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Long-QT Syndrome (LQTS) is a cardiac electrical disorder, distinguished by irregular
heart rates and sudden death. Accounting for ∼40% of cases, LQTS Type 2 (LQTS2),
is caused by defects in the Kv11.1 (hERG) potassium channel that is critical for
cardiac repolarization. Drug block of hERG channels or dysfunctional channel variants
can result in acquired or inherited LQTS2, respectively, which are typified by delayed
repolarization and predisposition to lethal arrhythmia. As such, there is significant interest
in clear identification of drugs and channel variants that produce clinically meaningful
perturbation of hERG channel function. While toxicological screening of hERG channels,
and phenotypic assessment of inherited channel variants in heterologous systems is
now commonplace, affordable, efficient, and insightful whole organ models for acquired
and inherited LQTS2 are lacking. Recent work has shown that zebrafish provide a
viable in vivo or whole organ model of cardiac electrophysiology. Characterization of
cardiac ion currents and toxicological screening work in intact embryos, as well as
adult whole hearts, has demonstrated the utility of the zebrafish model to contribute to
the development of therapeutics that lack hERG-blocking off-target effects. Moreover,
forward and reverse genetic approaches show zebrafish as a tractable model in which
LQTS2 can be studied. With the development of new tools and technologies, zebrafish
lines carrying precise channel variants associated with LQTS2 have recently begun to
be generated and explored. In this review, we discuss the present knowledge and
questions raised related to the use of zebrafish as models of acquired and inherited
LQTS2. We focus discussion, in particular, on developments in precise gene-editing
approaches in zebrafish to create whole heart inherited LQTS2 models and evidence
that zebrafish hearts can be used to study arrhythmogenicity and to identify potential
anti-arrhythmic compounds.

Keywords: Long-QT Syndrome, zebrafish, cardiac electrophysiology, inherited LQTS, acquired LQTS, CRISPR,
hERG, zERG
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LONG-QT SYNDROME AND hERG
CHANNELS

Long QT syndrome (LQTS) is characterized by prolongation
of the heart rate-corrected QT interval (QTc) and dysmorphic
T-waves on surface electrocardiogram (ECG) recordings, and
increases risk of cardiac arrhythmia (Alders et al., 1993; Roden,
2008; Schwartz et al., 2012). QTc prolongation occurs as a result
of aberration in one of several cardiac ion channels resulting in
anomalous depolarization or repolarization of cardiomyocytes
and prolongation of the action potential duration (APD). APD
prolongation that increases the QTc above the 95th percentile of
the normal range (350–450 ms) is used in the risk stratification
of LQTS (Postema and Wilde, 2014). LQTS can be acquired or
congenital, the latter accounting for approximately 1 in 2500
people, with the former being more prevalent and attributable
to electrolyte imbalances or adverse drug effects (Schwartz et al.,
2009). Inherited LQTS has been linked to mutations in several
cardiac ion channels with KCNQ1 (LQTS1), KCNH2 (LQTS2),
and SCN5A (LQTS3) being the most common LQTS genes,
accounting for ∼90% of all genotype-positive cases (Schwartz
et al., 2012). Altered ionic currents in these cases prolongs
the APD, which increases the susceptibility to early after
depolarizations (EADs) and triggered activity and also creates
dispersion of repolarization across the ventricular wall creating
a substrate for arrhythmias (El-Sherif et al., 2019). A prolonged
QT interval predisposes individuals to a form of ventricular
tachycardia, torsade de pointes (TdP), which can degenerate to
ventricular fibrillation and syncope, cardiac arrest, and sudden
death (Alders et al., 1993; Schwartz et al., 2012).

Variants in the KCNH2 gene that cause channel dysfunction
(loss of trafficking or gating changes that reduce the time
channels spend in the open state) are linked to LQTS2, which
accounts for ∼40% of LQTS cases (Schwartz et al., 2012). More
than 500 KCNH2 gene mutations associated with LQTS2 have
been identified (Alders et al., 1993; Schwartz et al., 2009; Shah
et al., 2019). KCNH2 encodes the α-subunit Kv11.1 (also known
as the human Ether-à-go-go-Related Gene, hERG), which is
responsible for the major repolarizing current, IKr , during phase
3 of the cardiac action potential (Shah and Carter, 2008). As
such, hERG channels are important for physiological suppression
of EADs and triggered activity (Smith et al., 1996). Reduced
hERG currents due to genetic variants prolongs repolarization,
increasing the susceptibility to triggering cardiac events such as
EADs, which can lead to lethal arrhythmias and sudden death.
Acquired forms of LQTS, thought to be more prevalent than
the inherited form, are mostly due to adverse drug effects or
electrolyte imbalance and are almost exclusively associated with
blocking of hERG channels and reduced repolarization.

Drug-induced cardiotoxicity as a result of hERG channel block
is one of the major hurdles in drug discovery and development
and has been a primary reason for the withdrawal of many
clinically approved drugs from the market (Kannankeril et al.,
2010; Mandenius et al., 2011). hERG assays using mammalian
heterologous expression systems (e.g., HEK-293, CHO cells)
have been the gold standard in predicting cardiotoxicity.
However, translatability of this assay is limited due to the

lack of complexity of ion currents that are expressed in native
cardiomyocytes, which may lead to the loss of potential drug
candidates in the early stage of drug discovery (Liang et al.,
2013). As such, there is significant interest in the generation
of screening platforms that use more complex physiologically
relevant cell or animal models. Furthermore, there is a need
to better understand the complexity of genotype-phenotype
correlations and the underlying fundamental mechanisms of
inherited LQTS to be better able to risk-stratify variants and
to develop and test effective targeted therapeutics. Thus high-
throughput translational models that enable study of the complex
mechanisms of cardiac repolarization and its alterations in
congenital and acquired LQTS are highly sought after. In recent
years, the use of zebrafish to provide such a model has gained
traction (van Opbergen et al., 2018; Tanaka et al., 2019). Here
we briefly discuss the utility of zebrafish as a cardiac model and
then review the use of zebrafish as a model of acquired and
inherited LQTS2.

ZEBRAFISH AS A CARDIAC MODEL

Morphological Characteristics
The zebrafish heart is distinct from mammalian hearts, most
clearly by the presence of two, rather than four, cardiac chambers.
However, even with only one atrium and one ventricle, the
zebrafish heart is remarkably mammalian-like in a number
of ways that suit its use as a model system. The zebrafish
heart develops, starting as a single conducting tube, at just
24 h post-fertilization (hpf), and over 72 h, develops nodal
activity, separation of atrium and ventricle, and coordinated
inter-chamber conduction (Chi et al., 2008). This rapid timeline
of development allows for observation of a functional heart early
in development, proving advantageous for studying, for example,
toxicological screens, modifying mutations, and developmental
pathways (Bakkers, 2011; Sarmah and Marrs, 2016). These
investigations are greatly aided by the transparency of zebrafish
larvae, which enable direct visualization of cardiac function using
simple motion capture, or genetically encoded indicators, to
monitor outcome measures such as bradycardia, tachycardia, or
2:1 atrioventricular block (Garrity et al., 2002; Chan et al., 2009).
Furthermore, the diminutive size of the zebrafish larvae permits
oxygen exchange via passive diffusion, ameliorating the need for
a functional cardiac pump and this allows for study of potentially
severe cardiac defects that might otherwise induce mortality in
other model systems (Kang et al., 2018).

Electrical Properties
The sinoatrial node (SA node) is a heterogeneous cluster of
cells that forms the pacemaker region, responsible for the
initiation of cardiac depolarization, and chronotropic responses
of the heart. In zebrafish the SA node has been shown
to develop very early, with the more primitive “heart tube”
showing a constant and linear conduction pathway at 24 hpf.
Pacemaking activity was shown to be critical in zebrafish heart
rate regulation by the homozygous slow mo zebrafish variant,
which resulted in attenuated pacemaking in isolated cardiac
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myocytes (Baker et al., 1997; Warren et al., 2001). Using a
genetically encoded GFP linked to a transcription factor (Isl1)
previously identified in mammalian SA nodal progenitor cells,
the zebrafish SA node was identified as a ring of tissue at
the junction of the sinus venosus and atrium (Tessadori et al.,
2012). Isolation and patch clamp electrophysiological assessment
of GFP+ cells revealed that these cells produce spontaneous
action potentials, demonstrating their role in pacemaker activity
(Tessadori et al., 2012). Subsequent work using transgenic
zebrafish lines expressing GFP in conducting tissue combined
with hcn4 and shox2 nodal-specific markers confirmed the
presence of conducting cells in the SA node region of the
zebrafish heart (Poon et al., 2016). These studies also identified
dense innervation around the GFP-labeled cells, consistent
with autonomic nervous system chronotropic regulation of the
pacemaker site (Poon et al., 2016).

At approximately 2 days post-fertilization (dpf), a canal of
tissue separates the zebrafish atrium and ventricle. This tissue
appears to function similarly to the mammalian atrioventricular
node (A-V node), in that it delays electrical propagation between
the atrium and ventricle, allowing for coordinated contraction of
the two chambers (Sedmera et al., 2003; Milan et al., 2006a; Chi
et al., 2008). Using optical mapping approaches, Sedmera et al.
(2003), first identified a slowing of current through the junction
between atrium and ventricle. A subsequent study mapped
action potential morphology in the atrioventricular canal and
demonstrated the presence of an action potential configuration
that was distinct from that observed in either atrium or
ventricle, and that contained a slow diastolic depolarization
phase consistent with mammalian atrioventricular electrical
activity (Chi et al., 2008). Interestingly, Stoyek et al. (2016),
found that the atrioventricular canal functioned as a secondary
site of pacemaker activity; upon vagal nerve stimulation, the
source of spontaneous depolarization shifted from the SA node
to the A-V node as is observed in mammalian hearts upon
vagal stimulation.

Zebrafish hearts function as a syncytium with cell-to-cell
communication afforded by similar connexin proteins to those in
mammals, with orthologs of Cx40, Cx43, and Cx45 (Cheng et al.,
2004; Christie et al., 2004; Chi et al., 2010). Christie et al. (2004),
identified and characterized zfCx45.6 showing that it possessed
63% sequence identity with human Cx40 (Verheule and Kaese,
2013). Functional assessment of zfCx45.6 in dual voltage
clamp Xenopus oocytes demonstrated functional gap junction
formation with similar conductance and voltage-dependence
to mammalian Cx40 (Christie et al., 2004). Knockdown or
mutated variants (dcos226) of zfCx48.5 (also described as zfCx46)
produced uncoordinated contractions and decreased cardiac
output (Cheng et al., 2004; Chi et al., 2010) indicative of a role
in gap junction formation in the zebrafish heart. zfCx43 is the
zebrafish ortholog to mammalian Cx43 showing 71% sequence
identity with human Cx43 and expresses in the developing
heart in a similar pattern to the mouse (Chatterjee et al., 2005;
Iovine et al., 2005). The Cx45 ortholog, zfCx43.4, has high
identity with human Cx45 (Essner et al., 1996), but no data have
localized zfCx43.4 to the heart, and its function may differ from
mammalian Cx45 (Barrio et al., 1997; Desplantez et al., 2003).

In terms of whole organ electrical propagation, recordings of
ECG in larval and adult zebrafish demonstrate similar temporal
sequence of activation and relaxation to that observed in human
hearts (Milan et al., 2006b). Recently, ECG and high resolution
optical detection of temporal voltage changes within the ventricle
during activation and relaxation were used to correlate ECG
waveforms with voltage gradients in the adult zebrafish heart
(Zhao et al., 2020). These studies suggested that zebrafish hearts
rely on epicardial gradients more strongly than transmural
gradients as in humans, perhaps as a result of the differences
in myocardium thickness of the ventricular wall, and this
may have implications for translation of findings related to
arrhythmia initiation and maintenance in zebrafish to the human
(Zhao et al., 2020).

Cardiac Electrophysiology
The zebrafish ventricular action potential is remarkably similar
to that in humans, more so than other small mammalian
systems, such as the murine model. Most noticeably, the
significant plateau in phase 2 is pronounced in zebrafish
ventricular myocytes as it is in the human, and aside from
the rapid repolarization observed in epicardial regions during
phase 1, all other action potential phases are shared (Vornanen
and Hassinen, 2016). Direct comparison of action potentials
recorded from adult zebrafish ventricular cells with those from
human papillary muscle and murine ventricular strips revealed
the closely associated morphology of zebrafish and human
ventricular action potential (Nemtsas et al., 2010). As a result,
measurements of APD in adult and larval (e.g., 3 dpf) zebrafish
hearts report values of ∼140–230 ms (see Table 1), which are
remarkably dependent on temperature (Rayani et al., 2018), but
reflect the duration of the human ventricular action potential
reasonably well (Alday, 2014; Vornanen and Hassinen, 2016; Hull
et al., 2019; Shi et al., 2020; Zhao et al., 2020). The QT interval
measured from ECG recordings in zebrafish demonstrates
comparable resting heart rate and conduction intervals with
humans and the QT interval has a near linear relationship with
the RR interval (Milan et al., 2006b), features that are imperative
for a model examining LQTS that involves delayed ventricular
repolarization and prolongation of the APD and QTc interval.

Building on earlier work characterizing zebrafish ventricular
myocyte ion currents (Brette et al., 2008), Nemtsas et al. (2010),
provided the most comprehensive description of cardiac currents
responsible for the zebrafish ventricular action potential to date.
Biophysical characterization and selective drug blockade under
voltage clamp conditions, allowed these authors to examine Na+,
Ca2+, and K+ in isolated zebrafish ventricular myocytes. These
studies demonstrated key roles for voltage-gated Na+ channels
in the action potential upstroke, and L-type and T-type Ca2+

channels in the maintenance of the plateau phase (Nemtsas et al.,
2010; Zhang et al., 2010); the prominent role of the latter being
somewhat different from that in the adult mammalian ventricle
(Haverinen et al., 2018). Other studies suggest a prominent
role for Na+-Ca2+ exchange current at depolarized voltages
during the plateau phase (Zhang et al., 2010). Dependence of
the ventricular resting membrane potential on IK 1 expression
was also demonstrated (Nemtsas et al., 2010), although the
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TABLE 1 | Acquired LQTS2-associated drug effects on cardiac electrical activity in zebrafish larvae and adults.

Larval zebrafish hearts

Drug Heart rate A-V dissociation APD

100 compounds Bradycardia with 36 (22 known to increase QT and TdP)5

11 hERG blockers Bradycardia with all6 2:1 block with all (at higher concentrations)6

9 QT-prolonging compounds Bradycardia with all10 2:1 block with all (R2 = 0.93; IC50 and 2:1 block)10

35 compounds 2:1 block with 14 of 17 known to prolong QT9

Amiodarone

20 µg/ml Bradycardia (HR reduced by 30%)18

Astemizole

60 µg/ml Bradycardia (HR reduced by 50%)18 2:1 block9

1 µM Heart failure9

5 µM

Cisapride

5 µM 2:1 block9

10 µM Ventricular failure9

20 µM Heart failure9

Dofetilide

10 nM 2:1 block1 Increased by 64 ± 45 ms (+28%)1

12 µM

Haloperidol

5 µM 2:1 block9

10 µM Ventricular failure9

50 µM Heart failure9

Tamoxifen

20 µM Bradycardia (HR reduced by 75%)18

Terfenadine

Unknown Bradycardia9 2:1 block2,8 Increased from 231 ± 5 to 245 ± 7 ms (100 nM; 6%)3

100 nM 2:1 block9 Increased by 58 ± 15% (100 nM)2

1 µM Rescue of reggae phenotype in 54% of larvae7

5 µM Heart failure (20 µM)9

10 µM 2:1 block7

20 µM

25 µM

2-MMB

50 µM Suppressed 2:1 block in breakdance4 Decreased APD in breakdance from 570 ± 23 to
376 ± 66 ms (−34%)4

Flurandrenolide

50 µM Suppressed 2:1 block in breakdance4 Decreased APD in breakdance from 482 ± 83 to
338 ± 44 ms (−30%)4
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TABLE 1 | Continued

Adult zebrafish hearts

Drug R-R interval APD QT Other markers of arrhythmogenicity

hERG blockers

Astemizole

50 µM Decreased from 308 ± 77 ms by
−16 ± 6%11

Increased from 242 ± 54 ms by
+18 ± 9%11

Dofetilide

50 nM APD75 increased from 159 ± 8 to
193 ± 9 ms (+21%)14

Increased triangulation (APD75-APD25)
from 75 to 89 ms (+16%)14

100 nM APD90 increased by 75 ms15 Increased APD90 and Peak-Peak
variance17

10 µM

E-4031

1 µM Bradycardia12 APD90 increased from 144 10 to 179
9 ms (+20%)13

QTc increased from 439 ± 39 to
529 ± 27 ms

Increased triangulation (APD90-APD30)
from 10 to 16 ms (+60%)13

10 µM Increased (+21%)12 Spontaneous EADs (1 s−1)16

20 + 1 µM Isoproterenol APD90 increased to >3000 ms16

Haloperidol

100 µM Decreased from 308 ± 77 ms by
−38 ± 14%11

Increased from 242 ± 54 ms by
+16 ± 11%11

Pimozide

10 µM NSD from 308 ± 77 ms11 Increased from 242 ± 54 ms by
+17 ± 9%11

Terfenadine

200 nM 100 µM NSD from 308 ± 77 ms11 APD75 increased from 183 ± 7 to
216 ± 8 ms (+17%)14

Increased from 242 ± 54 ms by
+11 ± 6%11

Increased triangulation (APD75-APD25)
from 92 to 94 ms (+2%)14

hERG activators

NS1643

20 µM APD75 NSD from 209 ± 1314 Increased triangulation (APD75-APD25)
from 83 to 101 ms (+18%)14

APD25 decreased from 126 ± 6 to
101 ± 6 ms (−19%)14

PD-118057

40 µM APD75 decreased from 193 ± 6 to
176 ± 6 ms (−8%)14

Decreased triangulation (APD75-APD25)
from 82 to 69 ms (−16%)14

RPR260243
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molecular correlate appears to be a different inward rectifier
subfamily member in zebrafish and humans (Hassinen et al.,
2015; Vornanen and Hassinen, 2016). Selective drug block
initially indicated little functional presence of IKs during phase
3 repolarization in zebrafish (Nemtsas et al., 2010; Alday, 2014),
however, expression of Kv7 K+ transcripts in cardiac tissue (Wu
et al., 2014), and more recent studies demonstrate the presence
of IKs current (Abramochkin et al., 2018). A consistent feature
of zebrafish cardiac repolarization is the prominent role of IKr
in phase 3 ventricular repolarization. IKr is conveyed by zERG
channels from the zkcnh6a gene (Langheinrich et al., 2003; Scholz
et al., 2009; Leong et al., 2010; Vornanen and Hassinen, 2016;
Hull et al., 2019). The substantial genetic and pharmacological
evidence for the importance of zERG channels and IKr as a
critical driving force behind phase 3 repolarization suggests that
zebrafish bear great potential as a model of both acquired and
inherited LQTS as is discussed in more detail below.

ZEBRAFISH AS A MODEL OF ACQUIRED
LONG-QT SYNDROME

HR, APD, and QT Interval as Markers of
Arrhythmia in Zebrafish
Cardiotoxicity due to hERG channel blockade is a major hurdle
in drug discovery and has resulted in high profile withdrawals
from the market (Kannankeril et al., 2010; Mandenius et al.,
2011). About 35–40% of drug candidates are dropped in the
early development phase due to hERG toxicity issues, 19% due to
cardiotoxicity, i.e., drug-induced arrhythmias (Mandenius et al.,
2011). A wide variety of drugs (developed for cardiovascular
or non-cardiovascular diseases) including antiarrhythmics,
antipsychotics, antibiotics, antihistamines, amongst others are
known to block hERG channels. Drugs that block hERG
currents delay ventricular repolarization, which may lead to
TdP and sudden death (Kannankeril et al., 2010). Mandatory
guidelines require the testing of all early drug candidates for
their hERG liability before filing an investigational new drug
(IND) application (Hammond and Pollard, 2005; Lu et al., 2008).
A hERG block assay is routinely used as a surrogate marker for
QT prolongation (Gintant et al., 2016) and direct measurement
of hERG currents using the patch-clamp technique has been the
gold standard (Lawrence et al., 2005; Gintant et al., 2016). Non-
cardiac mammalian CHO or HEK-293 cells, which artificially
express hERG, are easy to maintain, can be sub-cultured for
numerous passages, allow the formation of high resistance low
noise seals, and lack contaminating currents (Kannankeril et al.,
2010; Gintant et al., 2016); however, while effective in predicting
the hERG block, they pose disadvantages in that these expression
systems differ in their cellular environment, likely lack many
important ancillary proteins for hERG channel modulation, and
do not accurately produce the channels in their native form
(McNeish, 2004; Kannankeril et al., 2010; Liang et al., 2013).
As such, hERG assays using non-cardiac cells can produce false
positive or false negative results, which may lead to the loss of
potential drug candidates in the early stage of drug development
(Liang et al., 2013). The use of primary cardiomyocytes offers
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an environment with naturally occurring subunit composition
and other intracellular pathways or factors that may modulate
channel properties (Kannankeril et al., 2010), but they are not
proliferative and need to be isolated freshly for every experiment
and since hERG currents are low in magnitude, and can be
contaminated with other currents, recording currents accurately
is challenging (McNeish, 2004; Kannankeril et al., 2010; Liang
et al., 2013). More complex models, such wedge and isolated
heart preparations, which use both electrophysiological and non-
electrophysiological assays to test the proarrhythmic potential
of the molecules during preclinical studies (Lawrence et al.,
2005) are better at predicting APD prolongation and TdP
risk, but lack throughput and are often costly alternatives. In
recent years, zebrafish have emerged as a potential toxicological
screening platform for compounds at risk of predisposing APD
prolongation, TdP, and acquired LQTS in humans.

Zebrafish were introduced as a drug screening platform
in the context of LQTS almost 20 years ago (Langheinrich
et al., 2003; Milan et al., 2003; see Table 1). These studies
recognized the advantages of using transparent 48–72 hpf larvae
to monitor the effects of compounds on cardiac rhythmicity
using relatively simple light microscopy imaging. Milan et al.
(2003), tested the effects of 100 compounds on zebrafish heart
rate. Of these, 36 caused bradycardia, and 21 of these are known
to cause QT prolongation and TdP. Langheinrich et al. (2003),
screened 11 diverse hERG blocking compounds in zebrafish and
all 11 induced bradycardia, and 2:1 atrioventricular block at
high concentrations, both of which are consequences of LQTS
observed in humans (Motoike et al., 2000; Chang et al., 2004; Lee
et al., 2006). These initial studies demonstrated that compounds
which block hERG channels in heterologous cell assays and
cause QT prolongation and TdP in humans have high affinity
for the zERG ortholog in zebrafish. Rescue of the gain-of-
function reggae zERG mutant cardiac phenotype by terfenadine
block (Hassel et al., 2008) further demonstrated the targeted
action of hERG-specific drugs in zebrafish. Indeed isolated zERG
(zkcnh6a) channels have subsequently been shown to present
similar pharmacological sensitivity to blocker compounds, such
as terfenadine, as observed in hERG (hKCNH2) channels
(Hull et al., 2019). Further developments to incorporate high-
throughput zebrafish larvae screens revealed that bradycardia
and susceptibility to 2:1 block provided accurate detection of
QT prolonging compounds with high sensitivity and specificity
(Burns et al., 2005; Mittelstadt et al., 2008; Peal et al., 2011;
Letamendia et al., 2012) as shown in Table 1. Some studies
have also used genetic models that prolong (breakdance, bre) or
abbreviate (reggae, reg) the APD to demonstrate the effect of QT
prolonging compounds in zebrafish larvae (Hassel et al., 2008;
Milan et al., 2009; Peal et al., 2011) (see section “Zebrafish as
a Model of Inherited Long-QT Syndrome” for descriptions of
breakdance and reggae).

To gain mechanistic insight beyond heart rate changes, several
groups developed techniques to test the impact of compounds on
APD and/ECG in zebrafish larvae (see Table 1). Measurements
of membrane voltage from explanted paced embryonic hearts
showed that zERG block by 100 nM terfenadine prolonged the
APD by 58% and resulted in 2:1 block as a result, such that

only every other stimulus elicited an action potential (Arnaout
et al., 2007). Using optical mapping of a fluorescent dye, Milan
et al. (2009), measured the effects of a range of drugs on
APD in wild-type and zERG non-trafficking variant, breakdance,
2 dpf zebrafish. Homozygous breakdance zebrafish presented
marked prolongation of the APD, action potential triangulation,
2:1 block, and spontaneous EAD formation, highlighting the
importance of IKr repolarizing current in zebrafish cardiac
function. Heterozygous breakdance larvae presented more muted
APD prolongation, but this was greatly exaggerated by the
application of the hERG blocker, dofetilide, or ATX-II, which
interferes with Na+ channel inactivation. Dofetilide alone also
produced 2:1 block at higher concentrations. Following this, Peal
et al. (2011), screened 1200 compounds in breakdance larvae
using optical mapping to detect APD changes in search of
compounds that might reverse the prolonged APD phenotype.
They discovered two compounds that rescued wild-type-like
APD in breakdance larvae, suggesting novel pathways for
restoration of repolarization associated with hERG dysfunction.
More recently, light-sheet imaging of a membrane dye in
whole 14 dpf zebrafish hearts showed that E-4031 (a hERG
blocker) application increases APD and induces the occurrence
of frequent EAD formation (∼1 every s) (Sacconi et al., 2020).
These studies demonstrate the applicability of zebrafish larvae to
model acquired LQTS and to conduct toxicological screening.

Electrical Instability and Beat-to-Beat
Variability as Markers of LQTS in
Zebrafish Hearts
In adult zebrafish hearts, hERG blockers prolong the APD and
increase the QT interval (Milan et al., 2009; Tsai et al., 2011;
Genge et al., 2016; Hull et al., 2019) while hERG activator
compounds reduce APD (Hull et al., 2019; Shi et al., 2020;
see Table 1). Studies using adult zebrafish hearts also permit
more detailed study of markers of cardiac arrhythmogenicity,
such as electrical instability and beat-to-beat variability, which
is an important consideration given that although APD and QT
prolongation provide a substrate for the initiation of TdP, there
is evidence that QT prolongation alone correlates poorly with
TdP (Mattioni et al., 1989; Shimizu et al., 1995; Fossa et al.,
2002; Fenichel et al., 2004; Belardinelli et al., 2006). Frommeyer
et al. (2011), suggested that the changes in AP morphology
may better explain the antiarrhythmic potential of compounds.
Indeed, triangulation of the action potential (often quantified
as APD90:APD30), which represents prolongation of late phase
repolarization or abbreviation of earlier phases, is associated
with development of TdP (Hondeghem et al., 2001) as a result
of increased risk for the generation of EADs and triggered
activity (Frommeyer et al., 2011) and an increased temporal
dispersion of repolarization which promotes re-excitation by
current flow (Hondeghem et al., 2001). In adult zebrafish hearts,
hERG activator compounds reduce APD with a selective effect
on late phase repolarization resulting in reduced triangulation
(Hull et al., 2019; Shi et al., 2020), indicating that zebrafish may
be suited to screening for therapeutic compounds to ameliorate
hERG channel loss of function.
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Adult zebrafish hearts have also been used to study the
effect of hERG activator compounds in more complex dynamic
adaptation of APD to understand their antiarrhythmic potential
(Shi et al., 2020). Dynamic instability of the membrane voltage is
a precursor to fibrillation that arises from changes in pacing rate
and can be used as a surrogate parameter in the assessment of TdP
risk (Koller et al., 1995). The electrical restitution curve (ERC)
provides a measure of APD stability by describing APD changes
as a function of the diastolic interval (DI), the time from the end
of the action potential to the activation of the following action
potential (Bass, 1975; Franz, 2003). Decreasing the DI reduces the
APD in the subsequent beat as a result of incomplete recovery of
ion channels (Garfinkel et al., 2000; Franz, 2003; Ng et al., 2007).
Changes in the shape of the ERC, in particular the maximum
slope of the curve, suggest that this relationship is a promising
surrogate parameter for evaluating TdP risk (Koller et al., 1995;
Garfinkel et al., 2000; Franz, 2003; Ng et al., 2007). The maximum
slope of the ERC measured using optical mapping of action
potentials in isolated adult zebrafish hearts was increased in
the presence of the hERG activator compound, RPR260243 (Shi
et al., 2020), suggesting that the activator compound improved
dynamic APD adaptation during acute changes in beating
frequency (Franz, 2003). The increased slope of the zebrafish
ERC with RPR260243 was associated with reduced beat-to-beat
variability of heart rate and APD in an acquired LQTS model
using dofetilide block (Shi et al., 2020) suggesting antiarrhythmic
potential. Further studies using dynamic protocols to measure
the ERC (using trains of stimulations with progressively shorter
basic cycle lengths), which improve congruence between the
observed development of alternans at short DIs and the slope
of the ERC (Koller et al., 1998), promise to further enhance
the predictive and translational power of ERC measurements in
zebrafish hearts.

The RPR260243 hERG activator compound was also shown
to increase the post-refractory repolarization period (PRRP) in
zebrafish hearts (Shi et al., 2020), which has been hypothesized
to be antiarrhythmic by reducing VT inducibility (Garfinkel
et al., 2000; Franz, 2003; Franz et al., 2014). The PRRP is
the delay in the onset of electrical restitution beyond the full
repolarization of the previous action potential (Franz, 2003),
i.e., it describes the phenomenon in which extrastimuli can only
generate action potentials once the previous action potential has
fully repolarized preventing encroachment. A longer PRRP may
be considered antiarrhythmic, since the action of suppressing
early premature responses to extrastimuli and allowing a more
rapid normalization of APD and conduction velocity effectively
narrows the window of partial refractoriness, a substrate for the
generation and maintenance of VF (Franz et al., 2014). Several
studies in animals and humans demonstrate the antiarrhythmic
benefits of a lengthened PRRP (Koller et al., 1995; Franz, 2003;
Fedorov et al., 2008) suggesting that the effect of hERG activators
to prolong the PRRP in zebrafish hearts protects against TdP
induction and demonstrates antiarrhythmic potential for the
treatment of LQTS. Future studies using measures of electrical
instability and APD rate adaptation as surrogate markers of
arrhythmogenicity will benefit from correlating findings with
the propensity toward EAD formation, since this is a robust

biomarker. It is however interesting to note the scarcity of
reported EAD events in studies of adult zebrafish hearts. Further
studies aimed at characterizing the conditions required for EAD
induction and triggered activity in adult zebrafish hearts would
advance the use of EAD propensity as a biomarker alongside
measures of electrical instability described here.

ZEBRAFISH AS A MODEL OF INHERITED
LONG-QT SYNDROME

Inherited LQTS2 in humans results from dysfunctional variants
in the KCNH2 gene, which encodes the hERG channel. In
zebrafish, multiple variants have been identified as possible
orthologs to KCNH2, with zkcnh2 initially identified as
the primary ortholog. However, screening for all possible
zebrafish homologous sequences of zkcnh2, Leong et al. (2010),
demonstrated the presence of a second variant, zkcnh6a,
which paired more closely as the ortholog to KCNH2 in
humans. Tissue-specific RNA extraction and qPCR analyses
have confirmed that zkcnh6a is the ortholog of human KCNH2
(Langheinrich et al., 2003; Scholz et al., 2009; Leong et al.,
2010; Vornanen and Hassinen, 2016; Hull et al., 2019), and the
biophysical function and pharmacological properties of zkcnh6a
channels are similar to those of human KCNH2 (Scholz et al.,
2009; Hull et al., 2019). Currents carried by zkcnh6a zERG
channels produce the zebrafish cardiac current, IKr , which is the
predominant repolarizing driving force in the zebrafish heart
(Nemtsas et al., 2010).

Performing a screen for mutations affecting zebrafish
developmental, Chen et al. (1996), discovered a zERG variant
associated with aberrant electrical properties. The breakdance
mutant resulted from an I59S mutation in the N-terminal
region of zERG channels and causes 2:1 atrioventricular block
in zebrafish hearts (Chen et al., 1996; Milan et al., 2009; Peal
et al., 2011). The cause of the A-V dissociation was subsequently
show to arise from markedly delayed ventricular repolarization,
which prolonged the ventricular APD such that only every
other atrial depolarization resulted in ventricular capture (Milan
et al., 2009; see Table 2). These findings are consistent with
clinical observations in pediatric cases of LQTS, where 2:1 block
is sometimes observed (Motoike et al., 2000; Chang et al.,
2004; Lee et al., 2006). Kopp et al. (2005), showed that 2:1
block in breakdance hearts was dependent on both temperature
and development, demonstrating conversion to 1:1 rhythm at
lower environmental temperatures, and beyond 4 dpf. Zebrafish
homozygous for the breakdance variant also presented markers
of arrhythmogenicity, such as action potential triangulation
and the presence of spontaneous EADs (Milan et al., 2009).
This phenotype is consistent with LQTS in humans and the
confirmation that the breakdance mutation is located within the
zERG K+ channel demonstrates the potential for zebrafish to
model arrhythmogenic cardiac diseases.

The utility of zebrafish as a model for inherited LQTS2
was more directly demonstrated by the identification of zkcnh2
(likely actually zkcnh6a) (Leong et al., 2010) mutations, I462R
(I500R in hERG) and M521K (M554K in hERG), which
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TABLE 2 | Effects of inherited mutations or targeted disruption of the zERG gene on cardiac electrical activity.

Variant Heart rate A-V dissociation APD QT Notes and other markers of
arrhythmogenicity

zkcnh2 I59S (breakdance) (V59 in
hERG)

Non-trafficking variant.

Homozygous 85 ± 2 bpm10 2:1 block3,4,7,10 Increased from 225 ± 21 to Triangulation and spontaneous EADs4

Heterozygous 615 ± 664 Temperature and developmental stage
dependence10

Increased from 290 ± 85 to
376 ± 667

Switching between 2:1 and 1:1 rhythm10

Increased from 226 ± 21 to
258 ± 164

zkcnh2 I462R (I500R in hERG)

Homozygous Silent ventricle1

Heterozygous 2:1 block1

zkcnh2 M521K (M554K in hERG)

Homozygous Silent ventricle1 Increased from 330 ± 12 to Increased from 416 ± 8 to

Heterozygous 2:1 block1 476 ± 35 ms1 469 ± 25 ms1

Antisense MO knockdown of
zkcnh2

Bradycardia2,5 2:1 block2,6 APD90 increased from 275 ± 10 to
544 ± 15 ms6

MO at high concentrations produced fibrillation2

Depolarized resting potential and ventricular
systole also observed6

Injection of RNA coding 40
LQTS-associated mutations and 10
non-disease causing hERG SNPs
following antisense MO knockdown
of zkcnh2

Suppression of 2:1 block in 9/10
SNPs
39/40 mutations sustained 2:1
block6

zkcnh2 antisense MO + hERG
N470D (N432D in zERG) RNA

APD90 increased to >500 ms6 Function of equivalent hERG variant: no current
at 37◦C; non-trafficking.11,12

zkcnh2 antisense MO + hERG
A614V (A586V in zERG) RNA

APD90 increased to >500 ms6 Function of equivalent hERG variant: no current
at 37◦C; non-trafficking.13

zkcnh2 antisense MO + hERG
A1116V (equivalent residue position
in zERG is uncertain) RNA

APD90 increased to >500 ms6 Function of equivalent hERG variant: mild QTc
prolongation, reduced hERG current density
when combined with K897T.14

zkcnh2 L499P (reggae) (L532P in
hERG)

APD90 decreased by 19%*8 Function of equivalent hERG variant: increased
current due to right-shifted

voltage-dependence of inactivation (reduced
inactivation).15

Intermittent cardiac arrest, sinus exit block.8
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caused dysfunction (likely causing non-trafficking since these
variants are linked with breakdance via complementation testing,
although this has not been tested directly) of zERG channels
resulting in a corresponding loss of IK r and 2:1 block when
inherited heterozygously, and a silent ventricle phenotype when
inherited homozygously (Arnaout et al., 2007). Recordings
of action potentials from M521K (M554K in hERG) mutant
zebrafish hearts revealed that the phenotype was caused by
a significantly prolonged ventricular APD (Arnaout et al.,
2007; see Table 2). These findings demonstrated a clear link
between zERG dysfunction and cardiac phenotypes that could be
readily observed and quantified in 48–72 hpf zebrafish enabling
rapid detection. Other studies using antisense morpholino
(MO) knockdown of zERG function showed that targeted
disruption of zERG resulted in bradycardia, 2:1 block, and
a prolonged APD in zebrafish embryos (Langheinrich et al.,
2003; Milan et al., 2003; Jou et al., 2013). Using this as
a platform, Jou et al. (2013), developed an in vivo cardiac
assay in zebrafish embryos to screen for benign or disease-
causing variants. Following MO knockdown of zERG and
generation of 2:1 block or silent ventricle phenotype, injection
of WT hERG RNA restored a WT-like phenotype in >50%
of embryos or reduced the severity of the phenotype (i.e., 2:1
rather than silent ventricle). Similar recovery was observed
with 9 of 10 non-disease causing SNPs, but not with 39 of 40
LQTS2-associated mutations, from which APD was measured
in some and shown to be significantly prolonged (Jou et al.,
2013; see Table 2). Furthermore, the study demonstrated
a clinical phenomenon, wherein a dysfunctional variant co-
expressed with a SNP was capable of reducing the phenotypic
severity, showing that this assay has the potential to provide
useful information for practical clinical applications. Beyond
testing known LQTS-causing mutations, or screening effects of
mutations found in humans, zebrafish have also been used to
discover and elucidate effects of novel mutations that affect
cardiac repolarization. Milan et al. (2009), used dofetilide block
of zERG channels to induce 2:1 block in zebrafish embryos and
rescue from or exaggeration of this phenotype was used to screen
for novel gene mutations affecting repolarization. Using this
approach, the authors identified 15 novel mutations involved in
cardiac repolarization.

On the other end of QT-related arrhythmia spectrum, the
reggae mutation identified in the zebrafish zERG gene causes a
short QT syndrome (SQTS). Hassel et al. (2008), identified a
missense mutation, L499P (L532P in hERG), which abbreviated
the APD and resulted in intermittent cardiac arrest and sinus
exit block. Injection of antisense MO restored the WT phenotype
in around half of the reggae embryos consistent with the
idea that the cardiac phenotype resulted from zERG gain-
of-function. Furthermore, crossing of reggae individuals with
breakdance individuals (in which repolarization is delayed)
produced offspring with no cardiac abnormalities suggesting
that the two mutations complemented one another. These
studies were pioneering in their demonstration of zebrafish to
model inherited LQTS. More recent developments in genetic
engineering approaches promise to further unleash the potential
of this model species. Below, we discuss future opportunities and
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challenges using precise gene-editing to create zebrafish models
of inherited LQTS.

PRECISE GENE-EDITING APPROACHES
IN ZEBRAFISH TO MODEL LQTS

Precise gene editing technologies are providing one of the
most rapidly evolving tools in the repertoire of genetic
manipulation, and they promise to greatly influence the utility
of zebrafish to model LQTS and other inherited cardiac
electrical diseases. Hoshijima et al. (2016), demonstrated two
novel approaches for genetic targeting and manipulation of
the zkcnh6a gene, which provide advanced tools to model
and create LQTS in zebrafish. Using transcription activator-
like effector nucleases (TALENs) to target double stranded
breaks in the genomic DNA immediately after the zkcnh6a start
codon, and providing a modified synthetic DNA template for
repair, which contained the coding sequence for GFP, these
authors first created zebrafish lines expressing the GFP reporter
gene in lieu of zkcnh6a. Both homozygous (zkcnh6aGFP/GFP)
and heterozygous (zkcnh6aGFP/+) were generated from this
approach. zkcnh6aGFP/GFP embryos, homozygous for the GFP
knock-in in place of zkcnh6a, i.e., zkcnh6a null, presented
contractile defects and pericardial edema consistent with knock-
out of zERG function (Arnaout et al., 2007; Hoshijima et al.,
2016). This zkcnh6a knockout provides further demonstration of
the role of zERG channels in zebrafish cardiac electrophysiology,
and furthermore, the zkcnh6aGFP/+ embryos provide an
additional opportunity in that heterozygous embryos, being
viable (although phenotypic analyses were not performed to
confirm normal cardiac function), express GFP exclusively in
the heart providing a locus-specific cardiac reporter. Previous
fluorescent dye membrane voltage reporters (Milan et al., 2009;
Peal et al., 2011; Tsai et al., 2011) and genetically encoded
fluorescent reporters (Huang et al., 2003; Burns et al., 2005)
had been used to visualize or measure cardiac activity, but the
approach used by Hoshijima et al. (2016), can be used to detect
cardiac activity and developmental or environmental influences
on zkcnh6a gene function specifically.

In a second advancement, Hoshijima et al. (2016), developed a
silent conditional editing approach to knock-in a GFP reporter
gene within the zkcnh6a locus. Again, using TALENs, targeted
double stranded breaks were introduced in the intronic sequences
on either side of the zkcnh6a exon 6. Repair was then directed
to replace exon 6 using a novel DNA template that included
the WT zkcnh6a exon 6 alongside GFP controlled by the α-
crystallin eye lens promoter, all of which was flanked by loxP
sites. Analyses revealed the introduction of the floxed allele and
green eyes in 70% of zebrafish embryos, which were viable and
morphologically normal. Injection of cre recombinase mRNA
into embryos expressing the floxed allele resulted in efficient
excision of sequence between the loxP sites flanking the α-
crystallin:GFP and zkcn6a exon 6 leaving embryos without the
GFP eye lens reporter, and with a silent ventricle phenotype and
pericardial edema that is characteristic of knockout of zkcnh6a
(Hoshijima et al., 2016).

Developments in genetic technology, such as in the use
of Clustered Regularly Interspaced Short Palindromic Repeat
(CRISPR), promise to simplify and improve efficiency of precise
gene editing approaches in model systems, including zebrafish
(Chang et al., 2013; Hwang et al., 2013; Varshney et al., 2015;
Liu J. et al., 2017; Cornet et al., 2018). The CRISPR system is
an anti-viral defense mechanism found in a variety of bacteria
and archaea that has been co-opted to modify target genes
within organisms (Jinek et al., 2012). CRISPR editing involves
guide RNA (sgRNA) targeting of Cas-endonuclease (CRISPR
associated protein) activity to a precise site within the gene of
interest. Intrinsic genomic repair can occur via non-homologous
end joining (NHEJ) resulting in random edits and indels, or
by homology-directed repair (HDR), which can be co-opted
by the provision of exogenous repair template incorporating
the edit of interest. The ease of use and cost effectiveness of
CRISPR has facilitated a variety of applications such as reverse
genetics, improving biopharmaceutical efficiency, and allowing
for the knock-out of target genes, or knock-in of point mutations
within a gene of interest to generate disease models (Hruscha
et al., 2013; Gupta and Musunuru, 2014; Armstrong et al., 2016).
These developments hold great promise for the generation of
inherited models of LQTS in zebrafish. Previous studies have
shown that low success rates of precise edits via HDR (∼2–4%)
(Armstrong et al., 2016; Albadri et al., 2017) using CRISPR in
zebrafish can be improved by adopting a number of approaches:
(1) considered design of the guide sgRNA (Doench et al., 2014;
Moreno-Mateos et al., 2015; Cui et al., 2018; Michlits et al., 2020;
Zhang et al., 2020); (2) delivery of sgRNA as RNA rather than
DNA (Liu C. et al., 2017); (3) use of Cas9 protein instead of
DNA or mRNA (Albadri et al., 2017; Zhang et al., 2018); (4)
complexing Cas9 protein and sgRNA prior to injection (Burger
et al., 2016); and (5) use of a plasmid-borne double-stranded
repair template rather than ssODN (Irion et al., 2014). Leveraging
these developments of CRISPR utility in zebrafish promises to
open new possibilities for LQTS modeling in this model species.
Additionally, further CRISPR-based developments, such as base-
editing (Komor et al., 2016) and prime-editing (Anzalone et al.,
2019) along with the development of new Cas-nucleases that
utilize different recognition (Protospacer Adjacent Motif, PAM)
sites (Kleinstiver et al., 2015; Hu et al., 2018) may alleviate
previous limitations, such as off-target Cas9 activity and target-
site restrictions. These approaches broaden the horizons and
targeting range for the use of CRISPR in disease modeling in
zebrafish opening the door to allow examination of the extensive
array of genetic variants implicated in LQTS2 and potential
underlying genetic susceptibility to acquired LQTS2, as well as
other cardiac diseases.

CHALLENGES AND OPPORTUNITIES OF
ZEBRAFISH AS A MODEL OF LQTS

The precision and ease with which the zebrafish genome may be
modified, as described above, presents opportunities to examine
clinically relevant hERG variants alongside cellular models,
such as iPSC-derived cardiomyocytes (iPSC-CMs) to elucidate
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the phenotype of variants of unknown significance, and to
inform clinical risk stratification of patients with hERG variants.
Although rapidly evolving, current iPSC-CM approaches
are challenged by cellular heterogeneity and immaturity,
and they do not yet provide a whole organ or animal
model, whereas zebrafish hearts allow for visualization of
arrhythmogenicity at the tissue and whole organ level that
permits examination of system-wide effects and morphological
changes. There is also potential for zebrafish to be used as
a whole organ companion model for the development of
targeted, patient specific pharmacological approaches. The
Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm
advises inclusion of more complex approaches to arrhythmia
assessment of compounds beyond heterologous expression of
hERG in non-cardiac cells to include computational modeling
and iPSC-derived cardiomyocyte platforms to better predict
cardiotoxicity. It may be that zebrafish offer a supporting model
that could be a cost-effective whole organ early toxicological
screening complex model system. Indeed, recent evidence using
computational approaches suggest that compound effects in
zebrafish readily predict drug efficacy in human cardiomyocytes
(Tveito et al., 2020).

Despite these articulated strengths that outline zebrafish
as a useful model of LQTS, there are some current
limitations/challenges that should be considered and that
may influence interpretation or translation of findings to the
human. For example, due to ancestral gene duplication events,
there are alternate potential gene transcripts responsible for
the zERG channel protein, and this requires knowledge and
understanding of their interplay in order to carefully design
targeted genetic strategies for the generation of specific LQTS-
associated mutations. In addition, aside from morphological
differences associated with the zebrafish two chambered heart,
which might influence interpretations related to regulation of
cardiac function, there are some electrophysiological differences
in the zebrafish that should be considered. Although similar
to hERG, zERG channel biophysical properties show some
differences (Scholz et al., 2009; Hull et al., 2019) and this

likely contributes to subtle differences in IKr current during the
zebrafish action potential. Perhaps as a result of these biophysical
differences, the effect of hERG activator drugs is somewhat
greater on zERG than hERG channels, and combined with a
prominent role for IKr in zebrafish hearts, this could lead to
over-estimation of the effects of hERG activator compounds in
zebrafish hearts and this needs to be taken into consideration.
The zebrafish heart is smaller compared with the human and has
reduced ventricular wall thickness, which likely contributes to
altered tissue propagation and dispersion of repolarization as has
been suggested (Zhao et al., 2020). With this altered electrical
and physical tissue substrate, the initiation and maintenance of
arrhythmias may not precisely mirror that in human hearts, and
this should be taken into consideration when translating markers
of arrhythmogenicity measured in zebrafish hearts. Lastly, most
zebrafish experiments are conducted at 28◦C, and the possible
differential effects of temperature on ion channel trafficking,
gating steps, and drug interactions should be considered when
translating findings in zebrafish hearts to human hearts at 37◦C.
Notwithstanding these caveats, there remains enthusiasm for the
role of the zebrafish as a translational model of both acquired and
inherited LQTS that promises to continue to inform improved
patient management and drug development.
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