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Many drugs and xenobiotics are lipophilic and they should be transformed into more polar water soluble compounds to be
excreted. Cimetidine inhibits cytochrome P450. The aim of this study was to investigate the preventive and/or reversal action
of cimetidine on cytochrome P450 induction and other metabolic alterations provoked by the carcinogen p-
dimethylaminoazobenzene. A group of male CF1 mice received a standard laboratory diet and another group was placed
on dietary p-dimethylaminoazobenzene (0.5% w w71). After 40 days of treatment, animals of both groups received p-
dimethylaminoazobenzene and two weekly doses of cimetidine (120 mg kg71, i.p.) during a following period of 35 days.
Cimetidine prevented and reversed d-aminolevulinate synthetase induction and cytochrome P450 enhancement provoked by
p-dimethylaminoazobenzene. However, cimetidine did not restore haem oxygenase activity decreased by p-dimethylaminoa-
zobenzene. Enhancement in glutathione S-transferase activity provoked by p-dimethylaminoazobenzene, persisted in those
animals then treated with cimetidine. This drug did not modify either increased lipid peroxidation or diminution of the natural
antioxidant defence system (inferred by catalase activity) induced by p-dimethylaminoazobenzene. In conclusion, although
cimetidine treatment partially prevented and reversed cytochrome P450 induction, and alteration on haem metabolism
provoked by p-dimethylaminoazobenzene AB, it did not reverse liver damage or lipid peroxidation. These results further
support our hypothesis on the necessary existence of a multiple biochemical pathway disturbance for the onset of
hepatocarcinogenesis initiation.
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Cytochrome P450 (P450) plays a key role in the oxidative metabo-
lism of drugs and xenobiotics, many of which are lipophilic and to
be excreted they should be transformed into more polar water
soluble molecules by the system of hepatic mono-oxygenases
(Lim and Lu, 1998).

P450 can be influenced by a number of exogenous and endogen-
ous factors (Whitlock and Denison, 1995) and its induction and
inhibition is of the utmost interest in carcinogenesis (Toussaint
et al, 1993).

We have earlier proposed a mechanism for the onset of hepato-
carcinogenesis involving an activating status of the whole liver
which reflected an important and sustained increase in P450 levels,
leading to biochemical aberrations in haem metabolism which in
turn would lead to the tumorigenic process (Gerez et al, 1997).
We have also suggested that reactive oxygen species (ROS),
produced during carcinogenesis chemically induced by p-dimethy-
laminoazobenzene (DAB), would be involved in the generation of
hepatic lesions (Gerez et al, 1998a,b) and the so triggered peroxi-

dative damage would be implicated in the initiation step of
hepatocarcinogenesis.

The development of cancer is a dynamic process of de-regula-
tion of gene function. Accumulation of damage alters gene
function and clonal expansion of mutated cells (Cerutti, 1994).
During drug metabolism, generated reactive oxygen species
(ROS) play a key role in several stages of carcinogenesis (Halliwell,
1999; Caballero et al, 2001).

Cimetidine (CIM) is a H2-histamine receptor antagonist clini-
cally used in the treatment of peptic ulcers and other gastric
acid-related disorders (Chang et al, 1992a). It inhibits hepatic
mixed-function oxidase activity (Baird et al, 1987) and it appears
that CIM is a more potent inhibitor of hepatic P450 when admi-
nistered in vivo than when it is added to microsomes in vitro
(Chang et al, 1992b).

The presence of a high affinity binding site for CIM on P450 in
liver microsomes, with both the imidazole and cyano positions of
CIM interacting with the hemin iron is well documented. Raniti-
dine, a structurally dissimilar H2-histamine antagonist, not
inhibiting hepatic mixed-function oxidases, has not a binding site
on P450, suggesting therefore that CIM would alter the oxidative
metabolism of some compounds by having a direct inhibitory
effect on P450. If CIM exerts a significant general effect upon
haem biosynthetic and/or degradative pathway, we would expect
these effects to be manifest in both P450 and in other haem
containing proteins when animals are treated with CIM (Baird
et al, 1987).
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Since elucidation of a specific form of microsomal P450 exclu-
sively associated with azoreduction remains elusive (Zbaida,
1995), we have shown that administration of DAB to mice,

remarkably increases total P450 and that these changes are asso-
ciated with hepatoxicity and lipid peroxidation, leading to the
carcinogenesis onset. Considering that in our experimental model,
the sustained P450 induction provoked as a consequence of the
carcinogen metabolism, is responsible for the liver injury and the
peroxidative damage, our aim was to investigate if diminution of
P450 caused by CIM could avoid the biochemical aberrations asso-
ciated with the initiation stage of hepatocarcinogenesis (Gerez et al,
1998a,b; Caballero et al, 2001).

MATERIALS AND METHODS

Chemicals

Chemicals were reagent grade and purchased from Sigma Chemical
Co. (St. Louis, MO, USA).

Animals and treatment

Male CF1 mice (30 g) received a standard laboratory diet (SLD,
Purina 3, Asociación de Cooperativas Argentinas, San Nicolás,
Buenos Aires) (groups A, n=16) or were placed on dietary p-
dimethylaminoazobenzene (DAB, 0.5%, w/w) (groups B, n=16).
After 40 days, animals of both groups (A and B) received DAB
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Figure 2 Effect of CIM on hepatic P450 levels. Animals were treated under
the experimental protocol, described in Figure 1. Open bar CIM, hatched bars
Treatment groups A, solid bars Treatment groups B. The data represent
mean values+s.d. and are expressed as percentage of the corresponding
mean control values of SLD fed animals without any other treatment, for each
time point. Saline control group (mean+s.d.): P450=0.34+0.03
nmol mg71 protein. Significantly different (P50.05) from saline treated
group * and the corresponding DAB group (AS or BS) **.
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Figure 3 Effect of CIM on hepatic ALA-S (A) and HO (B) activities. Sal-
ine control group (mean+s.d.): ALA-S=1.461074+0.361074 U mg71

protein; HO=2.25+0.11 U mg71 protein. Other experimental conditions
and symbols are as indicated in Materials and Methods and legends to
Figures 1 and 2. Significantly different (P50.05) from saline treated group
* and the corresponding DAB group (AS or BS) **.
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and two weekly doses of CIM (120 mg kg71 i.p.) (ACIM; BCIM) or
saline (AS, BS) for a following period of 35 days (Mera et al,
1994). Other group (CIM) of animals (n=6) received SLD along
the whole period of assay and were injected with CIM under
the same scheduled protocol than the DAB treated groups.
Animals of control group (n=6) were fed with the SLD and
received saline i.p. twice a week for the same period. The treat-
ment protocol is shown in Figure 1. All animals were given
food and water ad libitum.

All animals were inspected at least twice daily. Body weight
and food consumption were measured at intervals throughout
the study. Food was removed from animals 16 h before sacrifice.
Mice were killed (at least six animals per group) under ether
anaesthesia at the indicated times and liver samples were
processed immediately as previously described (Gerez et al,
1998a). All animals received human care and were treated in
accordance with guidelines established by the Animal Care and
Use Committee of the Argentine Association of Specialists in
Laboratory Animals (AADEALC) and in accordance with the
UK Guidelines for the Welfare of Animals in Experimental
Neoplasia (UKCCCR, 1998).

Assays

d-Aminolevulinic acid synthetase (ALA-S) activity was measured as
described by Marver et al (1966) and microsomal haem oxygenase
(HO) activity according to Yoshida and Kikuchi (1978).

Cytochrome P450 (P450) content was determined in the micro-
somal fraction according to Omura and Sato (1964). Glutathione S
transferase (GST) was determined by the method of Habig et al
(1974). Catalase was measured as described by Chance and Maehly
(1955).

The lipid peroxidation (LP) index was evaluated by the forma-
tion of malondialdehyde and determined as thiobarbituric acid
reactive species (TBARS) by the method of Niehaus and Samuel-
son (1968). Protein concentration was determined by the method
of Lowry et al (1951). Enzyme units (U) were defined as the
amount of enzyme producing 1 nmol of product or consuming
1 nmol of substrate (catalase) under the standard incubation
conditions. Specific activity (Sp. Act.) was expressed as U mg71

protein.

Statistical analysis

Newman-Keuls test was used to assess the degree of significance. A
probability level of 0.05 was used in testing for significant differ-
ences between controls and treated animals.

RESULTS

As already shown, DAB induced a significant increase in P450
content (Gerez et al, 1997) and as expected CIM provoked 40%
reduction in P450 levels (Nanji et al, 1994). Simultaneous admin-
istration of CIM and DAB (ACIM) partially prevented the
enhancement of P450 content. When animals were pre-treated with
DAB and then received CIM (BCIM) induction of P450 was also
partially reversed. In both cases, after CIM treatment P450 levels
were still 50% above basal levels (Figure 2).
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Figure 4 Effect of CIM on hepatic catalase activity (A) and LP (TBARS
content, B). Saline control group (mean+s.d.): TBARS=13561073+
2461073 nmol mg71 protein; Catalase=1.96103+0.26103 U mg71

protein. Other experimental conditions and symbols are as indicated in
Materials and Methods and legends to Figures 1 and 2. Significantly different
(P50.05) from * saline treated group and the ** corresponding DAB
group (AS or BS) .
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Figure 5 Effect of CIM on hepatic GST activity. The data represent mean
values+s.d. and are expressed as percentage of the corresponding mean
control values of SLD fed animals without any other treatment, for each
time point. Saline control group (mean+s.d.): GST=1.45+0.25 U mg71

protein. Other experimental conditions and symbols are as indicated in Ma-
terials and Methods and legends to Figures 1 and 2. Significantly different
(P50.05) from * saline treated group and the ** corresponding DAB
group (AS or BS).
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It has already been reported that CIM could reduce the activity
of hepatic ALA-S induced by allylisopropylacetamide (AIA) in
porphyric adult rats (Marcus et al, 1990) and that CIM could also
be used in the prophylaxis of human acute intermittent porphyria
by maintaining a baseline suppression of ALA-S activity (Horie et
al, 1995; Rogers, 1997). In this study, CIM itself inhibited 40%
ALA-S activity. CIM also prevented ALA-S induction provoked
by DAB restoring basal levels at the end of the treatment (ACIM)
and even partially reversed this induction in animals pre-treated
with DAB (BCIM), achieving a 43% diminution respect to the BS

group (Figure 3a).

CIM was found to inhibit both in vivo and in vitro the rate
limiting enzymes of haem degradation, and it was suggested that
the drug itself or a metabolite would inhibit HO (Marcus et al,
1984). In our experimental system, CIM given alone inhibited
25% HO activity and no effect was detected on the reduction of
HO activity already provoked by DAB (Figure 3b).

Catalase is a haem protein present in high concentration in
mammalian liver. Although administration of CIM to mice affects
the synthesis and degradation of haem, no alteration in catalase
activity had been described so far (Baird et al, 1987). In this study,
CIM did not modify catalase activity in either controls or in DAB
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Figure 6 Proposed mechanism for the initiation stage of chemical induced carcinogenesis.
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treated animals. Instead, as previously reported (Caballero et al,
2001) a significant inhibition has been observed in animals receiv-
ing only the carcinogen (AS: 50%; BS: 74%) (Figure 4a).

It was demonstrated that CIM could not prevent CCl4-induced
LP in vivo (Cluet et al, 1986). Johnston and Kroening (1998) have
observed that CIM inhibited LP in primary rats hepatocytes in
culture but it did not reduce hepatocyte death induced by CCl4.
We have found here that CIM alone did not produce any alteration
in the LP index. Co-treatment (DAB+CIM) did not modify
increased LP produced by DAB (ACIM: 110%; BCIM: 220%) (Figure
4b).

As expected CIM produced only 25% increase in GST activity.
The significant enhancement (110%) in GST activity provoked by
DAB (Gerez et al, 1998b) persisted in those animals also receiving
CIM (Figure 5).

DISCUSSION

CIM a substituted imidazole, has been well documented to inhibit
hepatic P450 mediated drug metabolism in rats and humans
(Chang et al, 1992b). Numerous drug-drug interactions involving
CIM have been identified, in most cases, due to inhibition of hepa-
tic drug metabolism by CIM occurring at very low serum
concentrations (Chang et al, 1992b). In vitro addition of CIM to
hepatic microsomes has been shown to inhibit the P450 catalysed
oxidation of many substrates, considering CIM as a general inhibi-
tor of P450 enzymes, although Reilly et al (1988) have suggested
that there is in fact a more selective action for CIM. It was also
proposed, that the varying effects of CIM on P450 enzymes could
be attributed to different CIM binding affinities for these mixed
function oxidases (Faux and Combes, 1993). The inhibitory effect
of CIM on the metabolic activity of CYP2C9, 2C19, 2D6 y 3A
was recently demonstrated in human liver microsomes (Furuta et
al, 2001).

P450 induction is important in the pathogenesis of alcoholic
hepatic diseases and it has been demonstrated that CIM can
prevent alcoholic hepatic injury by reducing LP (Nanji et al,
1994). Mera et al (1994) have also investigated whether CIM
might prevent CCl4 induced liver cirrhosis by preventing the
increase in hepatic collagen content and/or LP. They did found
a protective effect of CIM, which was attributed to a reduction
in P450. They have also observed that CIM stimulated the regen-
erative process.

Quantitative ultrastructural studies of CIM treated rat liver
showed a significant proliferation of smooth endoplasmic reticu-
lum, changes which were qualitatively similar to those produced
by phenobarbital (Wright et al, 1991).

We have demonstrated here that CIM partially prevented and
reversed the induction of P450 levels produced by the carcinogenic
agent DAB. Because DAB metabolism through the mono-oxygenase
system is responsible for liver damage, decrease in P450 could
ameliorate or delay this process (Yan et al, 1998). However, the
significant increase in GST activity provoked by DAB still persisted
in animals also receiving CIM, indicating that reduction in P450 by
CIM is not enough to completely overcome DAB toxicity and

suggesting that other mechanisms would be participating in the
whole process.

CIM restored ALA-S basal levels induced by DAB, but it did not
reverse HO inhibition. If administration of CIM to mice would
affect haem synthesis, changes in the activity of any haem protein
such as catalase, would be expected. However, we did not observe
any changes in either DAB treated or control animals. It has been
previously demonstrated that neither acute nor chronic treatment
of mice with CIM produced any effect on catalase or had any
action on haem metabolism, or it did interact with any haem
containing protein (Baird et al, 1987). Thus, both our evidence
and that of others is consistent with the hypothesis proposing that
CIM alters the metabolism of some compounds through its specific
interaction with P450.

Therefore, as a result of DAB metabolism, ROS and reactive
nitrogen species (RNS) are generated. Free radicals induced LP
and the role of free radicals in carcinogenesis is also well known
(Cerutti, 1994). LP index, greatly enhanced in animals fed with
DAB, was not modified by CIM, consequently liver cytotoxicity
should be ascribed to oxidative stress and it was here demonstrated
by the persistent increase in GST activity.

We have also shown that free radicals excess was not modified
by CIM in animals subjected to the carcinogenic diet, and as a
consequence catalase inhibition was not affected by co-treatment
of DAB and CIM. This irreversible autocatalytic process produces
then a continuous increase in ROS and RNS generation leading
to a desbalance between radicals and the antioxidant defence
system (Pigeolet et al, 1990).

It is noteworthy, that increased GST, diminished catalase, and
enhanced LP reflecting initiation of carcinogenesis (Gerez et al,
1998a,b; Caballero et al, 2001), were not modified by CIM, in spite
of its partial reversal in the increased P450 levels.

These results further support our hypothesis about the necessary
multiple biochemical pathway disturbances for the onset of hepato-
carcinogenesis initiation (Figure 6).

These findings also provide evidence for the importance of
animal experiments in studying the multiple action and crosstalk
among different biochemical pathways provoked by the adminis-
tration of xenobiotics.
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