducible nitric oxide
synthase (iNOS): Forward (50-30): AGCGGGATGACTTTCCAAGA,
Reverse (50-30): TAATGGACCCCAGGCAAGATT, Probe (50-30):
CCTGCAAGTTAAAATCCCTTTGGCCTTATG. Series of baseline of cDNA
samples were diluted in five successive five-fold or two-fold to
estimate the PCR efficiencies (>90%) by interpolating the slope of
standard curve relating the Ct value. For each PCR reaction, 18S
gene was co-amplified with each target cDNA. To control for any
variations due to efficiencies of the reverse transcription and PCR,
the results were expressed as a ratio of target mRNA/18S.

2.10. Total collagenase activity

Collagenase (a family of matrix metalloproteinase or MMPs)
activity colorimetric assay kit (K792-100) (BioVision, Milpitas, CA,
USA) was used to determine collagenase activity according to the
manufacturer’s protocol. Homogenized sample (10 ml) was added in
96-well plate for assay. The absorbance was measured kinetically at
345 nm in a microplate reader at 37�C for 30 min.



Fig. 3. Leukocyte infiltration in human muscle after exercise. (A) Representative he-
matoxylin and eosin staining images showing leukocyte infiltration (arrow) in vastus
lateralis muscle cross-section of a participant. Scale bar ¼ 100 mm. (B) Leukocyte
infiltration increases after exercise in both PLA and Rg1 trials. Values are normalized to
Pre. (C) Leukocyte infiltration reverses faster during a 3-h recovery in the Rg1 trial
compared against the PLA trial. Values are presented as number of aggregates in 100
muscle fibers (%), and normalized to 0 h postexercise.
*Significant difference from Pre, p < 0.01.
ySignificant difference from 0 h postexercise, p < 0.01.
PLA, placebo; Rg1, ginseng Rg1.
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2.11. Data analyses

All data are expressed as means� standard error. The data were
analyzed using a two-factor repeated-measures analysis of variance
(SPSS 20.0). Post hoc analysis was performed using paired Student t
test. The level of significance was set at p < 0.05.

3. Results

Based on physician’s tracking and participant’s self-reports,
none of them reported any adverse events due to the Rg1 treat-
ment or muscle biopsy throughout the trials.

3.1. Rg1 eliminates senescent cells in exercising muscle

Immunohistochemical staining analysis indicated existence of
SA-b-gal positive signals in vastus lateralis muscles of youngmen at
baseline (Pre) (Fig. 1). No detectable changes in SA-b-gal of muscle
were observed after a 1-h cycling exercise at 70% VO2max during the
PLA trial. On the contrary, significant declines in SA-b-gal by more
than 60% (p < 0.05) were observed after the same exercise when
Rg1 was supplemented 1 h before exercise (Pre vs. 0 h, p< 0.05; Pre
vs. 3 h, p < 0.05).

3.2. Rg1 prevents increase in apoptotic cells during postexercise
recovery

Apoptotic DNA fragmentation in the muscles after the 1-h exer-
cise was identified by TUNEL staining (Fig. 2A), expressed as the
number of positive signals in a hundred muscle fibers (%). There are
w6% positive signals for apoptotic DNA fragmentation detected in
the biopsied muscle at Pre. Apoptotic DNA fragmentation of the
muscle increased significantlyafter exercise duringbothPLA andRg1
trials, respectively (main effect of exercise, p < 0.01). Rg1 trial
showed greater exercise-induced increases in apoptotic DNA frag-
mentation (PLA:þ87% vs. Rg1:þ133%, p< 0.05) (Fig. 2B). During the
3-h postexercise recovery, the positive signals for apoptotic DNA
fragmentation reversed significantly (from 12.8 to 8.5%, p < 0.01)
only during the Rg1 trial, but not during the PLA trial (Fig. 2C).

3.3. Rg1 prevents increase in leukocyte infiltration after exercise

Representative images of leukocyte infiltration in the muscles
were shown in Fig. 3A, expressed as the numberof the cell infiltration
sites in a hundred muscle fibers (%). There was w2% of human skel-
etal muscle showed leukocyte infiltration at Pre. After exercise,
leukocyte infiltration in vastus lateralis increased during both PLA
and Rg1 trials (main effect of exercise, p < 0.01). Rg1 trial showed
greater exercise-induced increases in leukocyte infiltration
(PLA: þ78% vs. Rg1: þ121%, p < 0.05) (Fig. 3B). During the 3-h post-
exercise recovery, a trend of earlier reversal of leukocyte infiltration
in skeletal muscle was observed during the Rg1 trial, comparedwith
the PLA trial (PLA: �11% vs. Rg1: �43%, p ¼ 0.06, Fig. 3C).

3.4. Rg1 activates function of phagocytic macrophage in muscle

CD68 þ macrophage in the muscles was identified by immuno-
fluorescence staining (Fig. 4A). For both PLA and Rg1 trials, CD68þ

macrophage in the muscles increased significantly after exercise (þ2
folds, p < 0.05) above the Pre. During the 3-h recovery, this increase
was reversed without significant group difference (Fig. 4B).

To determine macrophage activation, iNOS mRNA (Fig. 5A) and
IL-6 mRNA (Fig. 5B) responses against exercise were also measured



Fig. 4. CD68þ macrophage infiltration in human muscle after exercise. (A) Representative immunofluorescence staining images showing CD68þ cells (green) in vastus lateralis
muscle cross-section. Scale bar ¼ 100 mm. (B) CD68þ macrophage increases after 1 h cycling at 70% V

,
O2max during both PLA and Rg1 trials. Values are presented as number of CD68

positive signal in 100 muscle fibers (%).
*Significant difference from Pre, p < 0.05.
PLA, placebo; Rg1, ginseng Rg1.
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[22]. An earlier increase in iNOS mRNA of the muscle was observed
during the Rg1 trial compared with the PLA trial (PLA: þ2.7 folds vs.
Rg1: þ4.5 folds, group effect: p < 0.05). Rg1 supplementation also
enhanced the exercise-induced IL-6 response (PLA: 110 folds vs. Rg1:
209 folds, p< 0.05). Total collagenase (MMPs) activity of themuscles
wasmeasured and compared against the Pre (Fig. 5C). After exercise,
collagenase activity of the muscle increased transiently (þ38%,
p < 0.05) during the PLA trial, but not the Rg1 trial (Fig. 5C).

3.5. Rg1 improves cycling performance

Endurance performance was assessed by cycloergometer exer-
cise at 80% VO2max. Rg1 supplementation significantly increased
cycling time to exhaustion by 12% (PLA: 1219 � 135 s vs. Rg1:
1364 � 145 s, p < 0.05) and power output by 13% (PLA: 199 � 31 kJ
vs. Rg1: 225� 33 kJ, p< 0.05). Eight of 12 participants with the Rg1
(5 mg) trial showed significantly improved cycling time compared
with the PLA trial (Fig. 6).

4. Discussion

Studies on SA-b-gal phenotype in normal human skeletal
muscle have not been previously reported. The present study was
undertaken to examine longitudinal changes of SA-b-gal before and
after exercise in human skeletal muscle of young adults, under PLA
and Rg1 supplemented conditions. The key findings are (1) less



Fig. 5. Inducible nitrate oxide synthase (iNOS) and interleukin 6 (IL-6) mRNA levels in
human muscle after exercise. (A) iNOS mRNA level in vastus lateralis shows an earlier
increase during the Rg1 trial. (B) IL-6 mRNA level increases after exercise in both PLA
and Rg1 trials. During a 3-h recovery, this increase is further amplified, to a greater
extent, for the Rg1 trial above the PLA trial. Values are normalized to 18S ribosomal
RNA value. (C) Collagenase activity increases after exercise only in the PLA trial.
Collagenase activity is lower in the Rg1 trial, compared with the PLA trial after a 3-h
postexercise recovery. Collagenase activity values are normalized to total collagen
content.
*Significant difference from Pre, p < 0.05.
ySignificant difference from PLA, p < 0.05.
PLA, placebo; Rg1, ginseng Rg1.
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than 2% of skeletal muscle fromyoungmen (aged 20e25 y) showed
SA-b-gal positive signals; (2) SA-b-gal in human skeletal muscle
remained unaltered after cycling exercise; (3) SA-b-gal decreased
by 63% below baseline (from 1.6% to 0.6%), when Rg1 was orally
supplemented 1-h before the exercise, in which nine of the 12
participants showed complete eliminations with one opposing
case; and (4) Rg1 enhanced exercise-induced iNOS and IL-6 mRNA
levels of skeletal muscle and decreased the amount of apoptotic
nuclei, suggesting an enhanced activation of phagocytosis for se-
nescent cell clearance. In human adults, cells are continuously ag-
ing, dying, and regenerating to maintain a robust multicellular
system, evidenced by an average age of skeletal muscle around 15
years in adults aged w37 y determined by retrospective birth
dating with genomic DNA 14C measurement [12,23]. A sensitive cell
renewing mechanism provides an advantage of human body to
maintain a relatively younger and healthy cell population. The re-
sults of the study implicates that macrophage activation is essential
for exercise-induced senescent cell clearance in exercised skeletal
muscle, which can be achieved by Rg1 presupplementation before
exercise.

In this study, reduced SA-b-gal positive cells of exercised muscle
after Rg1 supplementation occur in parallel with greater increases
in apoptosis after exercise and faster reversal of apoptotic nuclei
during recovery. Macrophage plays an important role in the clear-
ance of apoptotic cells as a nonphlogistic process, in contrast to
necrosis [24]. In this study, absence of increased collagenase
(MMPs) activity after exercise during the Rg1 trial suggests an anti-
inflammatory action of Rg1 in skeletal muscle. Activation of MMPs
is a generally recognized hallmark of inflammation [25,26].
Therefore, enhanced apoptosis by Rg1 supplementation may
contribute to the attenuated inflammatory collagenase activation
after exercise.

A currently known mechanism to selectively recognize and
eliminate senescent cells is phagocytosis, mainly mediated by
macrophage [14,27]. Despite exercise significantly increasing
leukocyte and macrophage infiltrations into skeletal muscle, such
increases are apparently insufficient to activate phagocytosis of
macrophage for senescent cell clearance in skeletal muscle. In this
study, the results on induced SA-b-gal clearance, reversed
apoptosis number, and enhanced exercise-induced iNOSmRNA and
IL-6 mRNA suggest an enhanced phagocytic function of macro-
phage after Rg1 supplementation. This human data agreed with
previous in vitro studies demonstrating an activated phagocytosis
of macrophage by Rg1, mediated via nitric oxideedependent
mechanism for senescent cell clearance [7,21].

Intensity and type of the exercise appear to be important to
observe a detectable increase in apoptotic DNA fragmentation
signals in human skeletal muscle. Previous study has shown that
moderate intensity exercise (60% VO2max) for 2 h does not increase
apoptosis in human skeletal muscle [28]. In a contrary, ultramara-
thon running results in a significantly increased cell death of
skeletal muscle [29]. The exercise intensity (70% VO2max) used in
the study is higher than these aforementioned reports. However,
we must be aware that increasing exercise intensity with occur-
rence of apoptosis may not necessarily be malignant. A Swedish
study has shown longer lifespans in middle-aged cohorts after
increasing physical activity from low or medium to high levels [30].
Furthermore, apoptotic cell death is an essential step to attract
macrophage to challenged tissue and triggers tissue renewal [31].

The dosage of Rg1 (5 mg) used in the study was the same as
previous work showing significant ergogenic benefit [6]. However,
the Rg1 supplementation in the previous study was orally
consumed twice (one night and 1 h) before endurance performance
test, resulted in 20% improvement in endurance performance at the
same intensity. In this study, Rg1 supplementationwas orally given



Fig. 6. Endurance performance improved by Rg1 supplementation. Individual bar length represents the riding time difference between the PLA and Rg1 trials of each participant
(assessed by cycloergometer exercise at 80% V

,
O2max).

s, second; PLA, placebo; Rg1, ginseng Rg1.
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only once (1 h before the exercise challenge),12% improvement was
observed. Thus, it is not completely certainwhether the dosage and
frequency of the Rg1 supplementation used in the study is optimal.

Ginseng is one of the most popular ergogenic and antiaging
supplement. However, the claimed efficacy has been controversial
[1e4]. The discrepancy among the conflicting results may have
been associated with the changing profiles of components due to
seasons [5]. Therefore, this study used Rg1 to assess the ginseng
action. Accumulation of senescent cells is associated with func-
tional decay and fitness decline during human aging. In this study,
we have found that senescent cells can exist in trace amount in
human skeletal muscle during young adulthood, and Rg1 is able to
improve endurance performance at high intensity, consistent with
previous reports in animals and humans [6,32]. Whether senescent
cell elimination during exercise is causally associated with
improved endurance performance cannot be settled in this study,
since both experiments were conducted with separate trials.

Existing scientific data regarding the key components to
mediate the antiaging action of ginseng, the mechanism involved,
and the effective treatment regimen for humans are currently
lacking. The results of the study suggest a nutraceutical application
in formulating ginseng-based ergogenic supplement for antiaging.
However, the main limitation of the study is that we cannot answer
the question on whether Rg1 supplementation is also effective for
senescent cell clearance of exercising skeletal muscle in the elderly.
The present study was conducted in a group of young men and
demonstrated that aged cells can accumulate during early adult-
hood. However, aging and loss of physical fitness are the major
concern for the elderly. For the future perspectives, more in-
vestigations at higher age would be demanded to answer the
question whether the same treatment (with or without exercise)
can still provide the same benefit to the elderly. Furthermore, the
ergogenic action of Rg1 presupplementation may be viewed as a
preventive intervention against exercise challenge. We cannot
confirm whether Rg1 is restorative according to the present
experimental design.
5. Conclusion

High-intensity cycling transiently increases apoptosis together
with leukocyte and macrophage infiltrations into contracted skel-
etal muscle. However, this condition is not sufficient to influence
senescent cell number in skeletal muscle. The results of the study
suggest that macrophage activation after Rg1 supplementation is
associated with the observed senescent cell clearance of exercised
human skeletal muscle.
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