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The purpose of this study is to take preliminary steps to unify psychoacoustic techniques
with reaction-time methodologies to address the perceptual mechanisms responsible
for the detection of one vs. multiple sounds. We measured auditory redundancy gains
for auditory detection of pure tones widely spaced in frequency using the tools of
Systems Factorial Technology to evince the system architecture and workload capacity
in two different scenarios (SOFT and LOUD). We adopted an experimental design in
which the presence or absence of a target at each of two frequencies was combined
factorially with two stimulus levels. Replicating previous work, results did not allow an
assessment of system architecture due to a failure to observe factor influence at the level
of distribution ordering for dual-target stimuli for both SOFT and LOUD scenarios. All
subjects demonstrated very modest redundancy gains for the dual-target compared to
the single-target stimuli, and results were similar for both LOUD and SOFT. We propose
that these results can be predicted by a mental architecture that falls into the class of
integrated subadditive parallel systems, using a well-supported assumption that reaction
time is driven by loudness. We demonstrate that modeled loudness of the experimental
sounds (which ranged between about 0.2 and 14 sones) is highly correlated with mean
reaction time (r = −0.87), and we provide a proof-of-concept model based on Steven’s
Power law that predicts both a failure of distributional ordering for dual-target stimuli and
very modest redundancy gains.

Keywords: loudness, Systems Factorial Technology (SFT), reaction times (RTs), coactivation, architecture,
workload capacity, tone detection, power law

INTRODUCTION

An historical interest in the field of auditory perception is the characterization of the mechanisms
responsible for the monaural detection of complex sounds. The psychoacoustic approach typically
measures detection thresholds or percent correct detections (i.e., accuracy) whereas a second
approach measures the reaction time (RT) to a stimulus. Both approaches have been applied to
monaural auditory detection of one vs. two (or many) tones. Psychoacoustic experiments evaluate
mechanisms at near-threshold levels, whereas RT measures are generally (although not exclusively)
used under conditions of high accuracy. So far, most of the RT studies have focused on mean RTs,
with the exception of certain work exploring the phenomena associated with redundant signals
(e.g., Schröter et al., 2007, 2009; Fiedler et al., 2011; Lentz et al., 2016, 2017).
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It is our position that with certain exceptions, RTs and
accuracy methodologies each have advantages regarding
important questions involving human information processing.
For instance, to take a simple but critical example, consider the
detection of two tones vs. a single tone. In psychoacoustic studies,
it seems to be presumed that probabilistically independent
detection when two tones are present is tantamount to parallel
processing. This is a sufficient cause, but independent serial
processing is not at all ruled out, based on response frequencies
(e.g., percent correct or accuracy) alone. In many cases, RTs
provide stronger means of assessing mental architecture (e.g.,
serial vs. parallel processing; Townsend and Ashby, 1983).
Likewise, response frequency measures allow a rigorous
assessment regarding independence of features, dimensions,
etc. This realization has led to two distinct theory-driven
methodologies: Systems Factorial Technology (SFT; Townsend
and Nozawa, 1995; Little et al., 2017) in the case of RTs and
General Recognition theory in the case of response frequencies
(Ashby and Townsend, 1986; Ashby, 1992; Townsend et al.,
2012).

Regarding the mechanisms underlying detection or
discrimination for one vs. multiple tones, detection being
the issue facing us in this study, psychoacoustic approaches
generally support an integration (more on integration shortly)
model in which the representations of the tones (i.e., the
observations) are combined into a single decision variable (e.g.,
Green, 1958; Green et al., 1959), such as that described by Signal
Detection Theory (SDT; Tanner and Swets, 1954; Green and
Swets, 1966). Such work applies predominantly to near-threshold
sound levels, and may not generalize to the detection of sounds
at supra-threshold levels. The literature on high-accuracy RTs
(which are measured at supra-threshold levels) regarding this
issue is more recent and relatively sparse (Schröter et al., 2007,
2009; Fiedler et al., 2011; Lentz et al., 2016, 2017) and that which
treats both RTs and accuracy in parathreshold domains is more
exiguous still. This is surprising given that there is now a healthy
and still growing body of knowledge on stochastic models of
information processing and decision-making.

To date, it remains unknown to what degree RT and SDT
models will fruitfully inform each other regarding detection of
one vs. many tones in acoustics, and it may not be straightforward
to generalize the SDT structure obtained from accuracy-based
experiments to the RT domain, or vice versa. For example,
SDT has been successful with an assumption that two random
variables are added with equal weights of magnitude 1 followed
by comparison with a decision criterion (c.f. Green, 1958; Buus
et al., 1986; Van den Brink and Houtgast, 1990a,b; Hicks and
Buus, 2000). It might appear that a natural extension of this
concept to dynamic and high accuracy experiments would be
to assume that two independent random signals are summed
(one from each of two tones) and this combined signal is then
continuously compared with a decisional criterion. However, it
turns out that such a model predicts a response time that is
much faster than ordinary parallel processing with independent
channels (a result referred to as super capacity by Townsend
and Nozawa, 1995, to be dealt with in more detail below). For
example, beginning with the seminal work of Miller (1978) it has

been found many times that, for example, when a sound plus a
visual signal are presented together rather than separately, RTs
can be speeded up so much that a high upper bound (now known
as the race inequality or the Miller bound) is violated. In point of
fact, Townsend and Nozawa (1995) showed that such violations
can only occur at a very high level of super capacity. We will
discuss some previous evidence as well as new data that call this
strong prediction into question.1

In fact, we note that repeated RT studies have not provided
evidence in support of super capacity for detection of two tones,
including work conducted in collaboration with Miller (Schröter
et al., 2007, 2009; Fiedler et al., 2011). In a similar vein, Lentz
et al. (2016, 2017) adopted SFT, an approach specifically designed
to assess architecture (parallel vs. serial) and workload capacity
(how efficiency changes as workload increases). However, they
encountered challenges while applying SFT to the detection of
one vs. two acoustic stimuli and were unable to assess the resident
architecture. They, like Schröter et al. (2007, 2009), also did
not affirm the super capacity prediction. In fact, performance
fell into the range of limited capacity, and the data were
sufficiently consistent across observers that we cannot simply
relegate these findings to the dustbin of “failed hypotheses.”
Clearly, an immediate and apparently parsimonious extension of
SDT concepts to the RT domain is hazardous at best, and it can be
appreciated that we cannot just pop concepts based on accuracy
that are well-accepted in the parathreshold milieu over into that
appropriate for high accuracy RT data. In fact, Schröter et al.
(2007, 2009) argued that an architecture capable of producing
such a result was one in which the random variables based on
the observations were integrated (of limited rather than super
capacity) into a single decision variable. More detail on these
kinds of data and analyses will follow later in the paper.

There is one vein of perceptual research that was not
mentioned above but might bear on the emerging picture of
how sound intensity is related to RT performance, especially in
high accuracy situations. We refer to the classical psychophysical
scaling literature. In this investigation, we begin to explore
potential connections between the RT literature, both descriptive
and theoretical and the psychophysical scaling approaches
associated with pioneers like Gustav Fechner, and in particular, S.
S. Stevens. It is anticipated that one major benefit is explanation
of our (so far) failure to effectively utilize the full potential of SFT
when applied to auditory detection tasks.

Experimental Approaches
Although accuracy-based studies (percent correct or threshold
measurements) were the first to make measurements for
monaural detection of one vs. two tones (e.g., Schafer and Gales,
1949; Green, 1958; Green et al., 1959), detection was commonly
measured in the presence of noise and the methodologies
typically adopted forced-choice techniques. Whereas these

1These kinds of phenomena first occurred in fields focusing on high accuracy
RTs when two or more signals (i.e., so called redundant signals conditions)
were presented vs. when a single (i.e. a target) was presented (e.g., Miller, 1978;
Diederich and Colonius, 1991; Townsend and Nozawa, 1995). In that body of
research, this type of model is known as coactive. These topics will be explained
in greater detail in what follows.
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detection experiments only evaluated performance and
perceptual mechanisms near threshold, reaction time
experiments measured detection of one vs. two tones at
supra-threshold levels. The first application of RT to auditory
detection that we are aware of was conducted by Schröter et al.
(2007), who measured detection in quiet (not in noise, as in the
aforenoted psychophysical studies) of a 300-ms, 60 dB SPL pure
tone presented to the left ear, the right ear, or both ears. Whether
the two tones presented to the different ears had identical or
different frequencies, there was a small redundant-signal benefit.
RTs were faster for detecting two tones vs. one tone, but the
decrease in RT was less than would be expected under the
statistical advantage provided by two observations over one in
the presence of independence. This purely statistical advantage
will be interpreted as unlimited capacity below. Schröter et al.
(2007) argued that fusion of the two tones into an integrated
percept was sufficient to abolish a strong redundant-signal
benefit, an interpretation further supported by Schröter et al.
(2009) and Fiedler et al. (2011).

In an extension of this work, Lentz et al. (2016, 2017)
presented two tones to the same ear or different ear, respectively,
but applied the tools of System Factorial Technology (Townsend
and Nozawa, 1995) to measure the decision architecture
underlying the detection process. They, like Schröter et al.
(2007, 2009), found a small redundant-signal benefit, but
they were unable to measure the architecture due to the
experimental results not supporting some key assumptions
needed to determine the architecture. These issues and their
implications are discussed in more detail below.

The tools of System Factorial Technology are quite powerful
in their ability to determine the architecture of processing of
one vs. many observations. They also use somewhat different
terminology than that of traditional psychophysics. As a result,
we describe the tools and then will return to the findings of the
RT studies through the lens of System Factorial Technology.

Systems Factorial Technology2

Much as SDT has been used to predict detection of multiple vs.
single tones, SFT also focuses on multiple signals vs. a single
signal (e.g., two tones vs. one tone) but uses reaction time (RT) as
the dependent variable. The strong tools within this approach can
assist an investigator in unveiling the dynamics of the underlying
perceptual system and can provide strong tests of the architecture
underlying the detection of one vs. two signals.

Architecture
A primary component of SFT is to address the form,
or the architecture, used by a system. We define three
parallel architectures here (illustrated in Figure 1), as these
are the most likely benchmarks for comparison with the
aforementioned psychoacoustic experiments. Parallel processing
means processing all the stimuli simultaneously, although each
process may finish at different times (e.g., Townsend and Ashby,

2By now, SFT has been applied to almost all major disciplines of psychology
and cognitive science. Introductions are now widely available, for instance, in
Algom et al. (2015), Harding et al. (2016), and Townsend et al. (2018). Up to date
applications and surveys can be found in Little et al. (2017) and Houpt et al. (2019).

1983; Townsend and Eidels, 2011). The model described here
includes an OR gate and therefore depicts a parallel first-
terminating model that stops when the fastest channel completes
processing. First termination is a special case of self-termination
and leads to the minimum-time statistic (e.g., Townsend and
Ashby, 1983). Parallel coactive processing (or simply coactive for
short) refers to a system in which the channels are summed
together (in unweighted fashion) before a decision is made
(Townsend and Nozawa, 1995; Houpt and Townsend, 2011).
Lastly, parallel interactive processing refers to a system in which
each process may have either a facilitatory or inhibitory influence
on the other.

Sternberg (1969) invented the notion of “selective influence,”
also referred to as factorial influence, which stipulated that
each experimental factor affects one and only one psychological
subprocess at the level of mean RT. Schweickert (1978) was
the first to begin generalizing the use of selective influence
to other architectures. Most of the theorems were at the
deterministic level but a subsequent study provided some
bounds in stochastic models of complex networks (so called
PERT networks; Schweickert, 1978). Townsend and colleagues
later showed that if selective influence acted at the level of
distributional ordering, many different architectures, including
parallel and serial ones, could be discriminated at the level of
mean response times (Townsend and Ashby, 1983; Townsend,
1984, 1990; Schweickert and Townsend, 1989; Townsend and
Schweickert, 1989). Selective influence at the level of the RT
distributions turned out to provide even stronger inferences, in
fact predicting entire functions of RT for the various architectures
and stopping rules (Townsend and Nozawa, 1995; Townsend and
Wenger, 2004). Even later studies applied these notions to some
of the original complex networks first investigated by Schweickert
(e.g., Dzhafarov et al., 2004).

Note too that this framework allows for interactions among
channels, as illustrated in the bottom panel of Figure 1. In
a parallel system, speeding up A could either speed up or
slow down B because they are being processed simultaneously;
ongoing inhibition or facilitation (or both) can take place during
a single trial and while processing is ongoing. Notably, strong
interactions between channels could manifest themselves in a loss
of measurable selective influence. Moreover, limited resources
could also slow down the channel’s processing speed even though
their operations remain stochastically independent. Less likely
(but perhaps possible according to Kahneman, 1973), is the
possibility that some reservoir partly or completely compensates
for an increased workload by increasing the channel efficiencies
but again, maintains stochastic independence.

The above matters receive more attention and articulation in
the discussions of decisional stopping rule and capacity below.

Stopping or Decision Rule: When Does Processing
Cease?
Predictions cannot be made about processing times without a rule
for when processing stops. As noted above, in any task where a
subset of the items (e.g., tones) is sufficient to stop without error,
and the system processor is capable of stopping as soon as the
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FIGURE 1 | Illustration of three potential architectures: parallel, coactive, and parallel interactive.

first item is processed, the processor is said to be capable of first-
termination. This case is often called an OR design (as illustrated
in Figure 1) since completion of any of a set of presented items
is sufficient to stop processing and ensure a correct response
(e.g., Egeth, 1966; Townsend and Nozawa, 1995; Townsend and
Colonius, 1997).

In the parallel examples of Figure 1, either A or B could stop
processing—both inputs need not be received by the decision
element for a decision to be made. This type of architecture
together with the OR rule, is commonly called a race model, as
detection is determined by the first input to reach the decision
element (see, e.g., Townsend and Ashby, 1983; Smith and Van
Zandt, 2000; Townsend and Liu, 2020).

Using these techniques, we can evaluate the architecture as
long as we have evidence for selective influence. A common
method to evaluate architecture uses a double-factorial design,
in which the two experimental variables (A and B) are
presented at two different levels (1 and 2). The levels should be
selected as to manipulate RTs (e.g., level 2 might be associated
with a faster RT than level 1; that is level 2 might be a
High intensity and level 1 might be a Low intensity). To
evaluate architecture, the two variables are presented together
at each combination of levels (AHBH , AHBL, ALBH , ALBL).
For example, RTHH is defined as the mean RT for when
A is presented at the High level and B is also presented
at the High level.

We then define the mean interaction contrast as
MIC =

(
RTLL − RTHL

)
−
(
RTLH − RTHH

)
. Selective influence

at the level of the means, as prescribed by Sternberg requires
that RTHH < RTHL ≈ RTLH < RTLL, where we use the ≈ to
indicate “approximately equal.” The middle two numbers need
not be ordered though it is not prohibited. In any event, the MIC
statistic does not distinguish between parallel first-terminating
and coactive models, as both yield a positive MIC.

The cumulative distribution function on processing time for
a single item, which is designated as the probability of cessation
by time t, is equal to P(T ≤ t) = F(t). These functions or
their complement, the survivor functions, where the latter is
P(T > t) = 1 – F(t) were found to be considerably more powerful
in uncovering the underlying combination of architecture and
stopping rule (Townsend and Nozawa, 1995; Townsend and
Wenger, 2004). For instance, a new statistical function of
time, defined as a double difference of the survivor functions,
now allowed for a differentiation of first-terminating parallel
processing and coactivation as well as distinguishing between
serial minimum time and serial exhaustive processing (Townsend
and Nozawa, 1995; Townsend and Wenger, 2004).

This statistical function is known as the survivor interaction
contrast, is defined as follows and can be evaluated for all RTs:
SIC (t) = (SLL(t)− SHL(t))− (SLH (t)− SHH (t)) where S(t)
denotes the survivor function [1−F(t)]. Observe that this is the
same type of calculation as the MIC but now operates as an entire
function of time. A positive SIC function is consistent with a
parallel first-terminating, independent-channels model, whereas
an SIC that first goes negative and then goes positive is predicted
by a coactive model (see Townsend and Nozawa, 1995 for
further detail). An ordering of SLL(t) > SHL(t) ≈SLH(t) > SHH(t)
indicates that selective influence at the level of processing time
distributions is not falsified.

Workload Capacity
A second aspect of SFT is the ability to elucidate the workload
capacity [C(t)] of a system, which refers to the effects on
efficiency as the workload is increased (e.g., processing two
tones vs. processing one). Informally, the notion of unlimited
capacity refers to the situation when the finishing time of a
channel is identical to that of a standard parallel system. That
is, the finishing times of the distinct subsystems are parallel and
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independent and their marginal finishing time distributions do
not depend on how many others are engaged.3 The benchmark
is to assess capacity (i.e., efficiency of processing speed) in
comparison with standard parallel processing with specification
of a particular stopping rule. The capacity coefficient, C(t) for
an OR experimental design is defined in terms of the integrated
hazard functions [H(t) = −ln(S(t))], with C(t) = HAB(t)/[HA(t)
+ HB(t)]. HA(t) is the integrated hazard function for item A
and similarly for HB(t). HAB(t) is the corresponding integrated
hazard function when both items are present. Thus, a capacity
value of 1.0 is one in which the single-target RTs predict the dual-
target RTs and performance is identical to that predicted by a
standard parallel model.

Two alternative cases that differ from unlimited capacity are
worth considering: capacity values below 1.0 (limited capacity)
and those above 1.0 (super capacity). Limited capacity indicates
that individual channels are processing at a rate slower than
that of a standard parallel system. Super capacity indicates
that individual channels are processing at a rate even faster
than standard parallel processing. Observe that because C(t) is
dynamic, the level of capacity could change across time.

The stopping rule affects overall processing times, so one must
consider the architecture, the stopping rule, and the resource
allocation of a system when evaluating RTs. A standard parallel
system with an OR gate will predict decreases in mean RT as a
function of the number of items undergoing processing (because
all items are targets). However, we would consider this system
unlimited, rather than super, capacity, as the predictions arise
from a standard parallel model (i.e., unlimited capacity with
independent channels).

In sum, this measuring instrument is that of the set
of predictions by unlimited-capacity independent parallel
processing (UCIP) which, as observed above is the class of
standard parallel models. Again, unlimited capacity means here
that performance is equivalent to a system where each parallel
channel processes its input (item, etc.) just as fast when there are
other surrounding channels working (i.e., with greater n) as when
it is the only channel being forced to process information, and this
is accomplished with independent channels. Naturally, because
capacity and architecture are completely separate dimensions,
though unlikely, even a serial system which tremendously
increased its speed the more things it had to process could
produce unlimited or even super capacity. We finally pause to
emphasize that as with the tests for architecture (i.e., the survivor
interaction contrast) our benchmark is a non-parametric and
distribution-free class of models rather than a specific model
based on a set of parameters.

Applications of Systems Factorial
Technology to the Auditory System
Lentz et al. (2016, 2017) applied SFT to the auditory system for
the detection of one vs. two tones, with the 2016 study adopting

3Observe that theoretically, probability summation could also result from a serial
process if accuracy alone is recorded. Thus, observers would garner their two
samples, one from each signal possibility and base their response on the maximum
observation.

monaural tone detection and the 2017 study adopting binaural
tone detection. In both studies, Lentz et al. (2016, 2017) applied a
standard double-factorial design, in which two tones of different
frequencies (500 and 3,020 Hz) were presented singly or together
at two stimulus levels (High = 80 dB SPL; Low = 38 dB SPL),
with the experiment including all possible combinations of the
two frequencies and levels, and included presentation intervals
that contained silence. Although reaction times were measured
to be faster for the High stimuli than the Low stimuli when the
tones were presented singly, support for selective influence was
not observed for the two-tone (dual-target) stimuli. That is, the
reaction time distributions from the three of the four different
dual-target stimuli (HH, HL, LH) were not differentiable for the
majority of subjects. Although Lentz et al. (2016, 2017) did not
find strict evidence of selective influence, selective influence was
present at a mean level, and so, calculated SIC functions for
their subjects. In 14 of 16 cases, SIC functions (and therefore
also MIC values) were positive and suggested a parallel self-
terminating architecture.

One explanation that would explain the lack of evidence for
selective influence is related to a large body of work indicating
that subjective loudness is a primary determinant of mean RT
and that mean RT decreases with increasing loudness (c.f.,
Chocholle, 1940; Kohfeld et al., 1981; Humes and Ahlstrom, 1984;
Schlittenlacher et al., 2014). We note that while brightness/light
intensity is also a determinant for visual detection RTs in the
visual system, these RTs are generally longer and change more
rapidly with decreasing intensity than for the auditory modality
(Kohfeld, 1971). Thus, the relationship between RT and loudness
may contribute to the difficulty evincing selective influence,
and perhaps making measurements in regions of this function
where RTs change more drastically (e.g., at lower intensity levels;
Kohfeld, 1971) might facilitate the ability to demonstrate selective
influence. One advantage of RT studies over those that measure
accuracy is that the mechanisms of perception can be evaluated
at supra-threshold levels.

As pointed out earlier, outside of a very limited set of
experiments, there is precious little in the literature that connects
either para-threshold or even supra-threshold accuracy and
scaling data with RT data or theory, particularly related to the
detection of one vs. two sounds. Here, we attempt to measure
system architecture at two overall sound levels so that we
can (a) relate loudness to the RT measures of single-tone and
double-tone stimuli across a range of sound levels and (b) put
forth a following proof-of-concept in which we assume that
processing times to detect sounds are driven by functions that are
monotonically related to subjective loudness. The latter steps are
in line with classical scaling theory of Fechner (1860) and Stevens
(1957).

MATERIALS AND METHODS

Stimuli
Stimuli were 350-ms 500 and 3,020-Hz pure tones having 25-ms
cosine-squared onset and offset ramps. Stimuli were presented in
two different scenarios: SOFT—tones presented at 35 (Low) and
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50 (High) dB SPL and LOUD—tones presented at 65 (Low) and
80 (High) dB SPL. Note that the terms Low and High are relative
within a scenario, referring to the relationship between the tone
levels within either LOUD or SOFT.

Procedures
Four observers, ranging in age from 19 to 22, participated in
experimental sessions lasting 1–2 h. All subjects had hearing
thresholds of 15 dB HL or better in both ears at standard
audiometric frequencies. A single session consisted of 6–12
blocks of 128 trials. Each trial began with a visual warning of
“listen” appearing on a computer monitor for 500 ms. Then, a
random-duration, exponentially distributed, silent period with
a mean of 300 ms followed removal of the warning, and the
auditory stimulus was presented.

Table 1 illustrates the double-factorial OR design and the
proportion of stimulus presentations used. One of two possible
events occurred on each trial—a stimulus or a silent interval.
Within each block of 128 trials, 25% contained the 500-Hz tone
alone, 25% contained the 3,020-Hz tone alone, 25% contained
dual-target stimuli: the 500 + 3,020-Hz tones, and 25% did not
contain a stimulus. When single tones were presented, the High
and Low stimulus levels were presented in equal proportions. For
the dual-target stimuli, four stimuli were tested: HH, both tones
at the High level; LL, both tones at the low level; HL the 500-Hz
tone at the High level and the 3,020-Hz tone at the Low Level; and
LH; the 500-Hz tone at the low level and the 3,020-Hz tone at the
High level. Each of these events was a “Yes” trial. The remaining
25% of trials, no stimulus trials, were “No” trials.

Stimuli were presented using a randomized block design in
which either SOFT or LOUD was selected randomly, and three
blocks were run for that scenario. These scenarios were then
alternated, with another three blocks tested before switching
scenarios. A total of 12 blocks were collected for each scenario,
with the first two blocks treated as practice. Thus, there were
a total of 80 trials for each type of dual target (HH, LL, HL,
and LH) and 160 trials for the single targets (H500, H3020,
L500, and L3020).

TABLE 1 | A list of the possible events in the double-factorial design, along with
the frequency of each event.

HH (6.25%)

HL (6.25%)

LH (6.25%)

LL (6.25%)

L500 (12.5%)

L3020 (12.5%)

H500 (12.5%)

H3020 (12.5%)

No stimulus (25%)

75% of the trials are “Yes” trials, indicated in bold, whereas 25% of the trials are
“No” trials, in which no stimulus was presented. The two-tone stimuli are indicated
by HH, HL, LH, and LL, and single-tone stimuli are indicated by their level (H or L)
and frequency in Hz.

Stimuli were presented to the observers at a 24,414 kHz
sampling rate4 using a 24-bit Tucker Davis Technologies (TDT)
hardware. Single-tone and two-tone stimuli were generated in
Matlab and scaled appropriately prior to being loaded onto the
TDT system. Stimuli were then played though a single channel of
an RP2.1 real-time processor. A software clock within the TDT
system (used to measure the RT) was triggered at the onset of the
stimulus. Signals were then passed through a PA5 programmable
attenuator and an HB6 headphone buffer. Sounds were presented
to observers through the right earphone of a Sennheiser HD280
Pro headphone set. A button press using a box interfaced to
the computer through the TDT serial port stopped the clock,
to yield the RT.

Observers were instructed to respond as quickly to the
signal tone as possible while attempting to provide correct
responses. Using the “OR” design, observers were required
to respond with the “yes” button if a tone was present.
Otherwise, they were instructed to respond with the “no”
button. The reaction time was measured from the onset of
the tone stimulus. Percent correct was monitored in order to
ensure that subjects achieved high levels of performance, and
performance for all conditions was greater than 97.5%. Reaction
times faster than 80 ms or slower than 800 ms have been removed
from the data set.

RESULTS

Reaction Times
Mean reaction time data from the single target trials are shown
in Table 2 with the highest-level conditions in the leftmost
columns. Generally, there is a clear increase in reaction time as
intensity decreases. A repeated measures ANOVA conducted on
each of the 500 Hz and the 3,020 Hz data revealed a statistically
significant effect of level. For 500 Hz, the average decrease in RT
from 35 to 80 dB was about 57 ms [F(3, 9) = 33.8; p < 0.001],
and at 3,020 Hz, the average decrease in RT from 35 to 80 dB was
about 51 ms [F(3, 9) = 10.0; p < 0.003]. At the individual levels,
Kolmogorov-Smirnov tests supported a statistically significant
difference in reaction time distributions at 500 Hz between 35
and 50 dB (k > 0.21; p < 0.001) and 65 and 80 dB for all
subjects (k > 0.14; p < 0.03). For 3,020 Hz, three of the four
subjects demonstrated significant faster RTs for 50 vs. 35 dB
(k > 0.13; p < 0.05 except for S101 k = 0.13; p = 0.058) and
80 vs. 65 dB (k > 0.14; p < 0.04 except for S102 k = 0.08;
p = 0.29).

Table 3 illustrates the mean reaction times in milliseconds
for the dual-target stimuli. RTs generally follow the expected
ordering (HH < HL = LH < LL), however, the mean RTs for
HH, HL, and LH are very similar to each other. For example, for
both scenarios, the average RTs in the HH condition are only 3–
7 ms faster for HH compared to HL and LH, and individually,
HH is not always faster than HL or LH. The largest average RT

4The unusual sampling rate is one of the preset sampling rates within the TDT
hardware.
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TABLE 2 | Mean RTs in ms for single targets in the two scenarios.

Condition

LOUD SOFT

Subject 500H (80 dB) 3020H (80 dB) 500L (65 dB) 3020L (65 dB) 500H (50 dB) 3020H (50 dB) 500L (35 dB) 3020L (35 dB)

S100 190.9 187.6 209.1 195.0 223.0 206.8 232.5 223.9

S101 216.5 220.4 229.7 233.1 244.9 255.6 270.0 261.9

S102 185.4 218.2 206.3 225.8 231.9 254.3 269.5 312.5

S103 194.9 193.0 209.6 206.4 223.1 217.4 244.8 227.3

Average 196.9 204.8 213.7 215.1 230.7 233.6 254.2 256.4

difference is between HH and LL in the SOFT scenario, and this
difference is about 23 ms.

We conducted two repeated-measures ANOVAs to determine
significant factors based on the group mean dual-target RTs. For
the SOFT scenario, the ANOVA revealed a significant effect of
condition [F(3, 9) = 15.6; p < 0.001] whereas for the LOUD
scenario, condition was not significant [F(3, 9) = 3.7; p = 0.054].
To determine if selective influence at the individual level held
for the two scenarios, we conducted four required one-tailed
Kolmogorov-Smirnoff tests: HH < HL, HH < LH, HL < LL,
LH < LL. For the SOFT scenario, no subject met the criteria
for selective influence, and S103 met the criteria for selective
influence in the LOUD scenario. Thus, even though RTs differed
more in the SOFT scenarios than the LOUD ones, evidence for
selective influence at the individual distributional level was not
more prevalent in SOFT vs. LOUD.

Individual Data: Dual Targets
To better illustrate the reasons behind the failure of selective
influence for the dual targets, the survivor functions based on the
estimated cumulative distribution functions for all four subjects
in the two different scenarios are shown in Figure 2. Although
a primary factor is that the means of the different conditions are
very similar to each other, selective influence also fails because
the survivor functions cross at some point. For example, S101 in
the SOFT scenario illustrates faster RTs at the slow RTs for the
HL condition, but once the RTs are slower (e.g., about 230 ms),
RTs are faster in the HH compared to the HL condition. In many
cases, the survivor functions for HH, HL, and LH all appear to
be essentially the same (e.g., S102 in the SOFT scenario). The
means in which selective influence fails appears to be very similar
for the LOUD and SOFT scenarios. Due to the broad failure
of selective influence in both scenarios, we do not report SIC
functions for these data.

Capacity
Figure 3 shows capacity functions for the two different scenarios
tested: LOUD and SOFT.

As we have observed in other experiments on auditory
detection (e.g., Lentz et al., 2016, 2017), the capacity functions
appear to be dynamic, with high capacity values occurring for
short RTs and much lower capacity illustrated at the longer
RTs. The majority of data points fall within C(t) values of 1.0

(unlimited capacity) and 0.5 (fixed capacity), and while some
capacity values exceed 1.0, these regions are typically based on
only a few RTs and are therefore not necessarily indicative of
super capacity. In fact, the statistical package offered by Houpt
et al. (2013), finds that the majority of these capacity functions are
statistically different from UCIP and are limited capacity (Houpt
and Townsend, 2012). In four cases, capacity is not statistically
different from UCIP, and those cases are illustrated in Table 4,
which shows the mean capacity values for each subject and
condition, in bold and italicized text.

RELATIONSHIP BETWEEN RT AND
LOUDNESS

As in Lentz et al. (2016, 2017) we again have observed a failure
of selective influence and the presence of limited capacity for
the detection of one vs. two tones, and we did not evince
more evidence of selective influence when RTs were measured
at lower overall levels (i.e., in the SOFT scenario). We now
put forth a hypothesis that these observations are consistent
with a perceptual mechanism in which processing times to
detect sounds are driven by psychophysical functions that are
monotonically related to subjective loudness and suffice to squash
the distributions of the faster times (i.e., HH, HL, and LH) to the
extent that we witness a failure of selective influence. We discuss
two main pieces of evidence to support this hypothesis.

First, we evaluated whether the loudness of these sounds
is related to mean RT. One might already expect that this
has been well-established, but we are not aware of any studies

TABLE 3 | Mean RTs in ms for the two-tone (dual-target) stimuli in the two
scenarios.

Condition

LOUD SOFT

Subject HH HL LH LL HH HL LH LL

S100 194.6 194.4 180.5 194.5 203.0 206.2 209.3 221.0

S101 205.6 215.2 216.0 216.2 234.8 232.8 241.2 256.3

S102 180.8 191.2 187.5 197.4 236.2 236.7 237.6 269.9

S103 185.5 193.0 188.5 197.8 204.9 214.3 215.9 223.8

Average 191.6 198.5 193.1 201.5 219.7 222.5 226.0 242.7
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FIGURE 2 | Survivor functions obtained for the dual-target stimuli for the LOUD scenario (left panels) and the SOFT scenario (right panels). Data from the different
dual-target conditions (HH, HL, LH, and LL) are depicted by lines of different colors and solid lines indicate HH and LL whereas dotted lines reference HL and LH.

relating reaction time to loudness for two-tone stimuli. Although
we did not measure loudness directly, we used the validated
model of Moore et al. (1997) and International Organization for
Standardization (2017), which has enjoyed considerable success
in calculating the loudness of steady sounds. We purport that it
is also sensible to use a loudness model to estimate loudness, due
to difficulty and time-consuming nature of implementing scaling
techniques. The loudness (in sones) of the stimuli calculated
from the model as implemented by Moore et al. (2016; using
the “middle-ear only” correction) are plotted vs. the measured
reaction times in Figure 4. Data from the dual-target conditions

are represented with filled symbols, whereas data from the single-
target conditions are represented with unfilled symbols. For
comparison, results from Lentz et al. (2016) are also shown with
dashed lines. A log-linear regression was conducted between
estimated loudness and RTs for the current data set (r = −0.87).
The best-fitting line is plotted on Figure 4 as a dark solid line.

Figure 4 illustrates a strong relationship between the modeled
loudness of the stimuli and the associated reaction times. We also
note that the loudness of the dual-target stimuli, particularly HL,
LH, and HH, are rather similar. This feature could explain why
the RTs are also similar for these conditions and thus may lead
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FIGURE 3 | Capacity functions obtained for the LOUD scenario (left panels) and the SOFT scenario (right panels). As in Figure 2, data from the different
dual-target conditions (HH, HL, LH, and LL) are depicted by lines of different colors and solid lines indicate HH and LL whereas dotted lines reference HL and LH.

to difficulty observing selective influence. The strong correlation
between loudness and RT lends credence to the hypothesis that
RT is indeed driven by loudness for both one-tone and two-
tone stimuli.

MERGING LOUDNESS GROWTH WITH
SYSTEMS FACTORIAL TECHNOLOGY
PREDICTIONS

Second, we posit that loudness-driven RTs would also be
consistent with limited capacity given the findings of Lentz et al.
(2016). There are several major and quite distinct ways in which

a set of parallel channels can evince limited capacity. The first
two have been studied and employed broadly (e.g., Townsend
and Ashby, 1978, 1983; Townsend and Wenger, 2004; Eidels
et al., 2011; Algom et al., 2015). A third is offered here for
the first time and falls into the class of integrated subadditive
parallel systems and are a form of a coactive system. These three
are discussed here, with greater attention to be focused on the
latter explanation.

(1). Limited Resource Parallel Systems: In this model, there is
simply a limited pool of resources which must be shared
among an active set of channels. Such systems perform
at levels varying from extremely limited [e.g., C(t) ≈0]
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TABLE 4 | Mean capacity values for the different conditions tested.

Condition

LOUD SOFT

Subject HH HL LH LL HH HL LH LL

S100 0.51 0.57 0.71 0.51 0.45 0.57 0.55 0.44

S101 0.62 0.51 0.48 0.52 0.74 0.78 1.18 0.61

S102 0.55 0.71 0.86 0.79 0.59 0.77 0.87 0.86

S103 0.56 0.72 0.73 0.98 0.82 0.75 0.86 0.69

Average 0.56 0.62 0.70 0.70 0.64 0.71 0.88 0.65

Capacity values that are bold and italicized are not statistically different from the
UCIP model.

up to mildly limited [C(t) ≈1], A special case of import
is that of fixed capacity, C(t) = Cf but with stochastically
independent channels. With n channels, with an equal
spread of capacity, Cf = 1/n. Such a system produces the
same level of performance as a standard serial system in
OR designs (i.e., very poor!).

(2). Mutually Inhibitory Parallel Systems: The channels
arranged in parallel inhibit one another. Such systems
typically are not stochastically independent but rather
possess negative dependencies, as illustrated in Figure 1.

(3). Integrated Subadditive Parallel Systems: As introduced
earlier, an integrated type of system combines activation

from the two (or more) channels into a single late
conduit. We must consider two very distinct cases. One
transpires when each channel’s activation is a stochastic
(i.e., probabilistic in time) random variable and the final
conduit sums the two independent random variables. If
the activations are additive and the integrated hazard
function is based on that summed random variable, we
have the now-classic case of a coactive system (Miller,
1978; Schwarz, 1989; Diederich and Colonius, 1991;
Townsend and Nozawa, 1995; Houpt and Townsend,
2011). These types of systems evidence extreme super
capacity, i.e., C (t)� 1.However, another possibility arises
when the input activation is a constant related to (or
being!) the psychophysical function and the distribution
is found by multiplying that constant with the inherent
hazard function. If the combined signal (represented by
the psychophysical function) is subadditive (e.g., if the
exponent in Steven’s Power Law is less than 1: S = KIp;
Stevens, 1957, p < 1) and the integrated hazard function is
proportional (at least) to the combination, limited capacity
will result. The opposite occurs if p> 1.

Given the novelty and relative unfamiliarity of the power law
in theory and methodology of response times, we take some
space here to outline a proof of concept. We thereby demonstrate,
assuming a classic subadditive psychophysical function, that for
higher values of intensity the survivor functions draw closer
together and thereby provide a potential explanation for the

FIGURE 4 | Average reaction time plotted as function of loudness estimated from Moore and Glasberg’s loudness model. Data from single-target and dual-target
conditions are illustrated with unfilled and filled symbols, respectively. The solid dark line represents a log-linear regression line using the current data set.
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statistical failure of selective influence in an SFT experiment. We
then turn our attention to the notion of capacity, which also
illustrates a limited nature.

First, let ψ(I, K) stand for the psychophysical increasing
function of stimulus intensity, where I stands for encoded
stimulus intensity and K is a set of parameters (perhaps just
one) needed to predict human performance. So, dψ/dI > 0
indicating that the loudness sensation increases with intensity.
For now, we assume that ψf 1 = ψf 2 where f1 and f2 refer
to the two different frequencies constituting the two signals.
Then, suppose S(t, ψ , K) stands for a survivor function that is
a decreasing (as should be the case) function of ψ , dS/dψ < 0.
This statement states that the likelihood that the stimulus has not
been detected by time t decreases with intensity.

Note that we simply consider that I is the germane factor
for SFT purposes. Now assume that subjective loudness is some
conjoint function of If1 and If2, meaning that the two signals
are merged into one. Letting If 1, If 2 represent the encoded
intensities from the two frequencies, we write this as ψ (If 1,
If 2) for now, increasing in each argument. Then, we move to
formulate our prime axioms. Thus, we postulate that for all t≥ 0,
dS
dψ

< 0 (as above), and d2S/dψ2 > 0. The latter condition
is needed to reflect our belief that as ψ grows, the survivor
function slows down its descent, which means the survivor curves
get closer together as intensity is increased. More formally, we
have:

PROPOSITION I: If the above postulates are in force, the
survivor functions of I become ever closer as I grows larger.

PROOF: The inference is immediate because dS/dψ < 0
implies the proper decreasing behavior that the process has not
finished by time t, as I increases and d2S/dψ2 ensures that the
rate of decrease is ever slowing down as I increases. This behavior
occurs for all times, t.

Next, we postulate that incoming sensory stimulation is
summed so that the psychophysical function for two tones
follows the same form as for a single tone. We further assume that
the effect of this summed quantity follows Stevens’ Power Law,
that is, ψ (If1, If2, K) = K (If1 + If2)p where K > 0 and 0 < p < 1
for loudness (Stevens, 1957). Since p< 1, the overall effect ofψ is
to act as a squashing function.

To evaluate SIC functions, we now examine the double
difference in terms of If 1, If 2, which we can interpret as our
SFT factors. Recall for our earlier presentation that we failed
(Lentz et al., 2016, 2017 and here) to find the required selective
influence SHH(t) < SHL(t) ≈ SLH(t) < SLL(t), in that our data
indicated SHH(t) ≈ SHL(t) ≈ SLH(t). The implication here is that
if we were able to evince selective influence, the associated SIC
function would also be positive for all t. But, our hypothesis is
that the latter three distributions are so close together for the
usual stimulus sets, that our sample sizes are too small to detect a
significant difference.

To show this mathematically, first we need to connect ψ with
a stochastic representation by rendering assumptions about how
ψ affects, say, the time to accrue evidence up to a criterion. Recall
that any survivor function on time (equivalently, on any positive
valued random variable) can be expressed as Exp[-H(t)] where
H(t) is the integrated hazard function.

Additional complexity at this point does little good (that is,
would only add more untestable conditions), so we make the
very simplifying assumption that the integrated hazard function
associated with loudness is proportional to ψ (If1, If2, K) x td.5

This trick delivers us the pleasant feature that our
survivor functions are Weibull with rate proportional to ψ :
Sf 1f 2

(
t, p, a

)
= e−aψ

(
If 1,If 2,K

)
td
= e−aK

(
If 1 + If 2

)ptd
, where

K > 0, a > 0, and 0 < p < 1, d > 0, where f1 and f2 refer to
the two channels in the processing architecture and d is the
traditional shape parameter6.

PROPOSITION II Set ψ
(
If 1, If 2,K

)
= K(If 1 + If 2)

p,
K> 0, a> 0, and 0< p< 1. This psychophysical function of input
from the two channels satisfies SLL(t, p, a) -SLH(t,p,a) – [SHL(t,p,a)
- SHH(t,p,a)]> 0 for all t≥ 0, and therefore under this model, SIC
functions should be positive.

Following the logic of Townsend and Nozawa (1995), when
taken at the infinitesimal level, this statement is equivalent to,
implementing the chain rule,

∂2Sf 1f 2
(
t, If 1, If 2, p, a

)
∂If 1∂If 2

=
(
d2S/dψ2) (∂ψ/∂If 1

) (
∂ψ/∂If 2

)
+

(
dS
dψ

)(
∂2ψ

∂If 1∂If 2

)

PROOF: Now, d2S/dψ2 >0 by virtue of Sf 1f 2
(
t, p, a

)
=

e−aψ
(
If 1,If 2,K

)
td

, ∂ψ/∂ If 1 >0 and ∂ψ/∂If 2 > 0 by assumption,

(dS/dψ) <0 also by Sf 1f 2
(
t, p, a

)
= e−aψ

(
If 1,If 2,K

)
td

, and finally

it is straightforward to see that ∂2ψ
∂If 1∂If 2

> 0 by virtue of
0< p< 1. This sum of products is always positive, which implies
that SLL(t, p, a) -SLH(t,p,a) – [SHL(t,p,a) - SHH(t,p,a)] > 0 for all
t ≥ 0 as we wished. Thus, the proposition is proven.

The conclusion is that the three functions SLH (t) ≈ SHL(t) ≈
SHH(t) may become increasingly indistinguishable as a function
of I, in the presence of statistical error. We can usually, again for
our purposes, explicitly put down an explicit form forψ and then
bypass the chain rule.

Example survivor functions based on this simple model are
illustrated in Figure 5. Letting p = 0.3, the usual power as
typically measured for sound intensity (S = KI.3), Figure 5
shows the survivor functions for three relationships of I (For
simplicity, Ii = Ii): I1>>>I2 (50 dB difference), I1>>I2 (30 dB
difference), and I1 > I2 (10 dB difference), and I2 is fixed. For
illustration purposes, K, a, and d are set to arbitrary values to
best illustrate these effects (1, 0.01, 5, respectively), noting that for
our goals, only the basic form of what is happening is pertinent.
We note that under this model, HL and LH survivor functions
are identical. Notably, Figure 5 illustrates that HH, HL, and LH

5A quite pleasant feature of RT modeling is that any distribution represented by
a survivor function on a positive random variable (here, time) can be written
uniquely as S(t) = e−H(t). H(t) is called the integrated hazard function because it
equals

∫ t
0 h
(
t′
)

dt′ where h(t’) is the actual hazard function itself and represents the
instantaneous likelihood that the process completes, given that it hasn’t finished
yet. This then propels H(t) = – ln[S(t)].
6We are definitely not saying that p < 1 for all modalities, just for sound intensity
here.
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FIGURE 5 | Predicted survivor functions illustrating that the effects of the difference in stimulus intensity between the two targets leads to survivor functions for HH,
HL, and LH being very similar to each other.

FIGURE 6 | Predicted capacity functions for p = 0.3 and p = 3. Conditions in which I1 = I2 (i.e., HH and LL) are shown as the blue solid line whereas predictions for
I16=I2 (i.e., HL and LH) are shown with orange dotted lines.

survivor functions are much more similar to each other than to
the LL survivor functions.

Besides architecture and decisional stopping rule and as
pointed out in our Introduction, another key attribute of
processing systems is the degree of efficiency as the workload
is varied or what goes by the term “workload capacity” in
SFT. We now show that the Stevens power law as interpreted
above predicts super, unlimited or limited capacity depending on

whether p > 1 (super), p = 1 (unlimited), or p < 1 (limited).
In our elementary form, the integrated hazard function (an
exponential distribution with “rate” = psychophysical function)
is just the product of t and Stevens power function: t · (If 1+

If 2)p.
PROPOSITION III: Workload capacity attending our Stevens

Power Law Model is super, unlimited, or limited according to the
values of p< 1, p = 1, or p> 1, respectively.
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PROOF: (If 1 + If 2)p is overadditive, additive, or subadditive
relative to (If 1

p
+ If 2

p) according to the magnitude of p > 0.
Thus, C(t) = (If 1 + If 2)p /(If 1

p
+ If 2

p) and the numerator is
greater than, equal to or less than the denominator depending
on whether p> 1 (super), p = 1 (unlimited), or p< 1 (limited).

Figure 6 exhibits C(t) for p = 0.3 in the left panel and p = 3
in the right panel. The latter yields super capacity values for
the I1 = I2 conditions. So far, capacities this high are relatively
rare. For instance, Houpt et al. (2014) found that word and
pronounceable non-words possessed much higher capacity than
upside down English letter sequences and Katakana strings but
even the former C’s were pretty well bounded below C(t) = 4,
although the latter were very poor, asymptoting around C(t)≈.1.
These predictions illustrate that this model also predicts different
capacity values for LH and HL conditions. When p> 1, the power
function leads to a higher capacity value and the opposite occurs
for p < 1. Should p = 1, we have the specific case of unlimited
capacity, with all C(t) values equal to 1.

At the established value of p = 0.3 we find C(t) ≈0.6,
which is very similar to the capacities observed in this
study. However, the current data do not provide robust
evidence that CHL or CLH > CLL or CHH , although the
levels used in these experiments are only 15 dB apart.
On the other hand, Lentz et al. (2017) used stimulus
levels over 40 dB apart and they also did not report
clear evidence of higher capacity values for HL and LH
compared to HH and LL.

More generally, an arbitrary integrated hazard function,
say, H[t, ψ(If 1, If 2)] can be assessed as to whether it is
an overadditive (therefore super capacity), additive (therefore
unlimited capacity), or subadditive (therefore limited capacity)
relative to H[t, ψ(If 1)]+H[t, ψ(If 2)].

CONCLUSION

It is well established that mean RT is a decreasing function
of loudness. However, it is another question as to whether
an ordering of distributions on RT as a function of intensity
holds at a stronger level (see, e.g., Townsend, 1990). Moreover,
such issues that arise when one considers the sum of two or
more tones, possibly of different frequencies, also have remained
unanswered, although some recent studies suggest that sums
of tones may not be highly effective in shortening RTs (e.g.,
Schröter et al., 2007, 2009; Fiedler et al., 2011; Lentz et al., 2016,
2017).

We found ourselves compelled to open (or reopen) these
issues when our earlier attempts to employ distributional
orderings to affirm selective influence in a study on RT as
a function of the intensities of two distinct frequencies was
unsuccessful. Successful selective influence would have ordered
the respective survivor functions as HH< HL≈ LH< LL but in
fact, HH ≈ HL ≈ LH < LL in terms of statistical significance.
The experimental part of the present effort replicated those
findings of a failure to satisfy selective influence, and such
findings were evident when measured at both relatively low (soft)
and relatively high (loud) stimulus levels. We again observed

limited capacity in comparing the detection of one and two
tones (e.g., Schröter et al., 2007; Lentz et al., 2016, 2017).
Our analyses indicated that the loudness of stimuli (whether
they be one or two tones) did produce monotonically related
mean reaction times.

We presented a proof-of-concept model which, based on an
assumption that processing times to detect sounds are driven
by psychophysical functions of tonal loudness as functions
of intensity, predicted both experimental observations. This
model is consistent with the findings of Schröter et al.
(2007, 2009) who have argued that when two tones are
fused together into a single percept, a redundant signals
effect is not observed. At this point in time, we believe that
the above analytic efforts and illustrative computations are
sufficient to render the integrated subadditive psychophysical
function (in this case, employing a Stevens power law with
a fractional exponent) a suitable contender for our failure of
dominance as well as our finding of limited capacity. This is
the first demonstration that an integrated parallel subadditive
model may provide an appropriate description of auditory
detection architecture.

One way of thinking about our experimental design is as
a so called redundant signals paradigm. Such experiments
recede into the past (see, e.g., Egeth, 1966; Bernstein, 1970).
However, when Miller (1978) initiated a novel upper bound
to assess how much RTs were speeded up (or not) in a
bimodality study, many researchers, especially in the field
of multimodal perception, began to apply the bound (i.e.,
an inequality on RT), and such work has been conducted
over several decades. It has often been found, as in Miller’s
first studies, that capacity with combined vision and sound
is at a sufficiently high capacity that the Miller bound is
violated (e.g., Fox and Houpt, 2014). None of our observers
even reached capacity significantly above the unlimited
prediction and all asymptoted close to the lower bound
known as fixed capacity (Townsend and Nozawa, 1995). It
was therefore impossible that the upper (Miller) bound could
have been violated.

In addition to the potential causes of limited capacity we
outlined earlier, Miller put forth a model that could produce in
between levels of performance (Miller, 1988), the grains model
(Miller and Ulrich, 2003). If most of the grains are shared by
two signals, the output would be like hearing a single tone (and
therefore close to fixed capacity in our terms) but if they are not
shared, performance would approach that of a (super capacity)
coactive model (see also Schröter et al., 2009 who applied this
model to similar stimuli). It may be that this concept could be
expanded into a model for the kind of result we have found with
our survivor functions.

In a sense, the simplest explanation of all would be that we still
have a parallel race going on but that selective influence is simply
weaker as sounds intensify. Recall that independent race models
(whatever their capacity) will predict that the difference of the
respective survivor functions will decrease from SLL(t) to SLH(t)
and SHL(t) and from the latter to SHH(t). If there is too much
“noise” at the bottom (as in Figure 2), selective influence will
not be detectible there. What would not work would be to have
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such a race and try to coax the system into the phenomena on
which we deliberate by letting each channel’s subjective intensity
be governed by a Stevens’ scale: Such a system will, perforce,
exhibit unlimited capacity!

Another consideration is that of the quality of the sound itself,
as also noted by Schröter et al. (2007, 2009), and whether the two
sounds merge into a single percept. Schröter et al. (2007, 2009)
argued that two tones merged into a single percept (which yielded
very slow dual-target RTs) whereas a tone and a noise did not (and
therefore yielded much faster dual-target RTs). Yet, we suppose
it is possible, in theory, that one could still dissect the signal
into separate sounds and yet have the loudness of the combined
stimulus be the Stevens’ function we have posited. Such issues are
fascinating to us and may require significant effort to untangle.

We are not in favor, at this juncture in time, to attempt
more detailed parameter estimation and utilization and model
fitting. We rather advocate that researchers endeavor to construct
appropriate experimental designs that can test among the above
options. In addition it would be valuable to explore new
paradigms in the auditory domain that permit enhanced selective
influence and therefore, to truly assess architecture and stopping
rules. It has turned out in visual cognition that other aspects
of stimuli than simply intensity can drive effective selective
influence. For instance, degrees of similarity among even fairly
complex or configural features (e.g., distance between the eyes
in faces; Fifić and Townsend, 2010) can serve as valid selective
influence dimensions. We posit that it is likely that something
like this can be applied to auditory perception.

Finally, we suggest that psychophysics of sound as a discipline
might be reinvigorated by bringing to bear the burgeoning sets
of tools available in the field of mathematical modeling and in
particular, those instruments connected with the analysis of RTs.
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