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Abstract: Leishmania spp. infection is associated with an inflammatory myopathy (IM) in dogs.
The pathomechanism underlying this disorder is still elusive, however, the pattern of cellular
infiltration and MHC I and II upregulation indicate an immune-mediated myositis. This study aimed
to investigate the presence of autoantibodies targeting the skeletal muscle in sera of leishmania-
infected dogs and individuate the major autoantigen. We tested sera from 35 leishmania-infected
dogs and sera from 10 negative controls for the presence of circulating autoantibodies with indirect
immunofluorescence. Immunoblot and mass spectrometry were used to identify the main target
autoantigen. Immunocolocalization and immunoblot on immunoprecipitated muscle proteins were
performed to confirm the individuated major autoantigen. We identified circulating autoantibodies
that recognize skeletal muscle antigen(s) in sera of leishmania-infected dogs. The major antigen was
identified as the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1). We also found
that canine SERCA1 presents several identical traits to the calcium-translocating P-type ATPase of
Leishmania infantum. In the present study, we defined circulating anti-SERCA1 autoantibodies as part
of the pathogenesis of the leishmania-associated IM in dogs. Based on our data, we hypothesize that
antigen mimicry is the mechanism underlying the production of these autoantibodies in leishmania-
infected dogs.

Keywords: animal model; canine; muscle; myositis; protozoa; leishmaniasis; infectious; autoimmu-
nity; antigen mimicry; IgG

1. Introduction

Inflammatory myopathies (IMs) are a large and heterogeneous group of acquired
disorders characterized by inflammatory cells directly responsible for initiating and main-
taining myofiber injury [1–3]. The majority of these disorders have an unknown cause and
are defined as idiopathic IMs (IIMs), while others have been associated with exposure to
infectious and non-infectious agents and are defined as secondary IMs [2,4,5]. Information
about IM in veterinary medicine is marginal and is based on biological plausibility from
animal models and human medicine [6].

In humans, IMs are subclassified as dermatomyositis (DM), polymyositis (PM), inclu-
sion body myositis (IBM) and immune-mediated necrotizing myopathy (IMNM) [2,3]. In
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dogs, the most common IMs include the highly specialized immune-mediated mastica-
tory muscle myositis (MMM) and PM, with extraocular myositis and DM occurring less
commonly [7]. IMs homologous to human IBM and IMNM are not yet well reported in
dogs but a few case reports of canine myopathies that share many features with these IM
subtypes have been published [7,8].

The etiology and the pathomechanisms underlying IMs are still largely unknown.
The majority of these disorders are considered autoimmune disorders in which skeletal
muscle is inappropriately targeted by the immune system [2,7,9]. Although the disease
mechanisms for IMs are ill-defined, the innate immune system (including cytokines and
chemokines) and adaptive immune system (including autoantibodies and antigen-specific
T cells) are probably involved. Furthermore, several non-immune-mediated mechanisms
contribute to IM pathogenesis, including cell stress pathways, free radicals, altered energy
metabolism, protein homeostasis and mitochondrial damage [2,10].

Several genetic risk factors have been described in humans [2], but no genetic risk
variants have been identified in other animals to date. However, the overrepresentation
of some canine breeds (e.g., Boxer and Newfoundland) in relatively large clinicopatholog-
ical studies allows us to hypothesize that the genetic variants play a role at least in this
species [11,12]. Moreover, mounting evidence suggests that several environmental risk
factors are involved in the pathogenesis of IMs [2]. Among them, both infectious and non-
infectious factors are reported [2]. IMs have been related to different spontaneous infections
in humans [2], dogs [13], cats [14] and horses [15], and a relation has also been proposed in
sheep [10]. Notably, Leishmania infantum infection has been related to a form of IM in dogs,
which has been experimentally reproduced in Syrian hamsters and mice [13,16–18].

Around 70 animal species, including humans, have been found to be natural reservoir
hosts of Leishmania parasites [19], however, infected dogs constitute the main domestic
reservoir of the parasite and play a key role in transmission to humans [20]. Leishmania
infantum (syn. L. chagasi) has been identified as the main etiologic agent of canine leish-
maniasis. However, other Leishmania species (e.g., L. donovani, L. braziliensis, L. tropica, L.
major, etc.) are able to infect and induce disease both in dogs and in other animals [20–23].

The pathogenesis of Leishmania infection in dogs is extremely complex and is the result
of the interaction among the vector (e.g., repeated infectious bites), parasite (virulence)
and host (e.g., genetic background, immune response, coexisting diseases) [22]. The wide
variability of these factors results in a wide range of clinicopathological presentations
ranging in severity from self-healing cutaneous leishmaniasis (CL) to fatal disseminated
visceral leishmaniasis (VL) leading to organ damage and dysfunction [21,22]. Other than
IM, the clinicopathological picture of Leishmania infantum-infected dogs may include vari-
ous combinations of exfoliative and/or ulcerative dermatitis, with or without nasodigital
hyperkeratosis and onychogryphosis, glomerulonephritis, myocarditis, anterior uveitis,
keratoconjunctivitis sicca, epistaxis and/or polyarthritis [13,16,22]. Although the patho-
genetic mechanisms underlying these features are not yet clear, the best characterized
mechanisms are the presence of circulating immune complexes [24] and the production of
autoantibodies directed against different structures of the host, including anti-nuclear [25],
anti-platelet [26] and anti-smooth muscle autoantibodies [27].

Leishmania-related IM can be classified as a canine PM [5,6]. Myopathic features
related to Leishmania infection are necrosis, regeneration, fibrosis and infiltration of
lymphocytes (mainly CD8+) and macrophages. As observed in other PMs [10,15,18,28],
Leishmania-related IM is also further characterized by a wide sarcolemmal Major Histo-
compatibility Complex (MHC) class I and II overexpression [13]. Moreover, an interesting
myopathic observation is the presence of non-necrotic MHC I-positive myofibers invaded
by CD8-positive lymphocytes (CD8/MHC I complex) that strongly suggest an immune-
mediated pathogenesis [13,28,29]. Leishmania infection in dogs is also related to myocardi-
tis that shares many histological characteristics with Leishmania-related myopathy [16].
Furthermore, MHC I and II overexpression on the cardiomyocyte membrane is also re-
ported [16]. Due to the numerous shared pathological features between Leishmania-related



Pathogens 2021, 10, 463 3 of 14

myopathy and cardiomyopathy and due to many similarities between these two tissues, a
common immune-mediated pathogenetic mechanism has been postulated [6,16].

Based on our observation and the literature [2,5,13,16–18], we hypothesize that one
of the main components of the pathogenesis of canine Leishmania-related myositis is
the dysregulation of the adaptive immune system with the production of autoantibodies
directed against muscle structures.

In the present study, we have recognized circulating autoantibodies against skeletal
muscle in Leishmania-infected dogs and identified the main target antigen, which is
a member of the sarcoplasmic reticulum calcium ATPases located on the sarcoplasmic
reticulum and named sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1).

2. Results
2.1. Leishmania-Infected Dogs Have Circulating Autoantibodies Recognizing Skeletal Muscle

To investigate the presence of circulating autoantibodies of anti-skeletal muscle in
Leishmania-infected dogs, we analyzed 35 sera with anti-Leishmania antibody titers rang-
ing from 1/80 to 1/1280 and 10 negative control sera using indirect immunofluorescence
(IF) on sections of normal dog muscle. To reduce the background signal, the sera were
pooled and purified. To prevent fluorescein isothiocyanate (FITC)-conjugated antibodies
bound to the endogenous dog IgG, present in blood vessels and the interstitial spaces, we
pretreated normal dog muscle sections with F(ab’)2 fragments of rabbit anti-dog IgG before
incubation of the sections with serial dilutions of test serum.

All pooled sera from Leishmania-infected dogs showed antibodies against skeletal
muscle in titers up to over 1:10,000 (Figure 1A). The IF showed mainly a sarcoplasmic
positivity. At higher concentrations, the sarcoplasm of all fibers was positive; on the
other hand, usually starting from the 1:1000 sera dilution, a differential stain among fibers
was evident with a checkerboard pattern. None of the control sera pools had detectable
antibodies in this test.

Fisher’s exact test confirmed a statistically significant difference between Leishmania-
positive and negative pools (p = 0.027778). The IF positivity was directly correlated with
the dilution of pooled sera from Leishmania-infected dogs (rs = 0.662896; p = 0.000014). In
contrast, this correlation was not evident in the control sera (rs = 0.169621; p = 0.598178;
Figure 1B).

2.2. Species Specificity of the Autoantibodies

We also performed the indirect IF assay on sections of normal sheep and mouse muscle
to determine if the autoantibodies found in the Leishmania-infected dogs are specific to
canine muscle. Positivity was demonstrated both in sheep and in mouse muscle with
all pooled sera from Leishmania-infected dogs. The IF positivity showed a sarcoplasmic
checkerboard pattern that was evident from a 1:100 dilution. The intensity of the staining
was lower on sheep muscle and mouse muscle compared with dogs. No staining was found
using pooled sera from normal control dogs on muscle from both species (Figure 1C).
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Figure 1. Indirect immunofluorescence (IF) using dog, sheep and mouse muscle and different dilutions of pooled and
purified sera from Leishmania-infected dogs (Leish.+) and normal control dogs (Control). (A) Sera pool from Leishmania-
infected dogs showed antibodies against skeletal muscle in titers up to over 1:10,000. At 1:100 and 1:300 dilutions, there are
no evident differences in the staining of the sarcoplasm of the different muscle fibers; on the other hand, starting from the
1:1000 sera dilution, a differential stain among fibers was evident with a checkerboard pattern. Sera pool from control dogs
did not show positive staining. (B) Scatter plot with error bars of the quantitative assessment of IF positivity on canine
muscle sections. The X-axis represents sera dilutions (logarithmic scale) and Y-axis represents relative IF positivity (linear
scale). The IF positivity of pooled sera from Leishmania-infected dogs is dilution dependent (rs = 0.662896; p = 0.000014).
In contrast, this association is not evident in the control sera (rs = 0.169621; p = 0.598178). (C) For both sheep and mouse
muscle, myofiber staining with a checkerboard pattern was evident until the 1:300 dilution of the pooled and purified sera
from Leishmania-infected dogs. Sera pool from control dogs did not show positive staining.

2.3. Antibodies in Leishmania-Infected Dogs Recognize a Specific Muscle Protein

We performed an immunoblot analysis using the sera from the Leishmania-infected
dogs on normal muscle protein extract to identify the unknown antigen(s). A band cor-
responding to about 100 kDa was identified in muscle samples immunoblotted with the
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Leishmania-positive sera (Figure 2A). This protein band was not detected in the muscle
extracts when the sera of normal control dogs were used for the immunoblot analysis
(Figure 2B). Additionally, proteins with a molecular mass lower than and greater than
100 kDa were identified in the immunoblotting assay; however, these proteins were not
consistently identified by all sera.

Figure 2. Identification of major antigens of the circulating anti-skeletal muscle autoantibodies.
Autoantibodies in sera from Leishmania-infected dogs (A) bind to a protein of about 100 kDa. This
protein band was not detected in the control dog sera (B). The muscle samples were named according
to the species: dog, sheep and mouse.

2.4. Isolation and Characterization of the Canine Muscle Protein Recognized by the
Leishmania-Infected Dog Sera

To identify the target protein of the canine autoantibodies, the protein extracts from
normal canine muscles were fractionated by SDS-PAGE and the resulting bands with a
molecular weight of about 100 kDa were excised, trypsinized and analyzed by liquid
chromatography–tandem mass spectrometry (LC–MS/MS). LC–MS/MS analysis led to
the identification of sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1)
(UniProt ID: E2RRB2, gene name: ATP2A1) in the muscle extracts of the analyzed dogs.
The confident identification of SERCA1 occurred with more than two peptides in all the MS
runs. Thus, the canine SERCA1 was subjected to basic local alignment search tool (BLAST)
analysis, showing that this protein is highly conserved across species, including humans
and other primates, cats, ferrets, mice, horses, pigs, bovines, sheep, etc. Particularly,
canine SERCA1 amino acid sequences shared 96.18% and 95.77% identity with murine
(NP_031530.2) and ovine (XP_004020912.1) SERCA1, respectively. The BLAST search
also revealed that the canine SERCA1 has significant overall homology (49.02%) with
calcium-translocating P-type ATPase of Leishmania infantum (XP_001462838.2) and that
these proteins share many identical traits (Figure 3A).
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Figure 3. Protein sequence alignment and fluorescent immunocolocalization. (A) Canine sarcoplasmic/endoplasmic
reticulum calcium ATPase 1 (SERCA1, UniProt ID: E2RRB2) is 49.02% identical to calcium-translocating P-type ATPase
(CTPA, UniProt ID: A4HRZ6) of Leishmania infantum. Identical amino acids are highlighted with blue. (B) Double-color
immunofluorescence with purified sera pool of Leishmania-infected dogs (a: green, fluorescein isothiocyanate, FITC) and
commercial mouse anti-SERCA1 antibodies (b: red, tetramethylrhodamine, TRITC) and their colocalization (c: merge,
orange) on normal dog skeletal muscle sections. A marked immunocolocalization between SERCA1 and the major antigen
is evident.

2.5. Muscle Protein Recognized by Antibodies of Leishmania-Infected Dogs Colocalizes with
Anti-SERCA1 Antibodies

To evaluate the colocalization of the muscle protein recognized by the antibodies of
Leishmania-infected dogs and SERCA1, we performed a double indirect immunofluores-
cence on sections of fresh frozen normal canine muscle. Muscle sections were incubated
with commercial anti-SERCA1 antibodies and pooled and purified sera of Leishmania-
infected dogs. Anti-SERCA1 antibodies marked type II muscle fibers with a checkerboard
pattern, and the staining partially colocalized with the muscle antigens recognized by the
circulating antibodies of Leishmania-infected dogs (Figure 3B).

2.6. Antibodies of Leishmania-Infected Dogs Recognize an Immunoprecipitated SERCA1 Protein

SERCA1 was isolated through immunoprecipitation from normal muscle protein
extract using a commercial anti-SERCA1 monoclonal antibody. The immunoprecipitate
was tested by immunoblotting with the Leishmania-infected dog sera. A protein band
consistent with SERCA1 was identified in the muscle samples immunoblotted with sera
from the Leishmania-infected dogs (Figure 4). SERCA1 was not detected in the muscle
extracts using the sera of control dogs.
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Figure 4. Immunoblot using total muscle protein samples immunoprecipitated with anti-SERCA1
antibody and sera of Leishmania-infected dogs. Muscle tissues were homogenized and solubilized.
Total protein samples were immunoprecipitated with anti-SERCA1 antibody and immunoblotted
with the sera of Leishmania-infected dogs. The sera from Leishmania-infected dogs bind to a protein
consistent with SERCA1. The autoradiograph shown is representative of three different experiments.
The muscle samples were named according to the species: dog, sheep and mouse.

3. Discussion

Leishmania spp. infection has been associated with an IM and a myocarditis in
dogs [13,16,30]. A morphological characterization of these disorders is available [13,16],
however, the underling pathomechanisms are still elusive [13,16]. An autoimmune mech-
anism has been hypothesized [13,16]; therefore, the aim of this study was to investigate
the presence of circulating autoantibodies recognizing skeletal muscle in Leishmania-
infected dogs.

In this study, we identified circulating IgG autoantibodies recognizing skeletal muscle
proteins in Leishmania-infected dogs. We found mainly a sarcoplasmic positivity with
indirect IF and we also identified SERCA1 as the main target antigen.

Circulating immune complexes and several autoantibodies have already been de-
scribed in sera of Leishmania-infected dogs [31]. In a study of 44 infected adult dogs, antin-
uclear antibodies have been reported in up to 30% of dogs with an indirect IF method [32].
It has also been established that these antibodies are often directed against DNA-associated
proteins, such as histones, and that are part of the pathogenetic mechanism of Leishmania-
associated glomerulonephritis [25]. In a large study of 260 dogs, anti-actin and anti-tubulin
IgG has been reported, respectively, in 95% and 94% of dogs infected with Leishmania
donovani using ELISA [31]. Furthermore, anti-mammalian basal membrane glycoproteins
and cerebroside antibodies have been described [31]. Circulating anti-skeletal muscle
autoantibodies have also been found in other infection-related IMs, such as piroplasmosis
in horses [15] and feline immunodeficiency virus infection in cats [33].

In the present study, we consistently found autoantibodies directed against SERCA1 in
Leishmania-infected dogs. Sarcoplasmic–endoplasmic reticulum calcium ATPase (SERCA)
is responsible for transporting calcium (Ca2+) from the cytosol into the lumen of the
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sarcoplasmic reticulum (SR) following muscular contraction in both cardiac and skeletal
muscle [34]. SERCAs are transmembrane proteins with three major isoforms and several
sub-isoforms: SERCA1 isoforms are expressed in the fast-twitch (type II) skeletal muscle
fibers. SERCA2a is expressed in cardiomyocytes, slow-twitch skeletal muscle fibers (type I)
and vascular smooth muscle cells. SERCA2b is expressed ubiquitously and SERCA2c
has recently been reported to be expressed in the left ventricle in humans, while SERCA3
proteins can be expressed in various tissues including hematopoietic cell lineages [34,35].

The selective expression of SERCA1 in type II skeletal muscle fibers explains the
observed checkerboard pattern with IF in our study. In canine muscle, this pattern was not
evident at low sera dilutions, suggesting a cross-reaction of the described autoantibodies
with SERCA2 isoforms (expressed by type I fibers) which can appear at low sera dilutions
or in the presence of other anti-skeletal muscle autoantibodies at lower concentrations.

Since we found positivity on sheep and mouse muscles, we assume that autoantibodies
are directed to phylogenetically preserved muscle antigens. These data are also supported
by the reported high homology between sheep and mouse SERCA1 evaluated by in silico
analysis. The lower antibody titers against muscle from other species may indicate the
existence of multiple antigens, some of which are species specific, or suggest that the affinity
of the antibodies for the antigen(s) in other species is lower [7]. The above hypotheses are
not mutually exclusive, and they do not exclude the formulation of other hypotheses.

In our study, SERCA1 was found to be the main antigen, most frequently recognized
by the sera tested. However, proteins with a molecular mass less than and greater than
100 kDa were identified in immunoblotting with the tested dog sera. The significance
of autoantibodies to these other antigens is not known, because they were not found in
all cases. Future investigations are needed to understand the pathogenetic significance
of these other presumed autoantibodies. A plurality of autoantibodies is reported in
different IMs, including canine masticatory muscle myositis [36,37]. Therefore, different
autoantigens are also expected in Leishmania-associated IM. Autoantibodies in IM are
generally classified in myositis-specific autoantibodies (MSAs) or myositis-associated
autoantibodies (MAAs), depending on their prevalence in other related conditions [37].
The identification of MSAs in Leishmania-associated myositis and myocarditis is important
because they could be used as biomarkers helping the diagnosis, prognosis and monitoring
of these diseases [37]. Muscle biopsy will remain the gold standard for diagnosing myositis;
however, the evaluation of this biomarker(s) would also be a useful tool for clinicians,
helping in the decision to perform a muscle biopsy.

In our study, the lack of information about the clinical symptoms of the dogs can
be considered a limitation to be solved with further studies focused on the correlation
between muscle pathology and circulating autoantibodies in canine leishmaniasis. A
second limitation of the present study is represented by the need to pool the sera and
to purify them to reduce the background signal in IF. This allowed us to identify the
major antigen, however, it prevented us from performing an accurate assessment of the
prevalence of these autoantibodies in Leishmania-infected dogs. The methods used in
the present study were necessary to morphologically identify the location and precisely
identify the target antigens [15,36], however, to adequately study the prevalence of these
autoantibodies in Leishmania-infected dogs, it is appropriate to perform other studies
testing individual canine sera. Moreover, using different methods, including WB and
ELISA, can be useful to identify the one with the highest sensitivity.

The role of autoantibodies in causing muscle damage and dysfunction is debated be-
cause most of the autoantigens are intracellular and thus not easily accessible to circulating
autoantibodies [37,38]. SERCA proteins, being expressed on the sarcoplasmic reticulum,
are indirectly in contact with the extracellular milieu through the T-tubular system [39].
Among the various autoantibodies described during IM and myocarditis, autoantibodies
to SERCA2a have been detected in humans with myocarditis or dilated cardiomyopa-
thy [35,40]. A model of experimental myocarditis has been generated by immunizing mice
with SERCA2a [35,40]. This model allowed to define, through immunoperoxidase staining
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and transmission electron microscopy, that anti-SERCA2a antibodies gain access through
the transverse tubules of the myocardium that are connected to the interstitial extracellular
environment [39]. Considering the shared ultrastructural features between skeletal and
cardiac muscle, we hypothesize that the same mechanism can explain how circulating
autoantibodies can bind SERCA1.

SERCA1 is expressed in canine skeletal muscle [41], thus, the presence of autoantibod-
ies directed to SERCA1 may explain the reported Leishmania-related myositis [13]. On the
other hand, the expression of SERCA1 in cardiomyocytes in dogs is less well characterized.
Some evidence of mRNA expression in mammalian cardiomyocytes has been reported [42]
and the abnormal protein expression of SERCA1 in cardiomyocytes has been related to di-
lated cardiomyopathy [41], suggesting that, at least in this condition, the myocardium may
be the target of anti-SERCA1 autoantibodies. Furthermore, we can hypothesize that the
described anti-SERCA1 autoantibodies partially cross-react with the other SERCA isoforms,
expressed in the myocardium, or that Leishmania-infected dogs have other autoantibodies
recognizing proteins shared by skeletal and cardiac muscle.

Different hypotheses have been formulated to explain the production of autoantibod-
ies during infections [13,16]. One of the most solid is antigen mimicry. It is hypothesized
that the proteins of the infectious agent have epitopes in common with host proteins, there-
fore, the autoantibodies produced against these epitopes cross-react with the host proteins,
causing an autoimmune pathology [13,16]. This mechanism has been well established
in human toxoplasmosis [43]. In humans, during Trypanosoma cruzi infection, circulating
autoantibodies against β1-adrenergic receptor were detected. These autoantibodies de-
termine an immune-mediated myocarditis [43]. The production of such antibodies was
explained by molecular mimicry between the immunodominant ribosomal protein PO of
Trypanosoma cruzi and a functional epitope on the human β1-adrenergic receptor [43].

We hypothesize that antigen mimicry may explain the production of autoantibod-
ies against SERCA1. This hypothesis is based on the high homology between protein
calcium-translocating P-type ATPase of Leishmania infantum and canine SERCA1 and the
identification of perfectly overlapping traits of amino acid sequence between these two
proteins. Our results are not sufficient to prove this mechanism, however, they strongly
support our hypothesis. Further studies are needed to clarify the pathogenetic mechanisms
underlying the production of anti-SERCA1 antibodies in Leishmania-infected dogs.

4. Materials and Methods
4.1. Sera

Thirty-five Leishmania-positive dog sera and 10 negative controls were selected from
the serum bank of the Department of Veterinary Medicine of University Federico II in
Napoli and the Veterinary Diagnostic Laboratory (Di.Lab.), Naples. All sera were tested
for anti-leishmanial antibody titers using an immunofluorescent antibody test (IFAT) for
Leishmania spp. Serum data are summarized in Table 1. No clinical information of the dogs
was recorded at the time of serum selection. Upon arrival, the sera were stored at −80 ◦C
until further processing.

Table 1. Serum samples with corresponding anti-leishmanial antibody titers tested by immunofluo-
rescent antibody test (IFAT).

Serum # IFAT

1, 2 1/80

3–8 1/160

9–12 1/320

13–15 1/640

16–35 1/1280

36–45 Absent
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To reduce background signals in IF and unspecific signals in immunoblots, groups
of sera from 5 dogs were randomly pooled in 7 pools of Leishmania-positive dogs and
2 groups of negative controls. IgGs were purified from the pooled sera using the Protein
A IgG Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions.

4.2. Tissues

To perform the immunofluorescence assays and to obtain the muscle protein extract for
the immunoblots and immunoprecipitation, frozen samples from the quadriceps femoris
of heathy dogs, mice and sheep were retrospectively selected from the tissue archives of
the Comparative Neuromuscular Laboratory of the Department of Veterinary Medicine of
University Federico II in Napoli. Each sample was frozen in isopentane precooled in liquid
nitrogen and stored at −80 ◦C until further processing [44]. All selected muscles (Table 2)
were collected from animals serologically and parasitologically negative for L. infantum.
Muscle changes were excluded with our routine panel of stains for muscle biopsies [29],
including hematoxylin and eosin (HE) and Engel trichrome (ET) for a basic morphologic
evaluation and mitochondria distribution; reduced nicotinamide adenine dinucleotide–
tetrazolium reductase (NADH-TR) to observe the intermyofibrillar pattern and secondary
distribution of mitochondria; and succinate dehydrogenase (SDH) and cytochrome oxidase
(COX) to evaluate the activity and distribution of mitochondria.

Table 2. Muscle samples with corresponding species, breed or strain, sex and age.

Muscle # Species Breed/Strain Sex Age

1 Dog Siberian husky M 5 years

2 Dog Mix M 12 years

3 Dog Jack Russell terrier M 9 years

4 Dog Whippet F 6 years

5 Dog Mix M 3.5 months

6 Mouse C57 F 1 year

7 Mouse C57 F 1 year

8 Mouse C57 F 1 year

9 Sheep Mix F 4 years

10 Sheep Mix F 5 years

11 Sheep Mix F 7 years

4.3. Indirect Immunofluorescent Staining

Eight-micrometer transversal cryosections were cut from selected muscle specimens
and dried at room temperature for 45 min. Sections were fixed in acetone for 10 min at 4 ◦C.
After 3 washes of 5 min in PBS, sections were incubated with 10% normal rabbit serum
in PBS for 30 min at room temperature. To block endogenous dog IgG, after 3 washes of
5 min in PBS, sections of dog muscles were preincubated with F(ab’)2 fragments of rabbit
anti-dog IgG (H + L) (1:50; Rockland Immunochemicals, Limerick, PA, USA) for 1 h. The
latter step was avoided for the muscles of the other species. Serum pools from dogs were
serially diluted in PBS (1:100, 1:300, 1:1000, 1:3000, 1:10,000) and, after 3 washes of 5 min in
PBS, were added to each section for incubation overnight at 4 ◦C. Control sections were
incubated with PBS. After washing three times with PBS for 5 min, FITC-conjugated rabbit
anti-dog IgG (H + L) (1:300; Jackson Laboratories, West Grove, PA, USA) was added to each
section and incubated for 40 min at room temperature. Sections were washed three times
with PBS for 5 min and mounted under coverslips in VECTASHIELD® H-1100 (Vector,
Burlingame, CA, USA) to prevent fading of fluorescence [15].
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A quantitative assessment of immunofluorescence-stained sections was performed for
each dilution for each serum pool [45,46]. Ten 40 × fields were randomly photographed
under an optical microscope (Leica DM6000B by Leica, Wetzlar, Germany) coupled with a
digital camera (Leica DFC450C digital camera by Leica). The intensity of the fluorescence
signal was measured for each photo with Fiji (ImageJ, National Institutes of Health). The
mean stain intensity of the 10 analyzed fields was calculated for each dilution for each
serum pool.

4.4. Indirect Immunofluorescent with Colocalization

To evaluate the colocalization of detected autoantigens and SERCA1, cryosections
were processed as described in the section on indirect immunofluorescent staining up
to the primary antibody step. As a first primary antibody, purified serum pool 1 from
Leishmania-infected dogs diluted 1:1000 overnight at 4 ◦C was used. After washing three
times with PBS for 5 min, FITC-conjugated rabbit anti-dog IgG (H + L) (1:300; Jackson
Laboratories, West Grove, PA, USA) was added to each section and incubated for 40 min
at room temperature. After the slides were rinsed with PBS, a second primary mouse
monoclonal antibody directed against SERCA1 ATPase (1:200; clone VE121G9, Thermo
Fisher Scientific, Waltham, MA, USA) was applied for 2 h at room temperature. A TRITC
fluorochrome-labeled rabbit anti-mouse secondary antibody (1:300; Jackson Laboratories,
West Grove, PA, USA) was applied on sections for 1 h at room temperature. Slides were
rinsed with PBS and mounted with VECTASHIELD®H-1100 (Vector, Burlingame, CA,
USA) [10].

4.5. Western Blot Analysis and Immunoprecipitation Procedures

Tissue samples were homogenized in a Polytron (Brinkmann Instruments, Westbury,
NY, USA) in 1 ml T-PER reagent/100 mg of tissue according to the manufacturer’s instruc-
tions (Pierce, Rockford, IL, USA). The homogenate was stirred for 2 h at 4 ◦C and then
centrifuged at 14,000 rpm × 20 min. The supernatant was collected, and proteins were de-
termined by the Bradford procedure [47]. Proteins from total homogenates were separated
by SDS-PAGE. Aliquots of the lysates were precipitated with SERCA1 ATPase antibodies
coupled to protein G Sepharose for 2 h at 4 ◦C. Immunoprecipitation and Western blot
analysis were performed as previously described [47,48].

4.6. LC–MS/MS Analysis for Antigen Identification

Protein extracts obtained from dog muscle tissues were fractionated by SDS-PAGE. The
gel was stained using the Gel Code Blue Stain Reagent (Thermo Fisher Scientific, Waltham,
MA, USA) and a band approximately near to the 100 kDa molecular weight marker was
excised from the gel lanes and subjected to in-gel digestion, as reported elsewhere [49].
Trypsin (Promega, Madison, WI, USA) was used as a proteolytic enzyme [49]. Then,
peptide mixtures were analyzed by LC–MS/MS on an LTQ-Orbitrap XL (Thermo Scientific,
Bremen, Germany) mass spectrometer equipped with a nanoLC system (nanoEasy II), as
already reported [50,51]. Briefly, samples were injected onto a 2 cm trapping column (C18,
ID 100 µm, 5 µm) and fractionated using a 20 cm C18 reverse-phase silica capillary column
(ID 75 µm, 5 µm). A non-linear gradient of 60 min was used at a flow rate of 250 nL/min
to elute peptides. MS analysis was performed using data-dependent acquisition (DDA)
at an m/z range from 200 to 1800 Da, followed by fragmentation of the five most intense
doubly, triply and quadruply charged ions. Protein identification was carried out using
Mascot 2.4 (Matrix Science, Boston, MA, USA) through the MS/MS Ions Search tool. The
Canis lupus familiaris database was selected as the taxonomy.

4.7. Statistical Analysis

Fisher’s exact test was used to compare the difference of the frequency of positivity to
the IF assay between Leishmania-positive and -negative pools. Spearman’s rank correlation
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coefficient was used to evaluate the correlation between serum dilution and positivity to
the IF assay.

5. Conclusions

This study provides evidence that Leishmania-infected dogs have circulating IgG
autoantibodies recognizing different skeletal muscle protein, among which SERCA1 is
the major recognized antigen. Our results also strongly suggest that the production of
these autoantibodies can derive from a molecular mimicry mechanism between calcium-
translocating P-type ATPase of Leishmania infantum and canine SERCA1.

Finally, further research is needed to explore the diagnostic utility and accuracy of
anti-SERCA1 autoantibodies in IM and myocarditis in Leishmania-infected dogs. The iden-
tification of MSAs in Leishmania-associated IM and myocarditis are of interest because they
are useful biomarkers in helping the diagnosis, prognosis and monitoring of these diseases.

Author Contributions: Conceptualization, F.P. and O.P.; Data curation, F.P., F.O., M.C. and O.P.;
Formal analysis, F.P., D.D.B., G.P., F.O., I.C., V.D.P., M.C., P.S. and M.G.; Funding acquisition, S.P. and
O.P.; Investigation, F.P.; Methodology, F.P.; Project administration, S.P. and O.P.; Resources, S.P. and
O.P.; Supervision, O.P.; Writing—original draft, F.P.; Writing—review and editing, F.O., S.P. and O.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank Raffaele Ilsami for the excellent technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zachary, J.F. Pathologic Basis of Veterinary Disease, 6th ed.; Zachary, J.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2017;

ISBN 9780323357753.
2. Miller, F.W.; Lamb, J.A.; Schmidt, J.; Nagaraju, K. Risk factors and disease mechanisms in myositis. Nat. Rev. Rheumatol. 2018, 14,

255–268. [CrossRef] [PubMed]
3. Lundberg, I.E.; de Visser, M.; Werth, V.P. Classification of myositis. Nat. Rev. Rheumatol. 2018, 14, 269–278. [CrossRef] [PubMed]
4. Podell, M. Inflammatory myopathies. Vet. Clin. Small Anim. Pract. 2002, 32, 147–167. [CrossRef]
5. Prisco, F.; de Biase, D.; Piegari, G.; Oriente, F.; Cimmino, I.; Pavone, L.M.; Ruoppolo, M.; Costanzo, M.; Pasquale, S.; Paciello, O.

Pathomechanism highlights of leishmania-associated myopathy in the dog. J. Comp. Pathol. 2019, 166, 110. [CrossRef]
6. Prisco, F.; Papparella, S.; Paciello, O. The correlation between cardiac and skeletal muscle pathology in animal models of idiopathic

inflammatory myopathies. Acta Myol. 2020, 39, 315–321. [CrossRef]
7. Shelton, G.D. From dog to man: The broad spectrum of inflammatory myopathies. Neuromuscul. Disord. 2007, 17, 663–670.

[CrossRef]
8. King, J.; Lecouteur, R.A.; Aleman, M.; Williams, D.C.; Moore, P.F.; Guo, L.T.; Mizisin, A.P.; Shelton, G.D. Vacuolar myopathy in a

dog resembling human sporadic inclusion body myositis. Acta Neuropathol. 2009, 118, 711–717. [CrossRef]
9. Moran, E.M.; Mastaglia, F.L. Cytokines in immune-mediated inflammatory myopathies: Cellular sources, multiple actions and

therapeutic implications. Clin. Exp. Immunol. 2014, 178, 405–415. [CrossRef]
10. Pagano, T.B.; Prisco, F.; de Biase, D.; Piegari, G.; Maurelli, M.P.; Rinaldi, L.; Cringoli, G.; Papparella, S.; Paciello, O. Muscular

Sarcocystosis in Sheep Associated With Lymphoplasmacytic Myositis and Expression of Major Histocompatibility Complex Class
I and II. Vet. Pathol. 2019, 57, 272–280. [CrossRef]

11. Evans, J.; Levesque, D.; Shelton, G.D. Canine inflammatory myopathies: A clinicopathologic review of 200 cases. J. Vet. Intern.
Med. 2004, 18, 679–691. [CrossRef]

12. Hankel, S.; Shelton, G.D.; Engvall, E. Sarcolemma-specific autoantibodies in canine inflammatory myopathy. Vet. Immunol.
Immunopathol. 2006, 113, 1–10. [CrossRef]

13. Paciello, O.; Oliva, G.; Gradoni, L.; Manna, L.; Manzillo, V.F.; Wojcik, S.; Trapani, F.; Papparella, S. Canine inflammatory myopathy
associated with Leishmania Infantum infection. Neuromuscul. Disord. 2009, 19, 124–130. [CrossRef]

14. Podell, M.; Chen, E.; Shelton, G.D. Feline immunodeficiency virus associated myopathy in the adult cat. Muscle Nerve Off. J. Am.
Assoc. Electrodiagn. Med. 1998, 21, 1680–1685. [CrossRef]

http://doi.org/10.1038/nrrheum.2018.48
http://www.ncbi.nlm.nih.gov/pubmed/29674613
http://doi.org/10.1038/nrrheum.2018.41
http://www.ncbi.nlm.nih.gov/pubmed/29651121
http://doi.org/10.1016/S0195-5616(03)00083-4
http://doi.org/10.1016/j.jcpa.2018.10.033
http://doi.org/10.36185/2532-1900-035
http://doi.org/10.1016/j.nmd.2007.06.466
http://doi.org/10.1007/s00401-009-0588-y
http://doi.org/10.1111/cei.12445
http://doi.org/10.1177/0300985819891257
http://doi.org/10.1111/j.1939-1676.2004.tb02606.x
http://doi.org/10.1016/j.vetimm.2006.03.025
http://doi.org/10.1016/j.nmd.2008.10.013
http://doi.org/10.1002/(SICI)1097-4598(199812)21:12&lt;1680::AID-MUS9&gt;3.0.CO;2-F


Pathogens 2021, 10, 463 13 of 14

15. Pasolini, M.P.; Pagano, T.B.; Costagliola, A.; de Biase, D.; Lamagna, B.; Auletta, L.; Fatone, G.; Greco, M.; Coluccia, P.;
Veneziano, V.; et al. Inflammatory Myopathy in Horses With Chronic Piroplasmosis. Vet. Pathol. 2018, 55, 133–143. [Cross-
Ref]

16. Costagliola, A.; Piegari, G.; Otrocka-Domagala, I.; Ciccarelli, D.; Iovane, V.; Oliva, G.; Russo, V.; Rinaldi, L.; Papparella, S.; Paciello,
O. Immunopathological features of canine myocarditis associated with leishmania infantum infection. BioMed Res. Int. 2016,
2016, 8016186. [CrossRef]

17. Silva-Almeida, M.; Carvalho, L.; Abreu-Silva, A.L.; D’Escoffier, L.; Calabrese, K. Leishsmania (Leishmania) amazonensis infection:
Muscular involvement in BALB/c and C3H.HeN mice. Exp. Parasitol. 2010, 124, 315–318. [CrossRef]

18. Paciello, O.; Wojcik, S.; Gradoni, L.; Oliva, G.; Trapani, F.; Iovane, V.; Politano, L.; Papparella, S. Syrian hamster infected with
Leishmania infantum: A new experimental model for inflammatory myopathies. Muscle Nerve Off. J. Am. Assoc. Electrodiagn.
Med. 2010, 41, 355–361. [CrossRef]

19. Esteva, L.; Vargas, C.; de León, C.V. The role of asymptomatics and dogs on leishmaniasis propagation. Math. Biosci. 2017, 293,
46–55. [CrossRef]

20. Dantas-Torres, F.; Miró, G.; Baneth, G.; Bourdeau, P.; Breitschwerdt, E.; Capelli, G.; Cardoso, L.; Day, M.J.; Dobler, G.; Ferrer, L.;
et al. Canine leishmaniasis control in the context of one health. Emerg. Infect. Dis. 2019, 25, E1–E4. [CrossRef]

21. Ribeiro, R.R.; Suzan, M.; Michalick, M.; Eduardo, M.; Cheim, C.; Jean, F.; Frézard, G.; Magno, S. Canine leishmaniasis: An
overview of the current status and strategies for control. BioMed Res. Int. 2018, 2018, 3296893. [CrossRef]

22. Koutinas, A.F.; Koutinas, C.K. Pathologic Mechanisms Underlying the Clinical Findings in Canine Leishmaniosis due to
Leishmania infantum/chagasi. Vet. Pathol. 2014, 51, 527–538. [CrossRef]

23. Baneth, G.; Yasur-Landau, D.; Gilad, M.; Nachum-Biala, Y. Canine leishmaniosis caused by Leishmania major and Leishmania
tropica: Comparative findings and serology. Parasites Vectors 2017, 10, 1–9. [CrossRef]

24. Lopez, R.; Lucena, R.; Novales, M.; Ginel, P.J.P.; Martin, E.; Molleda, J.M. Circulating immune complexes and renal function in
canine leishmaniasis. J. Vet. Med. Ser. B 1996, 43, 469–474. [CrossRef]

25. Ginel, P.J.; Camacho, S.; Lucena, R. Anti-histone antibodies in dogs with leishmaniasis and glomerulonephritis. Res. Vet. Sci. 2008,
85, 510–514. [CrossRef]

26. Cortese, L.; Sica, M.; Piantedosi, D.; Ruggiero, G.; Pero, M.E.; Terrazzano, G.; Mastellone, V.; Ciaramella, P. Secondary immune-
mediated thrombocytopenia in dogs naturally infected by Leishmania infantum. Vet. Rec. 2009, 164, 778–782. [CrossRef]

27. Makaritsis, K.P.; Gatselis, N.K.; Ioannou, M.; Petinaki, E.; Dalekos, G.N. Polyclonal hypergammaglobulinemia and high smooth-
muscle autoantibody titers with specificity against filamentous actin: Consider visceral leishmaniasis, not just autoimmune
hepatitis. Int. J. Infect. Dis. 2009, 13, e157–e160. [CrossRef]

28. Paciello, O.; Shelton, G.D.; Papparella, S. Expression of major histocompatibility complex class I and class II antigens in canine
masticatory muscle myositis. Neuromuscul. Disord. 2007, 17, 313–320. [CrossRef]

29. Prisco, F.; de Biase, D.; Piegari, G.; D’Aquino, I.; Lama, A.; Comella, F.; Mercogliano, R.; Dipineto, L.; Papparella, S.; Paciello, O.
Pathologic characterization of white striping myopathy in broiler chickens. Poult. Sci. 2021, 100, 101150. [CrossRef]

30. Vamvakidis, C.D.; Koutinas, A.F.E.; Saridomichelakis, M.; Kanakoudis, G.; Georgiadis, G.; Saridomichelakis, M. Masticatory and
skeletal muscle myositis in canine leishmaniasis (Leishmania infantum). Vet. Rec. 2000, 146, 698–703. [CrossRef]

31. Chaabouni, A.; Boubaker Elandoulsi, R.; Mhadhbi, M.; Gharbi, M.; Sassi, A. Comparative analysis of the Leishmania infantum-
specific antibody repertoires and the autoantibody repertoires between asymptomatic and symptomatic dogs. Vet. Parasitol. 2018,
261, 9–17. [CrossRef]

32. Lucena, R.; Ginel, P.J.; Lopez, R.; Novales, M.; Martin, E.; Molleda, J.M. Antinuclear Antibodies in Dogs with Leishmaniasis. J. Vet.
Med. Ser. A 1996, 43, 255–259. [CrossRef] [PubMed]

33. Prisco, F.; de Biase, D.; Ilsami, A.; Cardillo, L.; Fusco, G.; Santoro, P.; Papparella, S.; Paciello, O. Feline Immunodeficiency
Virus-Associated Myopathy in Cats: An Autoimmune Disorder? J. Comp. Pathol. 2020, 174, 148. [CrossRef]

34. Stammers, A.N.; Susser, S.E.; Hamm, N.C.; Hlynsky, M.W.; Kimber, D.E.; Kehler, D.S.; Duhamel, T.A. The regulation of
sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can. J. Physiol. Pharmacol. 2015, 93, 834–854. [CrossRef] [PubMed]

35. Krishnan, B.; Massilamany, C.; Basavalingappa, R.H.; Gangaplara, A.; Rajasekaran, R.A.; Afzal, M.Z.; Khalilzad-Sharghi, V.; Zhou,
Y.; Riethoven, J.-J.; Nandi, S.S.; et al. Epitope Mapping of SERCA2a Identifies an Antigenic Determinant that Induces Mainly
Atrial Myocarditis in A/J Mice. J. Immunol. 2018, 200, 523–537. [CrossRef] [PubMed]

36. Wu, X.; Li, Z.; Brooks, R.; Komives, E.A.; Torpey, J.W.; Engvall, E.; Gonias, S.L.; Shelton, G.D. Autoantibodies in Canine
Masticatory Muscle Myositis Recognize a Novel Myosin Binding Protein-C Family Member. J. Immunol. 2007, 179, 4939–4944.
[CrossRef] [PubMed]

37. McHugh, N.J.; Tansley, S.L. Autoantibodies in myositis. Nat. Rev. Rheumatol. 2018, 14, 290–302. [CrossRef] [PubMed]
38. Dubowitz, V.; Sewry, C.A.; Oldfors, A.; Lane, R.J.M. Muscle Biopsy: A Practical Approach, 4th ed.; Saunders: Philadelphia, PA, USA,

2013; ISBN 9780702050305.
39. Sharaf, A.E.R.; Narula, J.; Nicol, P.D.; Southern, J.F.; Khaw, B.A. Cardiac sarcoplasmic reticulum calcium ATPase, an autoimmune

antigen in experimental cardiomyopathy. Circulation 1994, 89, 1217–1228. [CrossRef] [PubMed]
40. Khaw, B.A.; Narula, J.; Sharaf, A.R.; Nicol, P.D.; Southern, J.F.; Carles, M. SR-Ca2+ATPase as an autoimmunogen in experimental

myocarditis. Eur. Heart J. 1995, 16, 92–96. [CrossRef]

http://doi.org/10.1177/0300985817716262
http://doi.org/10.1177/0300985817716262
http://doi.org/10.1155/2016/8016186
http://doi.org/10.1016/j.exppara.2009.11.006
http://doi.org/10.1002/mus.21502
http://doi.org/10.1016/j.mbs.2017.08.006
http://doi.org/10.3201/eid2512.190164
http://doi.org/10.1155/2018/3296893
http://doi.org/10.1177/0300985814521248
http://doi.org/10.1186/s13071-017-2050-7
http://doi.org/10.1111/j.1439-0450.1996.tb00342.x
http://doi.org/10.1016/j.rvsc.2008.01.007
http://doi.org/10.1136/vr.164.25.778
http://doi.org/10.1016/j.ijid.2008.08.011
http://doi.org/10.1016/j.nmd.2007.01.012
http://doi.org/10.1016/j.psj.2021.101150
http://doi.org/10.1136/vr.146.24.698
http://doi.org/10.1016/j.vetpar.2018.07.011
http://doi.org/10.1111/j.1439-0442.1996.tb00451.x
http://www.ncbi.nlm.nih.gov/pubmed/8767735
http://doi.org/10.1016/j.jcpa.2019.10.026
http://doi.org/10.1139/cjpp-2014-0463
http://www.ncbi.nlm.nih.gov/pubmed/25730320
http://doi.org/10.4049/jimmunol.1701090
http://www.ncbi.nlm.nih.gov/pubmed/29229678
http://doi.org/10.4049/jimmunol.179.7.4939
http://www.ncbi.nlm.nih.gov/pubmed/17878394
http://doi.org/10.1038/nrrheum.2018.56
http://www.ncbi.nlm.nih.gov/pubmed/29674612
http://doi.org/10.1161/01.CIR.89.3.1217
http://www.ncbi.nlm.nih.gov/pubmed/8124810
http://doi.org/10.1093/eurheartj/16.suppl_O.92


Pathogens 2021, 10, 463 14 of 14

41. Summerfield, N.; Peters, M.E.; Hercock, C.A.; Mobasheri, A.; Young, I.S. Immunohistochemical evidence for expression of
fast-twitch type sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) in German shepherd dogs with dilated cardiomyopathy
myocardium. J. Vet. Cardiol. 2010, 12, 17–23. [CrossRef]

42. Chemaly, E.R.; Bobe, R.; Adnot, S.; Hajjar, R.J.; Lipskaia, L. Sarco (Endo) Plasmic Reticulum Calcium Atpases (SERCA) Isoforms
in the Normal and Diseased Cardiac, Vascular and Skeletal Muscle. J. Cardiovasc. Dis. Diagn. 2013, 1, 1–6. [CrossRef]

43. Ferrari, I.; Levin, M.J.; Wallukat, G.; Elies, R.; Lebesgue, D.; Chiale, P.; Elizari, M.; Rosenbaum, M.; Hoebeke, J. Molecular
mimicry between the immunodominant ribosomal protein P0 of Trypanosoma cruzi and a functional epitope on the human beta
1-adrenergic receptor. J. Exp. Med. 1995, 182, 59–65. [CrossRef]

44. Zaghini, A.; Sarli, G.; Barboni, C.; Sanapo, M.; Pellegrino, V.; Diana, A.; Linta, N.; Rambaldi, J.; D’Apice, M.R.; Murdocca, M.; et al.
Long term breeding of the Lmna G609G progeric mouse: Characterization of homozygous and heterozygous models. Exp.
Gerontol. 2020, 130, 110784. [CrossRef]

45. Zhanmu, O.; Zhao, P.; Yang, Y.; Yang, X.; Gong, H.; Li, X. Maintenance of Fluorescence During Paraffin Embedding of Fluorescent
Protein-Labeled Specimens. Front. Neurosci. 2019, 13, 752. [CrossRef]

46. Rapa, S.F.; Prisco, F.; Popolo, A.; Iovane, V.; Autore, G.; Di Iorio, B.R.; dal Piaz, F.; Paciello, O.; Nishijima, F.; Marzocco, S.
Pro-Inflammatory Effects of Indoxyl Sulfate in Mice: Impairment of Intestinal Homeostasis and Immune Response. Int. J. Mol.
Sci. 2021, 22, 1135. [CrossRef]

47. Cimmino, I.; Margheri, F.; Prisco, F.; Perruolo, G.; D’Esposito, V.; Laurenzana, A.; Fibbi, G.; Paciello, O.; Doti, N.; Ruvo, M.; et al.
Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism. FASEB J. 2019, 33, 13893–13904. [CrossRef]

48. Cimmino, I.; Lorenzo, V.; Fiory, F.; Doti, N.; Ricci, S.; Cabaro, S.; Liotti, A.; Vitagliano, L.; Longo, M.; Miele, C.; et al. A peptide
antagonist of Prep1-p160 interaction improves ceramide-induced insulin resistance in skeletal muscle cells. Oncotarget 2017, 8,
71845–71858. [CrossRef]

49. Caterino, M.; Zacchia, M.; Costanzo, M.; Bruno, G.; Arcaniolo, D.; Trepiccione, F.; Siciliano, R.A.; Mazzeo, M.F.; Ruoppolo, M.;
Capasso, G. Urine Proteomics Revealed a Significant Correlation Between Urine-Fibronectin Abundance and Estimated-GFR
Decline in Patients with Bardet-Biedl Syndrome. Kidney Blood Press. Res. 2018, 43, 389–405. [CrossRef]

50. Costanzo, M.; Cevenini, A.; Marchese, E.; Imperlini, E.; Raia, M.; del Vecchio, L.; Caterino, M.; Ruoppolo, M. Label-Free
Quantitative Proteomics in a Methylmalonyl-CoA Mutase-Silenced Neuroblastoma Cell Line. Int. J. Mol. Sci. 2018, 19, 3580.
[CrossRef] [PubMed]

51. Caterino, M.; Ruoppolo, M.; Fulcoli, G.; Huynth, T.; Orrù, S.; Baldini, A.; Salvatore, F. Transcription Factor TBX1 Overexpression
Induces Downregulation of Proteins Involved in Retinoic Acid Metabolism: A Comparative Proteomic Analysis. J. Proteome Res.
2009, 8, 1515–1526. [CrossRef]

http://doi.org/10.1016/j.jvc.2009.12.001
http://doi.org/10.4172/2329-9517.1000113
http://doi.org/10.1084/jem.182.1.59
http://doi.org/10.1016/j.exger.2019.110784
http://doi.org/10.3389/fnins.2019.00752
http://doi.org/10.3390/ijms22031135
http://doi.org/10.1096/fj.201901230RR
http://doi.org/10.18632/oncotarget.18286
http://doi.org/10.1159/000488096
http://doi.org/10.3390/ijms19113580
http://www.ncbi.nlm.nih.gov/pubmed/30428564
http://doi.org/10.1021/pr800870d

	Introduction 
	Results 
	Leishmania-Infected Dogs Have Circulating Autoantibodies Recognizing Skeletal Muscle 
	Species Specificity of the Autoantibodies 
	Antibodies in Leishmania-Infected Dogs Recognize a Specific Muscle Protein 
	Isolation and Characterization of the Canine Muscle Protein Recognized by the Leishmania-Infected Dog Sera 
	Muscle Protein Recognized by Antibodies of Leishmania-Infected Dogs Colocalizes with Anti-SERCA1 Antibodies 
	Antibodies of Leishmania-Infected Dogs Recognize an Immunoprecipitated SERCA1 Protein 

	Discussion 
	Materials and Methods 
	Sera 
	Tissues 
	Indirect Immunofluorescent Staining 
	Indirect Immunofluorescent with Colocalization 
	Western Blot Analysis and Immunoprecipitation Procedures 
	LC–MS/MS Analysis for Antigen Identification 
	Statistical Analysis 

	Conclusions 
	References

