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INTRODUCTION 
 

Head and neck squamous cell carcinoma (HNSCC) is 

the sixth most common malignant tumor. Worldwide, 

approximately 830,000 patients suffer from head and 

neck cancer and about 430,000 people die from this 

disease annually [1]. Approximately 75% of these 

cases are attributable to tobacco smoking and alcohol 

abuse, which are the two major risk factors for head 

and neck cancer [2]. Human papillomavirus (HPV) 

infection is also a significant etiological factor for 

HNSCC [3]. However, despite advances in surgery, 

radiotherapy and chemotherapy for the treatment of 

HNSCC, the 5-year overall survival rate is only 40%-
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ABSTRACT 
 

Head and neck squamous cell carcinoma (HNSCC), the most frequent subtype of head and neck cancer, 
continues to have a poor prognosis with no improvement. The TNM stage is not satisfactory for individualized 
prognostic assessment and it does not predict response to therapy. In the present study, we downloaded the 
gene expression profiles from TCGA database to establish a training set and GEO database for a validation set. 
In the training set, we developed an 10 immune-related genes signature which had superior predictive value 
compared with TNM stage. A nomogram including clinical characteristics was also constructed for accurate 
prediction. Furthermore, it was determined that our prognostic signature might act as an independent factor 
for predicting the survival of HNSCC patients. As for the immune microenvironment, our results showed higher 
immune checkpoint expression (CLTA-4 and PD-1) in low-risk group which might reflect a positive 
immunotherapy response. Thus, our signature not only provided a promising biomarker for survival prediction, 
but might be evaluated as an indicator for personalized immunotherapy in patients with HNSCC. 
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50% [4]. In addition, the survival rate of advanced 

cancer patients is only 34.9%, primarily due to 

metastases and recurrence [5]. Accurately assessing 

the prognosis for individual patients and performing 

personalized treatment is of vital importance. 

Traditionally, American Joint Committee on Cancer 

(AJCC) staging system-TNM stage is the most 

important prognostic indicator for predicting 

postoperative outcome of HNSCC [6]. Nevertheless, 

the limitation to TNM staging in evaluating patient 

prognosis is gradually emerging. For example, 

patients with the same TNM stage and treatment 

regimen have different clinical outcomes and it does 

not predict the effectiveness of patient's treatment [7]. 

Therefore, it is necessary to identify a novel 

biomarker that can accurately predict patient 

prognosis and to stratify high-risk HNSCC patients 

for more intensive treatment regimens. 

 

An increasing body of evidence suggests that the 

immune system plays a vital role in patient outcome 

and tumor molecular profiles may be useful for 

predicting clinical outcome, as well as identifying 

therapeutic targets [8, 9]. It is also revealed that a 

prognostic signature containing several to dozens of 

genes have laid a foundation for predicting the 

survival of HNSCC [10–12]. In recent years, 

cytotoxic T-lymphocyte-associated protein 4 (CTLA-

4) and programmed cell death protein-1 (PD-

1)/programmed cell death-ligand 1 (PD-L1) were 

found to be important immune checkpoint 

components, that enable tumors to escape from 

immune surveillance [13, 14]. With the emergence of 

checkpoint immunosuppressive therapy, the treatment 

regimens have completely changed for many 

advanced malignant tumors including HNSCC. 

However, the checkpoint blockade immune 

therapeutics does not respond to all patients and  

the observed objective response rates are in the range 

of only 16% to 25% [15, 16]. Therefore, an immune-

related prognostic signature which can not only 

predicts survival, but predicts the immunotherapy 

response for different groups of patients is urgently 

need. 

 

In this study, an immune-related prognostic signature 

was constructed with The Cancer Genome Atlas 

(TCGA) dataset and further validated for its 

prognostic value using the GSE41613 dataset. 

Moreover, the relationship between our signature, 

infiltrating immune cells, and immune checkpoints 

was determined. Finally, the mutation characteristics 

and Gene Set Enrichment Analysis (GSEA) of our 
gene signature were established. Our goal is to 

provide a novel molecular biomarker that more 

effectively predicts prognosis and is strongly 

associated with the immune microenvironment in 

HNSCC patients. 

 

RESULTS 
 

Differentially expressed genes and functional 

enrichment analysis 

 

For the TCGA dataset, a total of 400 immune-related 

genes (IRGs) (305 upregulated and 95 downregulated) 

and 63 transcription factors (TFs) (46 upregulated and 

17 downregulated), which were differentially expressed 

in HNSCC tissues (n=502) compared with adjacent 

normal tissues (n=44), were identified and presented in 

heat maps and volcano plots (Supplementary Figure 1). 

The 400 IRGs were further analyzed by the Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) algorithms and the top 10 results 

were shown in Figure 1. The GO functional analyses 

consisted of the following three parts: biological 

process (BP), molecular function (MF), and cell 

component (CC). From Figure 1, we identified eight 

pathways that were enriched in the immune-related 

gene signature by KEGG analysis. These primarily 

included genes involved in MAPK signaling, EGFR 

tyrosine kinase inhibitor resistance, and Ras signaling, 

and might participate in the development of HNSCC. 

 

Regulatory network of TFs  

 

A total of 51 IRGs that significantly associated with 

overall survival (OS) were identified by using a log-

rank test with a univariate Cox analysis (p < 0.05). 

Then, we identified 51 genes with a p-value < 0.05 for 

analysis with differentially expressed TFs using a 

Pearson’s correlation test. As a result, correlation 

coefficients > 0.5 with p < 0.05 were used to establish a 

network, which was done using the Cytoscape software 

(Figure 2A). As shown in the network, we found that 

Foxp3 occupied a major position and positively 

regulated most of the low-risk IRGs including LTA, 

CXCR4, CXCR3, IL21R, CD247, ZAP70, SH2D1A, 

ICOS, and CTLA4. This suggests that Foxp3 may play 

an important role in the immune regulation of HNSCC. 

 

Construction and validation of the 10 immune-

related gene signature 

 

The 24 prognostic IRGs, which were obtained from the 

univariate Cox analysis with p value < 0.01 (Figure 2B), 

were subjected to Lasso analysis and 18 genes were 

screened out (Figure 3A, 3B). The multivariate Cox 

regression model was then applied to select the final 

gene set. As a result, 10 immune-related genes  

were filtered to establish a prognostic model. The 

formula for the prognostic model was as follows: risk  
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Figure 1. Functional enrichment analysis of differentially expressed IRGs. (A) The top 10 most significant categories as determined 
by Gene ontology analysis. The figure represents biological process (BP), cellular component (CC) and molecular function (MF) genes from top 
to bottom. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 
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score = (-0.319322778 * DEFB1 status) + (-

0.417843642 * EDNRB status) + (0.24520493 * ADM 

status) + (0.709588827 * BTC status) + (0.477760262 * 

DKK1 status) + (-0.25962002 * FAM3D status) + (-

0.453322755 * GNRH1 status) + (0.416649823 * STC2 

status) + (0.2610282 * TNFRSF12A status) + (-

0.357569677 * CTLA4 status). Based on the prognostic 

model formula, we calculated each patient’s risk score 

and divided them into high and low risk groups based 

on the median value of risk scores in the training and 

validation sets. Then, the risk score and survival status 

of patients for the 10-gene signature model were 

determined for the training and validation sets (Figure 

3C–3F). Finally, the survival analysis of high and low 

risk groups in the training and validation sets was 

presented. Patients in the high risk group had 

significantly poorer prognosis compared with those in 

the low risk group (p < 0.001; Figure 3G, 3H).  

 

A 10-gene immune-related signature is an 

independent prognostic factor 

 

To determine whether the 10-gene immune-related 

signature was an independent prognostic factor for 

patient survival in the training and validation sets,  

univariate and multivariate Cox models were 

established (Table 1). The results of the univariate Cox 

analysis showed that age, N stage, M stage, recurrence 

and risk score were the factors associated with patient 

prognosis in the training set. TNM stage and risk score 

were the factors associated with patient prognosis in the 

validation set. In addition, our immune-related signature 

was an independent prognostic risk factor in both the 

training set (461 cases: HR=1.495, 95% CI 

(1.349−1.657), p < 0.001) and the validation set (96 

cases: HR=1.347, 95% CI (1.107−1.638), p = 0.003) by 

multivariate analysis. The association of our signature 

with clinicopathologic factors was carried out and the 

results indicated that only T stage, TNM stage, 

recurrence, and human papillomavirus (HPV) exhibited 

statistical significance (p < 0.05, Figure 4).  

 

External validation of the immune-related gene 

signature 

 

The area under the ROC curve (AUCs) were 0.715, 

0.757 and 0.718 for 2-, 3- and 5-year survival times, 

respectively, for the training set. The AUCs for the 

validation set were 0.679, 0.653, 0.645 for 2-, 3- and 5-

year survival times, respectively, suggesting that our

 

 
 

Figure 2. The regulatory network of TF and univariate cox analysis of differentially expressed IRGs and OS of HNSCC.  (A) 
The regulatory network constructed based on prognosis-related IRGs and TFs. The red circle represents the high-risk IRGs and the green 
circular represents the low-risk IRGs. The triangle represents differentially expressed TFs. The red link line represents positive 
regulation, while there was no observed negative regulation. (B) A total of 24 differentially expressed IRGs found to be significantly 
associated with the OS of HNSCC patients (p-value < 0.01). Red points represent positive correlations, while green points represent 
negative correlations. 
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Figure 3. Construction of an immune-related prognostic signature for HNSCC. (A) Eighteen immune-related genes selected by 
LASSO Cox analysis. (B) A 10-fold cross-validation for the optimal penalty parameter lambda. (C, D) The risk score distribution of HNSCC 
patients in the training and validation sets. (E, F) Survival status and duration of patients in the training and validation sets. (G, H) Survival 
curves for the low and high risk groups in the training and validation sets. 
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Table 1. Univariate and multivariate analyses of overall survival in HNSCC patients in training 
set and validation set. 

Dataset Characteristics 
Univariate Multivariate 

HR (95%CI) p-value HR (95%CI) p-value 

Training set Age 1.018(1.004−1.031) 0.012 1.021(1.007−1.035) 0.003 

 Gender 0.811(0.593−1.109) 0.189   

 Grade 1.108(0.891−1.377) 0.357   

 Smoking 0.987(0.870−1.120) 0.841   

 Alcohol 1.106(0.809−1.514) 0.527   

 TNM Stage 1.110(0.942−1.308) 0.211   

 T stage 1.115(0.958−1.298) 0.159   

 N stage 1.201(1.027−1.403) 0.022 1.173(1.001−1.374) 0.049 

 M stage 7.816(2.865−21.320) <0.001 4.672(1.641−13.302) 0.004 

 Recurrence 3.253(2.430−4.355) <0.001 2.618(1.935−3.543) <0.001 

 Risk score 1.603(1.454−1.766) <0.001 1.495(1.349−1.657) <0.001 

Validation set Age 1.005(0.607−1.662) 0.986   

 Gender 1.092(0.602−1.980) 0.771   

 TNM Stage 3.757(1.919−7.357) <0.001 3.469(1.764−6.825) <0.001 

 Risk score 1.383(1.152−1.661) <0.001 1.347(1.107−1.638) 0.003 

*In Cox regression analysis, gender was defined as female=0, male=1; grade, TNM stage and T, N, M stage 
were defined as 1-4 in accordance with the increase of stage, respectively; smoking, alcohol and recurrence 
were defined as No=0 and Yes=1, respectively; HR, hazard ratio; CI, confidence interval. Bold values indicate 
p < 0.05, which represents statistical significance. 

 

prognostic signature exhibited better sensitivity 

and specificity (Figure 5A, 5B). Compared with 

clinicopathologic factors including gender, TNM 

stage, T stage, N stage, and recurrence, the AUCs of 

our signature were the highest (Figure 5C). This 

demonstrated that the 10-gene signature model had a 

better ability to predict patient prognosis. 

Furthermore, the nomogram calibration curves  

for the possibility of 3- and 5-year OS showed 

consistency between predicted and actual survival in 

the training set (Figure 5D, 5E). A nomogram with 

clinicopathologic factors and risk score was 

established to quantitatively predict the prognosis of 

HNSCC patients. It revealed that our prognostic 

signature was a key factor for predicting the survival, 

while the clinicopathological characteristics showed 

an inferior impact (Figure 5F).  

 

We further determined whether our 10-gene immune-

related signature could predict the survival of patient 

subgroups. We stratified patients on the basis of 
clinicopathological factors including age, gender, 

smoking, alcohol, TNM stage, recurrence, and M0 

stage. The results revealed that our signature might be 

an independent and significant prognostic predictor 

for clinical outcome in patient subgroups (Figure 6). 

The patients with M1 stage disease were not included 

because of the small number of cases.  

 

Association between immune-related gene signature, 

immune cell infiltration, and immune checkpoint 

molecules  

 

To investigate the association between our immune-

related signature and 22 immune infiltration cell types, a 

correlation analysis was performed with |spearman 

coefficients| ≥ 0.2 and p values < 0.05 (Figure 7A–7C). 

The relationship between our signature and immune 

checkpoint molecules was also established (Figure 7D–

7F). The results of the Pearson’s correlation analysis 

indicated that our prognostic signature was negatively 

associated with regulatory T cells (Tregs) (r = −0.296, p 

< 0.001), while M0 macrophages (r = 0.203, p < 0.001) 

and activated Mast cells (r = 0.204, p < 0.001) were 

positively associated. With an increase in immune risk 

score, the expression of Tregs decreased gradually in 
contrast to the signatures of M0 macrophages and 

activated Mast cells. The prognostic signature was also 

negatively correlated with immune checkpoint 

molecules, including CTLA-4 (r = 0.253, p < 0.001) and 
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PD-1 (r = 0.198, p < 0.001), but not with PD-L1 (p > 

0.05). 

 

Genetic alterations and GSEA analysis in the high-

risk groups  

 

The genomic alterations of our 10 immune-related 

genes in each patient were analyzed using the 

cBioPortal tool (Figure 8A). The genetic alteration 

percentages ranged from 0.2-3%, and likely have little 

influence on mRNA expression. The 10 immune-related 

genes were altered in 62 (13%) of the 496 patients. 

DEFB1 and GNRH1 were primarily affected by deep 

deletion, while the CTLA-4, DKK1 and EDNRB were 

frequently amplified. The pathways enriched in the 

high-risk group of the training set were analyzed by 

GSEA. As a result, there were six pathways that were 

significantly enriched in the high-risk patients (Table 2 

and Figure 8B). 

 

DISCUSSION 
 

Head and neck squamous cell carcinoma is considered 

to be a heterogeneous disease and its biological 

 

 
 

Figure 4. The association between our prognostic signature and HPV, T stage, TNM stage and recurrence. (A) The HPV-positive 

patients exhibited a lower risk score compared with HPV-negative patients (p = 6.842 x 10-5). (B) The immune-related signature risk scores for 
T3 and 4 stage HNSCC patients were notably higher compared with that of T1 and 2 patients (p = 0.005). (C) The immune-related signature 
risk scores for stage III & IV HNSCC patients were notably higher compared with that of stage I & II patients (p = 0.032). (D) Patients with 
recurrence of HNSCC have higher risk scores compared with those having no recurrence (p = 0.002). 
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behavior is frequently aggressive. The high mortality rate 

observed for HNSCC is primarily due to the frequent 

recurrence of advanced tumors [17]. There is a 

significant need for clinicians to give personalized and 

realistic prognostic prediction as TNM stage is no longer 

an accurate prognostic indicator. Therefore, it is crucial 

to identify new markers that predict clinical outcome, 

achieve personalized approaches to therapy, and establish 

early intervention treatments. To date, many studies have 

tried to establish prognostic signatures, including gene 

sets [18], miRNAs [19], lncRNAs [20] and methylation 

analyses [21], as promising predictors of prognosis for 

HNSCC. In recent years, the immune system has been 

recognized as playing an important role in cancer 

development and progression [22]. Nevertheless, the 

contribution of immune-related molecular mechanisms to 

HNSCC remain unclear.  

 

In the present study, we screened 400 differentially 

expressed immune-related genes from the TCGA 

dataset. Using GO and KEGG enrichment analysis, we 

found that the immune-related genes were primarily 

associated with immune response, cancer, and drug 

resistance pathways (i.e. MAPK signaling pathway, 

EGFR tyrosine kinase inhibitor resistance, Ras 

signaling pathway and endocrine resistance). Similar 

studies have demonstrated that the MAPK signaling 

pathway participates in cancer progression, including 

proliferation, apoptosis and immune escape, and it is 

fundamental to cancer control [23]. 

 

 
 

Figure 5. Receiver operating characteristic curve (ROC) analysis and nomogram construction predicted overall survival using 
risk score. (A, B) ROC analysis for predicting 2-, 3- and 5-year survival times in the training and validation sets. (C) ROC analysis between risk 
score and clinicopathological characteristics in the training set. (D, E) Calibration curves of the nomogram for predicting the probability of 3- 
and 5-year survival. (F) A nomogram to quantitatively predict 1-, 2-, and 3-year survival for HNSCC patients based on the prognostic signature 
and clinicopathological characteristics of the training set. 
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Figure 6. Kaplan-Meier analyses of HNSCC patient subgroups and clinicopathology factors including. (A) age ≥65 years, (B) age < 

65 years, (C) female, (D) male, (E) non-alcohol, (F) alcohol, (G) Nonsmoking, (H) smoking, (I) G1 and 2, (J) G3 and 4, (K) stage I-II, (L) stage III-
IV, (M) non-recurrence, (N) recurrence, (O) M0 stage (p < 0.05). 
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Transcription factors regulate gene expression and their 

dysregulation or mutation is well known to contribute to 

tumorigenesis [24]. Foxp3, a member of the forkhead 

transcription factor family, is one of the key transcription 

factors that controls the development and function of 

Treg cells [25]. An analysis of the TF-mediated network 

was done to reveal the regulatory mechanisms of 

prognostic immune-related genes. The results indicated 

that Foxp3 was a crucial TF that upregulated most of  

the low-risk prognostic immune-related genes. This 

suggested that Foxp3 might be a key factor in the 

immune regulatory mechanism of HNSCC. Foxp3 might 

also control the immune microenvironment by regulating 

the expression of genes that contribute to the 

immunotherapy of HNSCC. Foxp3 and CTLA4 were 

also determined to be positively correlated in our study, 

consistent with that of previous studies [26, 27]. 

 

It has been demonstrated that immune gene signatures 

can predict prognosis in many solid tumors including 

ovarian cancer [28], clear cell renal cell carcinoma [29], 

cervical cancer [30], lung adenocarcinoma [31], and 

hepatocellular carcinoma [32]. In the present study, we 

developed a prognostic signature based on 10 immune-

related genes from TCGA dataset and validated them 

using GSE41613 dataset. The patients in the high risk 

group were considered to have short survival times in 

both datasets, in accordance with previous studies [11]. 

ROC analysis indicated that our immune signature 

exhibited better sensitivity and specificity for survival 

prediction at 2-, 3- and 5-years, even exceeding the 

predictive ability of TNM stage. Moreover, multivariate 

Cox analysis indicated that the 10-gene immune-related 

signature was an independent prognosis risk factor for 

HNSCC. Patients exhibiting recurrence had higher risk 

scores compared with patients without recurrence, 

suggesting that the prognostic signature had a broader 

predictive value for recurrence. A previous study 

demonstrated that HPV-positive HNSCC patients had 

improved survival compared with HPV-negative 

 

 
 

Figure 7. Correlation between our prognostic signature and that of tumor-infiltrating immune cells and immune checkpoint 
molecules. (A) Association between risk score and T regulatory cells (Tregs). (B) Association between risk score and activated Mast cells. (C) 

Association between risk score and M0 macrophages. (D) Association between risk score and CTLA-4. (E) Association between risk score and 
PD-1. (F) Association between risk score and PD-L1. 
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patients [33]. This is consistent with our findings that 

HPV-positive patients had a lower risk score. We 

further predicted survival time of patients with different 

clinical factors based on our 10 immune-related gene 

signature. This demonstrated that our signature could 

act as accurately and strongly biomarkers for predicting 

prognosis in HNSCC patients with various 

clinicopathologic factors. 

 

Other studies corroborate that our 10 immune-related 

gene signature is closely related to the development of 

cancer. For example, DEFB1 (encoding human ß-

defensin-1 [HBD-1]), is a potential tumor suppressor 

which has been shown to participate in the innate 

immune response and can suppress tumor migration and 

invasion in oral squamous cell carcinoma [34]. EDNRB 

promoter methylation, which is associated with the 

histologic diagnosis of premalignancy and the presence 

of malignancy, may be a promising marker for the early 

detection of premalignant lesions in oral cavity cancer 

[35]. The ADM gene, which plays a role in 

carcinogenesis by regulating cellular processes including 

proliferation, differentiation, migration, growth, 

immunosuppression and hypoxia, increases lymph node 

metastasis risk in oral and oropharynx cancer [36]. 

Increased BTC mRNA expression is associated with 

worse survival in HNSCC [37]. Dkk-1, a tumor 

suppressor gene, is associated with distant metastasis in 

HNSCC patients, when happens to allelic loss at Dkk-1 

locus frequently [38]. Overexpression of FAM3D-AS1 is 

demonstrated to inhibit cell proliferation, invasion, EMT, 

and cell survival rate in colorectal cancer [39]. The level

 

 
 

Figure 8. Genetic alterations of the 10 immune-related genes using GSEA. (A) Genetic alterations of 10 immune-related genes in 
HNSCC samples. The rows and columns indicate the genes and tumor samples, respectively. (B) The six enriched pathways in the high-risk 
groups based on the prognostic signature in HNSCC. 
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Table 2. The six enriched pathways in the low-risk group. 

NAME SIZE ES NES NOM p-val FDR q-val FWER p-val 

KEGG_GLYCOSAMINOGLYCAN_BIOSY

NTHESIS_KERATAN_SULFATE 
15 0.737 1.941 0.000 0.071 0.085 

KEGG_PRION_DISEASES 35 0.527 1.753 0.004 0.136 0.349 

KEGG_PATHOGENIC_ESCHERICHIA_CO

LI_INFECTION 
56 0.508 1.835 0.004 0.091 0.204 

KEGG_FOCAL_ADHESION 199 0.584 1.956 0.004 0.116 0.070 

KEGG_GLYCOSAMINOGLYCAN_BIOSY

NTHESIS_CHONDROITIN_SULFATE 
22 0.734 1.927 0.006 0.052 0.090 

KEGG_N_GLYCAN_BIOSYNTHESIS 46 0.588 1.846 0.008 0.104 0.193 

 

expression of GNRH1 has been shown to indicating 

metastatic spread of tumor cells in gynecological 

malignances [40]. The downregulation of STC2 plays a 

vital role in the metastasis and progression of HNSCC 

[41]. TNFRSF12A contributes to carcinogenesis by 

promoting angiogenesis, proliferation, apoptosis, 

migration and inflammation in tumors, can cause 

cachexia, and is a promising therapeutic target to prolong 

survival [42]. CTLA-4, a checkpoint for tumor 

immunotherapy, can induce T cells to be nonreactive and 

participate in the repression of T cell proliferation, cell 

cycle progression, and the immune response [43]. 

 

To further understand the relationship of immune-related 

prognostic signature and immune microenvironment, 22 

immune infiltrating cells, derived from CIBERSORT, 

and 3 immune checkpoint molecules were selected for 

analysis. In cancer, Tregs contribute to tumor immune 

escape by suppressing the antitumor response. Some 

studies had reported that higher Foxp3+ Treg cell 

infiltration was associated with poorer patient survival in 

most tumors, but not in HNSCC [44, 45]. Our results 

showed that the high level of Tregs infiltration was 

significantly associated with the low risk score, which 

was associated with favorable prognosis. Macrophages 

that infiltrate into the tumor microenvironment may 

facilitate tumor growth, angiogenesis, invasion, and 

metastasis, and are associated with poor prognosis in 

HNSCC [46]. Our study indicated that they were 

positively associated with risk score and an increase in 

M0 macrophages portended a poor prognosis. 

 

Recently, the immunocheckpoints involving PD-1, PD-

L1, and CTLA-4 represent promising immunotherapy 

targets for antitumor therapy [47]. PD-1 is a 

transmembrane protein that is mainly expressed on the 

surface of T lymphocytes. CTLA-4 is a membrane 

glycoprotein that is frequently expressed on Tregs. The 

mechanism of action of CTLA-4 and PD-1 remain 
controversial. Our study revealed that high CLTA-4 

expression was significantly associated with a lower 

risk score. This may be caused by the upregulation of 

Tregs in HNSCC, suggesting that CTLA-4 may be 

involved in some aspect of the antitumor effect. Studies 

have reported that HNSCC patients exhibiting high PD-

L1/PD-1 expression tend to have prolonged survival 

outcomes and a lower probability of recurrence [48, 49]. 

In addition, our signature was negatively correlated with 

PD-1, but not PD-L1.  

 

Studies have found that the genetic variation of HBD-1 

contributes to lower RNA expression and may be 

involved in carcinogenesis of oral squamous cell 

carcinoma [50]. The genetic alterations of our 10 

immune-related genes may help explain the aberrant 

expression of these genes to some extent in tumors, and 

patients that carry such genetic alterations may be more 

responsive to immunotherapy. Meanwhile, our GSEA 

results indicated that six enriched pathways in the high-

risk immune group were significantly correlated with 

the biological processes in HNSCC progression. For 

example, the pathway of focal adhesion in HNSCC 

participates in the development of distant metastasis to 

lymph nodes [51]. The keratan sulphate in the tumor 

environment plays a vital role in the promotion or 

regulation of tumor development [52]. The chondroitin 

sulfate glycosaminoglycan biosynthesis pathway can 

promote and regulate tumor progression and metastasis 

by influencing important biological processes such as 

cell growth, adhesion, signal transduction, and lipid 

metabolism [53]. 

 

The above results demonstrate that our signature has 

potential clinical prognostic value and is associated with 

response regulated by the immune microenvironment. 

This may provide a potential target for diagnosis and for 

development of new targeted therapies.  

 

There are several limitations to our study. Firstly, our 

study was performed using public databases and had a 

retrospective design, so further studies should be done 
with prospective clinical data sets to validate our results. 

Secondly, although we established and verified our 

model using different gene expression datasets, concerns 
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regarding sample bias and model over-fitting still 

remained. Furthermore, the infiltrating cell populations 

were calculated by an analytical tool (CIBERSORT) 

using gene expression data. This is different from the 

patient's tumor cell infiltration and thus have the false 

discovery rate. Finally, the biological functions of our 

immune signature should be further validated in 

biological experiments. 

 

MATERIALS AND METHODS 
 

Study samples 

 

The training set was acquired from the TCGA data 

portal (https://portal.gdc.cancer.gov/cart; up to March 

22, 2020), and consisted of processed RNA-Seq FPKM 

data for HNSCC patients (n=461). The corresponding 

clinical data, including age, gender, smoking, alcohol 

abuse, differentiation grade, clinical TNM stage, T 

stage, N stage, M stage, recurrence, and survival 

information were completely provided. Next, data from 

96 cases (GSE41613) were downloaded from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/) along 

with clinical data and follow-up time as a validation set. 

Only patients with complete clinical and expression 

data available at that time were included in this study 

and the survival time threshold in our study was greater 

than one month. The clinicopathological characteristics 

of HNSCC patients from the training and validation sets 

were showed (Supplementary Table 1). The OS was 

defined as the date of the study enrollment to the last 

follow-up time.  

 

Differentially expressed genes of IRGs and TFs 

 

We obtained IRGs from the Immunology Database and 

Analysis Portal (ImmPort) (https://www.immport.org/) 

and TFs data were downloaded from the Cistrome 

Cancer resource (http://cistrome.org/CistromeCancer 

/CancerTarget/). To establish a training set, we used the 

R package Limma to identify differentially expressed 

genes (DEGs) for IRGs and TFs from 502 HNSCC 

tissues and 44 adjacent normal tissues in TCGA dataset, 

where FDR < 0.05 and |log(FC)| ≥ 1 were set as the 

screening criteria [54]. Heat maps and volcano plots of 

IRGs and TFs were also generated with R software. 

Furthermore, we assessed the biologic functions of 

differentially expressed IRGs using the GO and KEGG 

pathway databases. Enrichment analysis was done with 

the Cluster Profiler package [55] in R and functional 

categories with p < 0.05 were shown. 

 

Regulatory TF networks  

 

To further investigate the relationship between DEGs of 

IRGs and HNSCC prognosis, we used the univariate 

Cox proportional hazard model. Genes with a p-value < 

0.05 were selected for further analysis and genes with a 

hazard ratio (HR) value > 1 were defined as high-risk 

IRGs, whereas the remainder were considered low-risk. 

Finally, the association between the above prognosis 

IRGs and differentially expressed TFs was analyzed by 

Pearson’s correlation test. The cut-off criteria included 

correlation coefficients > 0.5 and p-values < 0.05, 

which were determined by the cor.test function in R 

(Supplementary Table 2). To more clearly express the 

relationships, we used Cytoscape for constructing and 

visualizing the regulatory network [56]. 

 

Construction and validation of an immune-related 

signature 

 

First, to normalize the differentially expressed IRGs 

values in the training and validation sets, gene 

expression values lower than the median were defined 

as 0, otherwise a value of 1 was assigned. Second, to 

construct an immune-related prognostic signature, we 

selected the differentially expressed IRGs with a p-

value < 0.01 by univariate cox analysis. We then used 

LASSO Cox regression and multivariate Cox regression 

model to assess the relationship between prognostic 

immune-related gene expression and OS in the training 

set using the survival and glmnet R packages. The 

smallest parameter model for the immune-related 

prognostic signature was constructed with a 10-fold 

cross-validation and used one standard error of the best 

penalty parameter λ to prevent overfitting [57]. Finally, 

the risk score for each patient was calculated by gene 

expression and its corresponding coefficients from the 

multivariate Cox regression analysis. Patients were then 

divided into high and low risk groups based on the 

median risk score. To validate the immune-related 

prognostic signature, we used the same formula as the 

training set to calculate each patient risk score followed 

by classification into high and low risk groups. 

 

A prognostic nomogram combined with prognostic 

clinicopathological factors, including age, N stage, M 

stage, recurrence, and immune-related gene signature 

was constructed using the rms R package. To further 

validate the prognostic value of our signature, Kaplan-

Meier analysis of OS in HNSCC patients with subgroup 

clinicopathological factors was performed. 

 

Correlation analysis of infiltrating immune cells and 

immune checkpoint genes 

 

CIBERSORT is an analytical tool that can provide an 

estimation of the abundances of member cell types in a 
mixed cell population by using gene expression data. In 

this study, we identified 22 immune infiltrating cell 

types by uploading the gene expression training set to 

https://portal.gdc.cancer.gov/cart
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/
http://cistrome.org/CistromeCancer
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the CIBERSORT webpage (https://cibersort.stan 

ford.edu/) and using a reference LM22 expression 

signature with 100 permutations. The infiltrating 

immune cells derived from CIBERSORT included T 

cells (CD4+ T cells, CD8+ T cells, naïve CD4+ T cells, 

resting memory CD4+ T cells, γδ T cells, regulatory T 

cells, follicular helper T cells and regulatory T cells), B 

cells (naïve B cells, memory B cells and plasma cells), 

myeloid subsets (M0 macrophages, M1 macrophages, 

M2 macrophages, activated and resting dendritic cells, 

activated and resting mast cells, monocytes, neutrophils 

and eosinophils), and NK cells (activated and resting 

NK cells). In addition, only the results of the infiltrating 

immune cell fractions with a p-value < 0.05 were 

considered for further analysis. Finally, the correlations 

between the immune-related signature and tumor-

infiltrating immune cells, immune checkpoint 

modulators, such as PD-1, PD-L1 and CTLA-4, were 

determined. 

 

Mutation characteristics and gene set enrichment 

analysis of the immune-related signature 

 

The mutation characteristics of our immune-related 

signature in all HNSCC patients from the TCGA dataset 

were obtained using cBioPortal (http://www. 

cbioportal.org/). GSEA was performed to identify the 

pathways that were significantly enriched between high 

risk groups based in the immune-related signature. An 

FDR < 0.25 and nominal p < 0.05 were used as the 

screening criteria to identify significant gene sets by the 

GESA software. 

 

Statistical analysis  

 

Kaplan–Meier analysis was done to compare the OS 

between high and low-risk groups using the log-rank 

test. Meanwhile, ROC curve was used to evaluate the 

accuracy of the immune-related gene signature. The 

clinicopathological characteristics on OS was 

determined by univariate and multivariate analyses on 

the basis of the Cox proportional hazards model for 

both training and validation sets. Furthermore, the 

correlation between immune-related signature and 

tumor-infiltrating immune cells and immune checkpoint 

molecules was evaluated by Pearson’s correlation test. 

All analyses were conducted using R software (version 

3.6.2) and the results were considered significant when 

corresponding p-values < 0.05.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 

Supplementary Figure 1. Differentially expressed IRGs and TFs in HNSCC. (A, B) Heat map of significantly differentially IR and TF 

genes in HNSCC. The color from green to red refers to the progression from low to high expressed genes. (C, D) Volcano plot of differentially 
expressed IRGs and TFs. The red and green dots in the plot represent significantly upregulated and downregulated genes, respectively, and 
no differential expression is depicted by black dots. 
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Supplementary Tables 
 

Supplementary Table 1. The clinicopathological characteristics of 
HNSCC patients from the training and validation sets. 

Clinicopathologic 

parameters 

Training set (n = 461) 

number of cases (%) 

Validation set (n = 96) 

number of cases (%) 

Gender   

Male 339 (26.46) 65 (67.71) 

Female 122 (73.54) 31 (32.29) 

Age   

<60 y 202 (43.82) 50 (52.08) 

≥60 y 259 (56.18) 46 (47.92) 

TNM stage   

I-II 104 (22.56) 41 (42.71) 

III-IV 357 (77.44) 55 (57.29) 

Drinking   

Yes 328 (71.11)  

No 133 (28.89)  

Smoking    

Yes 106 (23.00)  

No 355 (77.00)  

Grade   

1-2 340 (73.75)  

3-4 121 (26.25)  

Lymph node 

metastasis 
  

N0 226 (50.98)  

N+ 235 (49.02)  

T classification   

T1-T2 161 (34.92)  

T3-T4 300 (65.08)  

M classification   

M0 456 (98.92)  

M1 5 (1.08)  

Recurrence   

Yes 162 (35.14)  

No 299 (64.86)  

 

  

https://www.aging-us.com/article/104043/text#SD1
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Supplementary Table 2. The association between the prognosis immune-related genes 
and differentially expressed TFs. 

TF ImmuneGene 
Correlation 

coefficients 
P-value Regulation 

CBX3  BIRC5  0.518642408820594  1.15520246900326e-31  positive 

CENPA  BIRC5  0.69287091986189  3.39740962361839e-64  positive 

EZH2  GNRH1  0.523031102481409  2.89994062578473e-32  positive 

FOXP3  LTA  0.735231898437069  5.50266657984769e-76  positive 

FOXP3  CXCR4  0.602664676810251  7.50120067401527e-45  positive 

FOXP3  CXCR3  0.734367694212062  1.00840545610555e-75  positive 

FOXP3  IL21R  0.797986384807953  2.2645404903834e-98  positive 

FOXP3  IL2RG  0.664185745269767  2.60811386532034e-57  positive 

FOXP3  CD247  0.55309782116114  1.27354006034913e-36  positive 

FOXP3  ZAP70  0.532205241805523  1.50989089544079e-33  positive 

FOXP3  SH2D1A  0.683751210147642  6.39922931062554e-62  positive 

FOXP3  ICOS  0.859952634007701  5.02642593010807e-130  positive 

FOXP3  CTLA4  0.733274069140433  2.16300325109839e-75  positive 

H2AFX  BIRC5  0.534652159139509  6.7600337274877e-34  positive 

MYBL2  BIRC5  0.563377513450786  3.24548208832276e-38  positive 

PBX1  NR3C2  0.601407493116652  1.26429217741422e-44  positive 

POU5F1  GNRH1  0.609650592416114  3.95154070696453e-46  positive 

 


