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Objectives: To explore the efficacy of diffusion weighted imaging (DWI)-derived metrics
under different models as surrogate indicators for molecular biomarkers and tumor
microenvironment in gliomas.

Methods: A retrospective study was performed for 41 patients with gliomas. The
standard apparent diffusion coefficient (ADCst) and ADC under ultra-high b values
(ADCuh) (b values: 2500 to 5000 s/mm2) were calculated based on monoexponential
model. The fraction of fast diffusion (f), pseudo ADC (ADCfast) and true ADC (ADCslow) were
calculated by bi-exponential model (b values: 0 to 2000 s/mm2). The apparent diffusional
kurtosis (Kapp) was derived from the simplified diffusion kurtosis imaging (DKI) model (b
values: 200 to 3000 s/mm2). Potential correlations between DWI parameters and
immunohistological indices (i.e. Aquaporin (AQP)1, AQP4, AQP9 and Ki-67) were
investigated and DWI parameters were compared between high- and low-grade
gliomas, and between tumor center and peritumor. Receiver operator characteristic
(ROC) curve and area under the curve (AUC) were calculated to determine the
performance of independent or combined DWI parameters in grading gliomas.

Results: The ADCslow and ADCuh at tumor center showed a stronger correlation with Ki-
67 than other DWI metrics. The ADCst, ADCslow and ADCuh at tumor center presented
correlations with AQP1 and AQP4 while AQP9 did not correlate with any DWI metric. Kapp

showed a correlation with Ki-67 while no significant correlation with AQPs. ADCst (p <
0.001) and ADCslow (p = 0.001) were significantly lower while the ADCuh (p = 0.006) and
Kapp (p = 0.005) were significantly higher in the high-grade than in the low-grade gliomas.
ADCst, f, ADCfast, ADCslow, ADCuh, Kapp at the tumor center had significant differences
with those in peritumor when the gliomas grade became high (p < 0.05). Involving ADCuh
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and Kapp simultaneously into an independent ADCst model (AUC = 0.833) could further
improve the grading performance (ADCst+ADCuh+Kapp: AUC = 0.923).

Conclusion: Different DWI metrics fitted within different b-value ranges (low to ultra-high b
values) have different efficacies as a surrogate indicator for molecular expression or
microstructural complexity in gliomas. Further studies are needed to better explain the
biological meanings of these DWI parameters in gliomas.
Keywords: diffusion weighted imaging, intravoxel incoherentmotion, diffusion kurtosis imaging, gliomas, biomarker
INTRODUCTION

Gliomas are the most common primary brain tumors in adults
and according to World Health Organization (WHO) guidelines
are classified into four grades, which reflect increasing malignancy
and worse prognosis (1). Assays of histopathology and molecular
pathology based on tumor samples obtained by resection or biopsy
are the gold standard for determining the pathological grade and
molecular subtype. Accurate assessment of glioma grade, as well as
phenotype and genotype, is of potential importance for the
optimization of personalized treatment. However, inherently
high heterogeneity of gliomas means that biopsy or localized
resection may not be representative of the tumor as a whole.

Improving the non-invasive characterization of glioma
physiology or pathology might help to improve the image-
guided biopsy and therapy. Considering different regimes of b-
value could control the degree of diffusion-weighting in the
diffusion weighted imaging (DWI), different tissue properties
reflected by the water diffusion could be encoded into DWI
signals. Therefore, DWI is one of the potential tools to provide
surrogate noninvasive imaging biomarkers for microenvironment
in gliomas as the water diffusion coefficients could intermediately
reflect the microstructure, perfusion or water exchange effects
associated with transmembrane transport, such as facilitated
diffusion (2, 3).

As the cell proliferation and the water transportation are
highly suspected to influence the water diffusion properties in
gliomas at extracellular, intracellular or transcellular space, Ki-67
or aquaporin (AQP) subtypes (AQP1, AQP4, AQP9) were
welcomed molecular targets quantified by different DWI
diffusion metrics (4, 5). Ki-67 is an immunohistochemical
marker for the proliferation in gliomas which is known to
correlate with tumor grading (4) and prognosis (6). AQPs
provide a major pathway for the water transportation through
cell membrane (7). And AQP subtypes, including AQP1, AQP4
and AQP9, are overexpressed in glioma cells and correlated with
tumor grade and malignancy (8–12). AQP1, AQP4 and AQP9
were reported to be related to angiogenesis, invasion and
peritumoral edema in gliomas. AQP1 predominantly locates in
the perivascular space and it has been reported that increased
AQP1 might induce vasogenic brain edema (13) and acceleration
of cell migration and invasion (10, 14). AQP4 are mainly
expressed by astrocytes and its redistribution is thought to
control water mobility at the blood-brain interface and
progress along with blood-brain barrier disturbance and
2

vascular proliferation (11, 15, 16). Increased expression of
AQP9 has been observed in glioma tissue near vessels and
might promote the invasion and motility of cells (17, 18).

Several studies have demonstrated that some diffusion
coefficients derived from intravoxel incoherent motion (IVIM),
diffusion kurtosis imaging (DKI) or stretched-exponential
models such as slow apparent diffusion coefficient (ADCslow),
axial kurtosis and heterogeneity index a could correlate with Ki-
67 expression in gliomas (4, 19, 20), whilst the DKI-derived
mean kurtosis, diffusion tensor imaging-derived mean
diffusivity, the apparent ADC and ADC derived from ultra-
high b-value model showed different correlation tendency with
AQP in gliomas (5, 21). However, the levels of the correlations
seemed to be diverse and few studies have compared the efficacy
of different kinds of model-derived parameters for indicating Ki-
67 and AQP in gliomas among the same dataset.

Considering more DWI models to select more rational or
efficient diffusion surrogate biomarkers for indicating molecular
expression or phenomenologically depicting the gliomas
microenvironment is necessary at present. In the current study,
the diffusion metrics derived from mono-exponential model,
IVIM model, DKI model and ultra-high b-value model, and
their efficacy for quantifying Ki-67, AQP1, AQP4, and AQP9
were analyzed and compared. Among these models, the mono-
exponential model could reflect apparent diffusion combining
diffusion and perfusion; IVIM model could separate the slow
diffusion in response to intra- or extracellular water molecules
from the fast diffusion in response to tubular or vascular
perfusion; DKI model could help provide general structure
information and quantitative information about diffusion
deviation from freely gaussian diffusion; and ultra-high b-value
model could provide the diffusion information in the specific high
b-value range which is potential to indicate transmembrane
diffusion (2, 3). By comprehensively considering these models
covering gaussian or non-gaussian assumption and b-value
compartment, we expected to contribute as many shreds of
evidence as possible during the formation of DWI biomarkers
for the gliomas microenvironment. In addition, as the AQPs
distribution indicates the disease progression (9, 22), the spatial
distribution of the diffusion coefficients might noninvasively
indicate physiological or pathological conditions related to the
change of water exchange or transportation. Therefore, the same
set of diffusion metrics from central and peritumoral regions of
low- and high-grade gliomas were also analyzed and compared to
help depict a more complete tumor microenvironment picture.
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MATERIALS AND METHODS

Patients Population
This retrospective study was approved by the local institutional
review board, and written informed consent was obtained from
each patient. A total of 45 patients with pathologically proven
gliomas diagnosed between October 2014 and May 2016 were
enrolled in the study. The inclusion criteria were as follows: (a)
MRI examinations were performed on patients prior to
treatments of tumors and (b) the pathological diagnoses and
histological indices were acquired by surgical resections of
gliomas. Four patients were excluded due to the presence of
head movement artifacts in the DWI images. The final analysis
was performed for a total of 41 patients with gliomas.

MRI Data Acquisition
MRI investigations were performed for all patients by using a
Discovery MR 750 3 T MRI system (GE Healthcare, Milwaukee,
Wisconsin, USA). Firstly, T1-weighted (T1w) images were
acquired using an Inversion-Recovery Fast Spin-Echo sequence
with repetition time (TR) of 1593 msec and echo time (TE) of 24
msec, and T2-weighted (T2w) images were obtained by using a
FSE sequence (TR/TE, 4600 msec/110 msec). Next, DWI was
performed using a single-shot, echo-planar sequence (TR/TE,
4000 msec/112 msec; matrix, 128 × 128; Field of View (FOV),
24 × 24 cm2; and slice thickness, 4 mm). A total of 16 b values
were acquired in three orthogonal directions at 0, 50, 100, 150,
200, 300, 400, 500, 800, 1000, 1500, 2000, 2500, 3000, 4000 and
5000 sec/mm2. Total acquisition time for DWI was 5 minutes 32
seconds. Finally, the T1w sequence was repeated after intravenous
administration of 0.1 mmol/kg gadopentetate dimeglumine.

MRI Data Analysis
Two radiologists, blinded to the reports concerning tumor
pathology, reviewed and analyzed all the MR images
independently on a remote workstation. The radiologists
independently drew three different regions of interests (ROIs)
on the T2w echo-planar image for each tumor in the solid parts
and regions within 1 cm peritumoral parts, respectively. Each
MRI parameter in the solid parts or peritumoral region were
determined by the averaged value of three ROIs, respectively.
Areas of necrosis, hemorrhage and cerebrospinal fluid were
excluded to ensure accurate measurements.

DWI Data Processing
DWI data were transferred to a workstation (Advantage
Workstation 4.5; GE Healthcare) for processing.

ADCst was calculated from b values of 0 and 1000 sec/mm2 by
using a monoexponential DWI model (23) as Equation (1):

S(b)=S(0) = exp ( − b� ADCst), Eq: (1)

where S(b) represents the signal intensity in the presence of
diffusion sensitization, and S(0) represents the signal intensity in
the absence of diffusion sensitization. This model used the least
square fit for linear fitting (24).
Frontiers in Oncology | www.frontiersin.org 3
ADCslow was obtained from IVIMmodel with b values from 0
to 2000 sec/mm2 (23) as Equation (2):

S(b)=S(0) = f � exp ( − b�  ADCfast) + (1 − f )� exp (

− b�  ADCslow), Eq: (2)

where f represents the fraction of fast diffusion component,
ADCfast represents the pseudo-diffusion coefficient, and
ADCslow represents the slow diffusion coefficient. The
Levenberg-Marquardt fit was used for nonlinear fitting (24).

ADCuh under ultra-high b values was calculated from b values
of 2500, 3000, 4000 and 5000 sec/mm2 by using the above
monoexponential DWI model (25) as Equation (1).

Apparent diffusional kurtosis (Kapp) was calculated from DKI
model (26) according to Equation (3) with b-value ranging from
200 to 3000 sec/mm2:

S(b)=S(0) = exp ( − b · Dapp +
1
6
b2 · D2

app · Kapp), Eq: (3)

where Dapp (unit: ×10-3 mm2/s) is the apparent diffusion
coefficient fitted in low b-value range of 200-1000 sec/mm2,
Kapp (unitless) is the apparent diffusional kurtosis which is fitted
with b-value up to 3000 sec/mm2.

Immunohistochemistry
Specimens acquired from surgical resections were embedded in
paraffin. AQP1, AQP4, AQP9 and Ki-67 immunohistostainings
were conducted for quantification analyses. Slides were rinsed
in phosphate buffer saline and blocked with 5% normal goat
serum, followed by incubation with primary mouse
monoclonal anti-AQP1 antibodies (ab9566, Abcam,
Cambridge, UK), mouse monoclonal anti-AQP4 antibodies
(ab11026, Abcam, Cambridge, UK), rabbit polyclonal anti-
AQP9 antibodies (ab85910, Abcam, Cambridge, UK) or
mouse monoclonal mouse anti-Ki-67 (ZM0165, Zhongshan
Biotechnology Co., Ltd., Beijing, China) for 2 hours at 37°C.
Slides were then incubated with horseradish peroxidase-
conjugated secondary antibody diamino-benzidine (Fuzhou
Maixin Biotechnology Development Co., Ltd., Fuzhou,
China) for 10 minutes at 37°C, and visualized with
diaminobenzidine substrate (Fuzhou Maixin Biotechnology
Development Co., Ltd., Fuzhou, China).

Immunohistochemistry Data Analysis
Specimens acquired from surgical resections were embedded in
paraffin and immunohistochemistry stains were applied for
quantification of AQP1, AQP4, AQP9 and Ki-67. Histological
indices of AQP1, AQP4, AQP9 and Ki-67 were independently
measured by two pathologists by using a HMIAS-2000 Medical
Color Image Analysis System (Champion Image Engineering Co.,
Ltd., Wuhan, China). The pathologists independently placed
three different ROIs in the solid parts of each tumor for each
patient. The ROIs excluded the areas of necrosis and hemorrhage.
The IODs were measured for AQP1, AQP4, AQP9 and Ki-67,
which were averaged from three delineated ROIs.
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Statistical Analysis
MedCalc software (version 19.0, MedCalc, Belgium) and R
software (version 3.5.1) were used for statistical analyses.
Correlations between DWI-derived parameters and histological
indices were computed by using the Pearson’s correlation
analysis. Steiger’s Z-test was used for comparing each two
correlation coefficients (27). A correlation coefficient (r) of
0.75–1.00 was set to indicate very good to excellent correlation;
0.50–0.74, moderate to good correlation; 0.25–0.49, fair
correlation; and 0.24 or lower indicate little or no correlation
(28, 29). The Mann-Whitney U test was used for statistically
comparing parameters between high-grade and low-grade
gliomas. The significant difference of DWI-derived parameters
between tumor center and peritumoral regions was analyzed by
using the intragroup paired t-test or Wilcoxon matched-pairs
signed rank test. A receiver operator characteristic (ROC) curve
and area under the ROC curve (AUC) were calculated to evaluate
the model performance in grading gliomas. The maximum
Youden index was used to determine the threshold for
calculating the sensitivity and specificity. AUC of the paired
models were compared by Delong’s test. The continuous net
reclassification improvement (NRI), and integrated
discrimination improvement (IDI) indices were analyzed to
assess the added value of combined models (30). Interobserver
agreement for each measurement was calculated by using an
Intraclass Correlation Coefficient (ICC) with 95% confidence
interval (CI). Two sides p values less than 0.05 were considered
statistically significant. The R packages were mainly involved as
follows: “icc” was used for ICC calculation by setting “twoway”
and type of “agreement”, “glmnet” package for logistic
regression, “pROC” package for ROC analysis, “PredictABEL”
was used for NRI and IDI evaluation, and “ggboxplot”
for boxplot.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Patients
26 of 41 included patients (63.4%) were confirmed to have high-
grade gliomas (grade 3 and grade 4) and the remaining 15
patients (36.6%) were confirmed to have low-grade (grade
2) gliomas.

Analysis of Interobserver Agreement
Analysis
The ICC between the two independent pathologists for
measuring the IODs of AQP1, AQP4, AQP9 and Ki-67 were
0.861 (95% CI = 0.740-0.926), 0.853 (95% CI = 0.724-0.922),
0.841 (95% CI = 0.702-0.915) and 0.877 (95% CI = 0.769-0.934),
respectively. The ICC between the two independent radiologists’
calculation of ADCst, f, ADCfast, ADCslow, ADCuh, Kapp values in
the tumor center and peritumoral region were summarized in
Table S1. All of the derived DWI metrics showed good to
excellent inter-observer agreement (ICC > 0.8).

Differences in DWI-Derived Parameters
and Histological Indices Between High-
Grade and Low-Grade Gliomas
The significant differences in DWI-derived imaging parameters
and histological indices between the high-grade and low-grade
gliomas are listed in Table 1. Values of ADCst and ADCslow at the
center of the tumor were significantly lower in high-grade
gliomas than in low-grade gliomas, whereas the value of
ADCuh at the center of the tumor was significantly increased
in the high-grade gliomas than in the low-grade gliomas.
Significant higher Kapp at tumor center were found in high-
grade gliomas than in low-grade gliomas. Analysis of the
histological indices showed that the expression of AQP1,
TABLE 1 | The statistical difference analysis of DWI-derived metrics and histological indices between low- and high-grade gliomas.

Features Low-grade (min, max) High-grade (min, max) Statistics P-value

ADCst_center
a 1.31 (1.16, 1.77)c 0.92 (0.85, 1.08) 3.519 *<0.001

ADCst_peri
b 1.58 (0.89, 2.09) 1.50 (1.22, 1.73) 0.257 0.797

f_center 0.28 (0.17, 0.41) 0.23 (0.17, 0.28) 1.218 0.223
f_peri 0.31 (0.21, 0.52) 0.33 (0.22, 0.36) 0.257 0.797
ADCfast_center 0.40 (0.34, 0.45) 0.45 (0.38, 0.52) -0.92 0.357
ADCfast_peri 0.36 (0.35, 0.39) 0.33 (0.31, 0.38) 1.665 0.096
ADCslow_center 1.13 (0.93, 1.37) 0.81 (0.66, 0.98) 3.343 *0.001
ADCslow_peri 1.18 (0.71,1.51)d 1.13 (0.93,1.42) 0.425 0.675
ADCuh_center 0.24 (0.20, 0.32) 0.32 (0.28, 0.34) -2.747 *0.006
ADCuh_peri 0.11 (0.10, 0.12) 0.11 (0.10, 0.12) 0.514 0.607
Kapp_center 0.47 (0.41, 0.50) 0.53 (0.50, 0.62) -2.801 *0.005
Kapp_peri 0.41 (0.36, 0.46) 0.41 (0.38, 0.46) -0.392 0.695
AQP1 0.14 (0.08,0.21) 0.26 (0.18,0.32) -5.315 *<0.001
AQP4 0.17 (0.11,0.25) 0.24 (0.17,0.31) -3.263 *0.002
AQP9 0.11 (0.08, 0.15) 0.07 (0.04, 0.13) 1.57 0.116
Ki-67 0.20 (0.11,0.31) 0.46 (0.32,0.65) -5.918 *<0.001
Octo
ber 2021 | Volume 11 | Article
ADC, apparent diffusion coefficient; ADCst, standard apparent diffusion coefficient; ADCuh, apparent diffusion coefficient under ultra-high b values; ADCfast, pseudo-diffusion coefficient;
ADCslow, slow diffusion coefficient; f, the fraction of fast diffusion component; Dapp, apparent diffusion coefficient in the unit of um2/s; Kapp, apparent diffusional kurtosis.
aparameter measured from tumor center.
bparameter measured from regions of 1 cm peritumoral parts of the tumors.
cThe variables with abnormal distribution were depicted by median (interquartile range, IQR).
dThe variables with abnormal distribution were depicted by mean ± SD.
*P-value < 0.05 indicated statistical significance.
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AQP4 and Ki67 were significantly higher in the high-grade than
in the low-grade gliomas, whereas the expression of AQP9
showed no significant difference between the high-grade and
low-grade gliomas. The MRI and immunohistochemistry
staining of the high-grade and low-grade gliomas are
illustrated in Figures 1, 2, respectively.

Correlation Between DWI-Derived
Parameters and Histological Biomarkers
The correlation analysis between DWI-derived imaging
parameters and histological indices revealed that expression of
AQP1, AQP4 and Ki67 were correlated with ADCst, f, ADCslow

and ADCuh at the center of the tumor while had little correlation
with those of peritumoral imaging parameters (see Table 2 and
Figure 3). As shown in Table 2, the ADCst at the center of the
tumor showed a small negative correlation with AQP1, AQP4 and
Ki67 (p < 0.05). The f coefficient at the center of the tumor showed
a small negative correlation with AQP1 and Ki67 (p < 0.05). The
ADCslow at the center of the tumor showed a small negative
correlation with AQP1, AQP4 and a moderate negative
correlation with Ki-67 (p < 0.05). The ADCuh at the center of
the tumor showed a small positive correlation with AQP1, AQP4
and Ki67. The DWI metric of Kapp at the center of the tumor
showed weak positive and moderate negative correlation with Ki-
67 expression (p < 0.05), while its correlation with AQPs was not
obvious. There was no significant correlation between the
expression of AQP9 and any of the imaging parameters (p > 0.05).

In addition, the correlation analysis results between each pair
of DWI-metrics derived from tumor center were summarized in
Table S2. The ADCst showed significant correlation (p < 0.05)
Frontiers in Oncology | www.frontiersin.org 5
with other DWI metrics (f, ADCslow, ADCuh and Kapp), while
ADCuh had no significant correlation (p > 0.05) with ADCslow

and Kapp. The Steiger’s Z test results by comparing different DWI
metrics’ correlations with the same histological biomarker were
also summarized in Table S3. It indicated that there was no
significant difference between ADCst and ADCslow for its
respective correlation with an individual molecule. While
significant differences existed between ADCuh and ADCst or
ADCslow because of the inverse correlation tendency.

Differences in Imaging and Histological
Biomarkers Between Tumor Center and
Peritumoral Areas
The DWI-derived imaging parameters at the center of the tumor
and peritumoral area in low- and high-grade gliomas were
statistically analyzed as shown in Figure 4.

In summary, all the DWI-imaging parameters (including f,
ADCst, ADCfast, ADCslow, ADCuh and Kapp) at the tumor center
had significant differences compared with those in peritumoral
areas when the glioma grade became high. And the ADCuh and
Kapp at tumor center were significantly higher than that of
peritumor in both low-grade gliomas and high-grade gliomas.

Diagnostic Performance of Imaging and
Histological Biomarkers for Differentiation
Between Low- and High-Grade Gliomas
The ROC analysis for significant DWI imaging metrics measured
from tumor center and histological biomarkers in discriminating
high-grade gliomas from low-grade gliomas were conducted and
compared as shown in Figure 5 and Table 3.
A B C D E F

G H I J K L

FIGURE 1 | A 57-year-old male patient with a representative glioblastoma (World Health Organization grade 4). In the solid part of the tumor (arrows), (A) T2-
weighted image shows isointense to hyperintense (circles are the regions of interest), (B) T1-weighted image shows hypointense. (C) Post-gadolinium T1-weighted
image shows enhancement of the solid part of the tumor. (D) apparent diffusion coefficient (ADCslow) map and (E) slow diffusion coefficient (ADCslow) map show no
increase of the values in the solid part of the tumor. (F) fraction of fast diffusion component (F) map show no increase of the values in the solid part of the tumor.
(G) pseudo-diffusion coefficient (ADCfast) map shows increased values in the solid part of the tumor. (H) ADC with ultra-high b values (ADCuh) map shows increased
value in the solid part of the tumor. (I) aquaporin (AQP)1, (J) AQP4 and (K) Ki-67 immunohistostaining maps show increased expression, whereas (L) AQP9
immunohistostaining map shows no obvious increased expression (original magnification, ×100).
October 2021 | Volume 11 | Article 672265
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Among molecular biomarkers, Ki-67 presented a good
diagnostic ability with the largest AUC and good sensitivity
and specificity, which was followed by AQP1. AQP4 presented
the best sensitivity whereas poor specificity was determined at a
threshold of 0.14. For DWI imaging biomarkers, the ADCst had
the largest AUC and relatively better sensitivity and specificity
which was followed by ADCslow. The ADCuh and Kapp performed
with a similar AUC of around 0.76. While ADCuh had a good
sensitivity the same as the ADCst at a threshold of 0.24 and Kapp

had a better specificity (80%) at a threshold of 0.512 compared
with other independent imaging metrics. Meanwhile, we assessed
Frontiers in Oncology | www.frontiersin.org 6
the discrimination performance by combining two to three DWI
metrics among ADCst, ADCslow, ADCuh and Kapp. From the
aspect of AUC performance, the (ADCst + ADCuh: AUC = 0.895)
and (ADCuh + Kapp: AUC = 0.882) represented better
improvement among two-parameter-based combination
models, and (ADCst + ADCuh +Kapp: AUC = 0.923) showed
better improvement among three-parameter-based combination
models. The paired AUC comparison results derived from the
Delong’s test were summarized in Table S4 and the continuous
NRI and IDI were summarized in Table S5. Delong’s test result
showed that ADCuh at tumor center versus Ki-67 and AQP4
TABLE 2 | Results of correlation analysis between DWI-Derived imaging metrics and histological indices of AQP1, AQP4, AQP9 and Ki-67 molecular expression.

Correlation AQP1 P-value (AQP1)c AQP4 P-value (AQP4)d AQP9 P-value (AQP9)e Ki-67 P-value (Ki-67)f

ADCst_center
a -0.481 *0.001 -0.439 *0.004 -0.037 0.818 -0.458 *0.002

ADCst_peri
b -0.134 0.400 0.090 0.572 -0.287 0.068 -0.109 0.497

f_center -0.319 *0.041 -0.293 0.062 -0.004 0.977 -0.370 *0.017
f_peri -0.181 0.255 0.127 0.428 -0.245 0.121 -0.113 0.480
ADCfast_center -0.170 0.287 0.227 0.152 -0.010 0.949 0.111 0.487
ADCfast_peri -0.124 0.438 -0.132 0.408 0.015 0.924 -0.202 0.204
ADCslow_center -0.375 *0.015 -0.441 *0.003 0.087 0.586 -0.503 *0.001
ADCslow_peri -0.156 0.329 0.064 0.688 -0.251 0.113 -0.114 0.477
ADCuh_center 0.464 *0.002 0.379 *0.014 -0.163 0.307 0.484 *0.001
ADCuh_peri 0.079 0.621 0.108 0.499 0.086 0.590 -0.118 0.461
Kapp_center 0.226 0.073 0.242 0.211 0.046 0.920 0.384 *0.019
Kapp_peri -0.079 0.450 -0.181 0.625 0.314 0.832 -0.011 0.764
October 2021
 | Volume 11
ADC, apparent diffusion coefficient; ADCst, standard apparent diffusion coefficient; ADCuh, apparent diffusion coefficient under ultra-high b values; ADCfast, pseudo-diffusion coefficient;
ADCslow, slow diffusion coefficient; f, the fraction of fast diffusion component; Kapp, apparent diffusional kurtosis derived from DKI model.
aparameter measured from tumor center.
bparameter measured from regions of 1 cm peritumoral parts of the tumors.
cP-value calculated from Pearson’s correlation between AQP1 and each DWI-derived parameter.
dP-value calculated from Pearson’s correlation between AQP4 and each DWI-derived parameter.
eP-value calculated from Pearson’s correlation between AQP9 and each DWI-derived parameter.
fP-value calculated from Pearson’s correlation between Ki-67 and each DWI-derived parameter.
*P-value < 0.05 indicated statistical significance.
A B C D E F

G H I J K L

FIGURE 2 | A 28-year-old male patient with a representative astrocytoma (World Health Organization grade 2). In the tumor (arrows), (A) T2-weighted image shows
hyperintense (circles are the regions of interest), (B) T1-weighted image shows hypointense. (C) Post-gadolinium T1-weighted image shows no enhancement of the
tumor. (D) ADC map and (E) ADCslow map show increased values in the tumor. (F) f map shows increased values in the tumor. (G) ADCfast map show no increase in
the values in the tumor. (H) ADCuh map shows no obvious increase in the value in the tumor. (I) AQP1, (J) AQP4, (K) Ki-67 and (L) AQP9 immunohistostaining
maps show no obvious increase in expression (original magnification, ×100).
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A B C

E FD

FIGURE 4 | The difference between diffusion weighted imaging (DWI) parameters at the center of the tumor and peritumor in low- and high-grade gliomas.
From (A–F): ADCst, f, ADCfast, ADCslow, ADCuh, Kapp. Black box: peritumoral region; yellow box: tumor center. P-value < 0.05 indicated statistical significance.
FIGURE 3 | The correlation between diffusion weighted imaging (DWI) parameters and histological indices. Vertical coordinates in rows from top to bottom: AQP1,
AQP4 and Ki-67 accordingly. Horizontal coordinates in columns from left to right: ADCst_center, f_center, ADCslow_center, ADCuh_center and Kapp_center
accordingly. Center: parameter measured from tumor center.
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versus Ki67 had significant differences (p < 0.05) among
independent imaging parameters or molecular markers. While
for combined models, only ADCst+ADCuh+Kapp versus Kapp had
a significant difference for AUC comparison (p < 0.05). Although
the Delong’s test showed no significant AUC difference for some
combined models compared with the independent model,
significant improvement in discrimination (IDI, p < 0.05) and
reclassification (NRI, p < 0.05) could be obtained by
combinations among ADCst, ADCuh or Kapp compared with
the independent model, except the comparison between ADCst +
ADCuh versus ADCst model.
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DISCUSSION

In the current study, DWI parameters metrics derived from low
to ultra-high b values based on mono-exponential model, IVIM
model, DKI model and ultra-high b-value model were analyzed
from three aspects: (1) their association with expression of
histological molecular biomarkers including Ki-67, AQP1,
AQP4, and AQP9; (2) if they could be taken as noninvasive
surrogated indicators for depicting microenvironment as tumor
progression; (3) their preoperative diagnosing ability to
differentiate low- and high-grade gliomas.
TABLE 3 | The performance of diffusion weighted imaging derived imaging metrics at tumor center and histological biomarkers in differentiating low- and high-grade gliomas.

Parameter AUC (95%CI) Optimal cutoff value Sensitivity (%) Specificity (%)

ADCst 0.833 (0.677-0.990) 1.23a 96.15 73.33
ADCslow 0.817 (0.667-0.966) 1.03a 92.31 66.67
ADCuh 0.760 (0.592-0.928) 0.24a 96.15 53.33
Kapp 0.756 (0.593-0.920) 0.512 69.2 80.0
ADCst +ADCslow 0.851 (0.696-1.0) -0.026 96.2 73.3
ADCst + ADCuh 0.895 (0.793-0.996) 0.702 84.6 86.7
ADCst + Kapp 0.838 (0.672-1.0) -0.212 100 73.3
ADCslow + ADCuh 0.867 (0.734-1.0) 1.064 73.1 93.3
ADCslow + Kapp 0.821 (0.674-0.966) 0.275 88.5 66.7
ADCuh + Kapp 0.882 (0.741-1.0) 0.172 100 80.0
ADCst + ADCslow + ADCuh 0.895 (0.765-1.0) 0.007 100 80.0
ADCst + ADCuh + Kapp 0.923 (0.797-1.0) 0.216 96.2 86.7
ADCst + ADCslow + Kapp 0.844 (0.680-1.0) -0.012 96.2 73.3
ADCslow + ADCuh + Kapp 0.897 (0.767-1.0) 0.704 88.5 86.7
AQP1 0.9 (0.804-0.996) 0.19 84.62 80
AQP4 0.763 (0.603-0.923) 0.14 96.15 53.33
Ki-67 0.945 (0.881-1.0) 0.34 84.62 93.33
October 2021 | Volume 11
AUC, area under curve; ADC, apparent diffusion coefficient; ADCst, standard apparent diffusion coefficient; ADCuh, ADC under ultra-high b values; ADCfast, pseudo-diffusion coefficient;
ADCslow, slow diffusion coefficient; Kapp, apparent diffusional kurtosis derived from DKI model.
ain units of ×10-3 mm2/s.
A B

FIGURE 5 | Receiver operating characteristic (ROC) curves for grading gliomas. (A) ROC curves of diffusion weighted imaging (DWI) parameters ADCst, ADCslow,
ADCuh, Kapp and their combinations. (B) ROC curves of histological biomarkers of AQP1, AQP4 and Ki-67.
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Our histological results were consistent with previous studies
that the AQP1, AQP4 and Ki-67 expression were significantly
increased in the high-grade gliomas compared with the low-
grade gliomas (31, 32). Our dataset also showed that ADCst,
ADCslow decreased and ADCuh, Kapp increased significantly in
high-grade gliomas compared with low-grade ones.

The alteration of DWI metrics might be explained by
molecular origins. The data presented in our study
demonstrated that different DWI models fitted within different
b-value regimes could influence the derived DWI metrics’
correlation level or tendency with histological biomarkers
expression. Most of the DWI metrics derived from tumor
center had correlations with Ki-67 which indicated tumor cell
proliferation-related diffusion restriction effect (33). The
ADCslow and ADCuh showed stronger correlations with Ki-67
than other DWI metrics in the current study. It was consistent
with previous studies that ADCslow eliminated the effect of
microcirculation and could better reflect the water restriction
from tumor density and extracellular volume or deposition
changes during tumor proliferation (4, 34). It has been also
reported that ADC value obtained from high-b value (b = 3000
sec/mm2) had a stronger correlation with Ki-67 index, which was
in agreement with the current result for ADCuh (35). ADCuh

might give more chance to indirectly reflect the slower diffusion
component involved in Ki-67-related proliferation.

The ADCst, ADCslow and ADCuh presented correlations with
AQP1 and AQP4 in the current study, while AQP9 had no
correlation with any DWI metrics. The ADCst and ADCuh

presented stronger correlations with AQP1 expression. For
AQP4, the ADCst and ADCslow showed stronger correlations.

With the knowledge of slower water transportation speed (36)
resulted from the AQPs, previous studies indicated that ADC
derived in the high-b value range might be one potential marker
for AQPs expressions in gliomas (5) or other diseases (25, 37).
However, our results showed that the ADCuh was not completely
independent from other DWI metrics such as ADCst to
independently indicate AQPs expression. And there were
already a few studies that reported a negative correlation
between ADCst and AQP4 during brain injury or ischemia,
which were hypothesized to be associated with decreases in the
extracellular space caused by cell swelling (28, 38). The water
diffusion condition was originated from the combined
contribution of the water exchange effect by AQP
overexpression and the proliferation effect by Ki-67. Up-
regulations of AQP1 and AQP4 could enhance migration and
invasion of glioma cells. In the migration or invasion process, the
AQPs might be involved in or play key roles in coordinated cell
volume changes (39), reduced tumor cell adhesion with
surrounding cells (40), degradation of extracellular matrix (41)
and rapid transmembrane water fluxes during lamellipodia
formations of glioma cells (14). In addition, AQP1
upregulation is associated with angiogenesis (32) and tumor-
associated edema formation (42) and AQP4 redistribution might
be functional in the reabsorption of excess cerebral fluid during
vasogenic edema (38, 43, 44). These processes might influence
the water diffusion in the tissue and transmembrane or
Frontiers in Oncology | www.frontiersin.org 9
microcirculation. In addition, mean kurtosis, as one potential
DWI metric measuring the degree of diffusion hindrance or
restriction, has been reported to correlate with AQP4 expression
in gliomas (21). In the current dataset, the Kapp showed a larger
value in high-grade gliomas which was in accordance with
previous studies (45, 46). However, it only showed a significant
weak positive correlation with Ki-67 which indirectly reflects
proliferation-related diffusion barriers (47). No significant
correlation with AQP1 or AQP4 was found for Kapp in the
current research. As parameters derived from models involving
high-b value, ADCuh and Kapp had different correlation levels
with AQPs which might be resulted from the different b-value
range for fitting. But the current dataset could not provide
sufficient explanations for such deviation. More pathological
evidences and a larger sample size should be supplemented to
reveal the actual mechanism for AQP-related diffusion effect.

The statistical differences between the DWI metrics derived
from tumor center and peritumoral area were analyzed to
explore if DWI metrics could be useful to noninvasively
describe the glioma microenvironment. In the current study, as
gliomas grade increased, the DWI-derived parameters in the
tumor center deviated more significantly from those in the
peritumoral area. The ADCst at the center of the tumor
decreased significantly than that of the peritumoral area in
high-grade gliomas which might be a good indicator for the
enhanced cellularity in the solid tumor center (48). However, the
ADCst might ignore the perfusion effect resulted from tumor
vasculature. Therefore, bi-exponential IVIM model was used to
distinguish the perfusion and diffusion effects. As expected, the
ADCfast increased, ADCslow decreased and Kapp increased
respectively at tumor center compared with those at the
peritumoral area in the high-grade gliomas whereas these
differences were not significant in the low-grade gliomas.
Firstly, the decrease of “true” diffusion coefficient ADCslow and
Kapp in the tumor center might represent the more complicated
or heterogenous tumor microstructure, which was in accordance
with proliferation-related Ki-67 expression (49). Secondly, as
ADCfast (b < 200 sec/mm2) was able to reflect effective perfusion
index (50), the increase of ADCfast at tumor center might be well
correlated to perfusion-related angiogenesis of gliomas, which
was consistent with the previous study (24). It has been reported
that the growth of malignant glioma (WHO grade III and IV) is
dependent on new neovascularization which may result in
increased permeability, blood flow and transport properties
(51, 52). The relative cerebral blood volume increased more
frequently in the high-grade gliomas than in the low-grade
gliomas (53). Moreover, the AQP1 upregulation might also
contribute to the angiogenesis in high grade gliomas (41). The
volume fraction of fast pool f is mainly affected by the fraction of
capillaries and microcirculations. But the f parameter at tumor
center and peritumor showed an inverse tendency compared
with perfusion-related ADCfast, in which the f became smaller at
tumor center as glioma grade increase. Such controversy between
f and ADCfast existed in a previous report (24). The possible
reason for this is that the IVIM model doesn’t involve the
influence of echo time to f. The T2 value of brain tissues
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including white or grey matter under 3.0T MRI is greatly
deviated from blood’s T2 value. Such deviation might be the
reason for the uncertainty of f value. Although the current study
showed correlations for AQP expression with ADCuh, ADCst or
ADCslow, we still cannot infer that the AQP1 or AQP4
distribution in the tumor center might be denser than
peritumor as the immunohistochemical results were only
obtained for the solid tumor part. In addition, it has been
reported that AQP1 up-regulation is associated with
angiogenesis in gliomas and is predominantly located
perivascularly and in areas of tumor infiltration whereas
distant from the tumor center (32). AQP4 was also reported to
have higher expression in both tumor and peritumor than in
normal tissues in gliomas, but the degree of peritumoral edema
only positively correlates with the expression level of AQP4 in
peritumor (9, 22). Therefore, further research is warranted to
clarify the spatial distribution of AQPs expressions or tissue
arrangement by using pathological, molecular imaging or
functional imaging methods and contribute more explanations
for DWI metrics.

Finally, the diagnostic performance of the DWI parameters
(ADCst, ADCslow, ADCuh and Kapp) in differentiating high-grade
and low-grade gliomas. We demonstrated that the ADCst had
largest AUC 0.833 which was followed by ADCslow. While
ADCuh had a good sensitivity the same as the ADCst.
Although there have been reported that conventional ADCst

performed well in grading gliomas (47, 54), the added value of
other DWI metrics derived from IVIM, ultra-high-b value or
DKI model is still worthy of study (5, 19, 55). The current
research revealed that increased NRI and IDI indices could be
obtained by introducing ADCuh and Kapp into independent
ADCst in grading gliomas.

Comprehensive analysis of the relationship between DWI-
derived parameters and indices of histopathology has
demonstrated the potential of establishing imaging biomarkers
reflecting the tumor microenvironment in gliomas. However,
further research is required to address several limitations of the
present study. Firstly and most importantly, whereas imaging
ROIs were placed both at the center of the tumor and in the
peritumor, histology assays were not performed separately for
these two areas and tumor heterogeneity may have resulted in
selection bias. In future studies techniques should be applied so
that the imaging and histology refer to the same sampling
locations. In addition, by considering the limited sampling area
for pathological methods, molecular imaging and functional
imaging such as perfusion imaging might be potential methods
to help explain the biological significance of DWI metrics.
Secondly, the number of patients was relatively small and
statistical analysis could not be reliably applied to study
different glioma subtypes. As well as studying a larger cohort,
additional molecular biomarkers, including proteins and genes,
should be included in future studies. Finally, treatment planning
must include consideration of regions of glioma infiltration and
study of the microenvironment in and beyond the peritumor
region is important.

In conclusion, different DWI metrics fitted within different b-
value ranges (from low to ultra-high b values) could act with
Frontiers in Oncology | www.frontiersin.org 10
different efficacy as surrogate indicator for molecular expression
or microstructural complexity in gliomas. Further studies which
associate pathology or physiology with imaging performance are
needed to better explain the biological meanings for these DWI
parameters in gliomas.
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