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Cancer is a heterogeneous disease and its genetic and metabolic mechanism may

manifest differently in each patient. This creates a demand for studies that can

characterize phenotypic traits of cancer on a per-sample basis. Combining two large

data sets, the NCI60 cancer cell line panel, and The Cancer Genome Atlas, we

used a linear interaction model to predict proliferation rates for more than 12,000

cancer samples across 33 different cancers from The Cancer Genome Atlas. The

predicted proliferation rates are associated with patient survival and cancer stage and

show a strong heterogeneity in proliferative capacity within and across different cancer

panels. We also show how the obtained proliferation rates can be incorporated into

genome-scale metabolic reconstructions to obtain the metabolic fluxes for more than

3000 cancer samples that identified specific metabolic liabilities for nine cancer panels.

Here we found that affected pathways coincided with the literature, with pentose

phosphate pathway, retinol, and branched-chain amino acid metabolism being the most

panel-specific alterations and fatty acid metabolism and ROS detoxification showing

homogeneous metabolic activities across all cancer panels. The presented strategy has

potential applications in personalized medicine since it can leverage gene expression

signatures for cell line based prediction of additional metabolic properties which might

help in constraining personalized metabolic models and improve the identification of

metabolic alterations in cancer for individual patients.

Keywords: systems biology, personalized medicine, proliferation, flux balance analysis, TCGA, NCI60

INTRODUCTION

Cancer is a heterogeneous disease that manifests in a wide variety of geno- and phenotypes. There is
no one treatment that works for any cancer types and even cancers of the same phenotypemay show
large genomic ormetabolic differences (Hu et al., 2013; Andor et al., 2015; Hensley et al., 2016). Due
to this, there has been an ongoing effort to characterize the particular signatures of cancer in the
genome and transcriptome (Mazor et al., 2016; Tirosh et al., 2016) and elucidate its tissue specific
consequences for cancer patients. Two of the largest projects describing genomic and expression
features of several cancers are the NCI60 and TCGA projects (Scherf et al., 2000; Shoemaker, 2006;
Koboldt et al., 2012; Zheng et al., 2016). Currently, NCI60 comprises 60 cancer cell lines and their
full genetic, transcriptomic and proteomic characterization. The Cancer Genome Atlas project has
similar goals but for cancer samples coming from several thousand patients. Detailed studies of
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those data sets have revealed the variation inherited even within a
single cancer panel and provide great potential for uncovering of
the genomic differences that drive the strong variability in cancer
phenotypes (Hoadley et al., 2014).

The NCI60 and TCGA databases concentrate on genomic
characterizations of distinct cancers which creates the
challenge to connect those data to metabolism, which itself
is closely connected to the cancer phenotype by providing
the macromolecules required for proliferation (Boroughs and
DeBerardinis, 2015). Here, the cell lines contained in NCI60 have
been characterized in more detail by providing the proliferation
rates for the majority of the 60 cancer panels (in the form
of doubling times). Due to the inherent complications in
measuring those quantities in patients, TCGA includes clinical
indicators but lacks biological characterizations of the cancer
samples outside of genomic data. In particular, TCGA lacks
quantification of cancer proliferation.

In general, inference ofmetabolic properties from genome and
gene expression data is a difficult task due to the many post-
transcriptional and post-translational regulatory mechanisms
involved in central carbon metabolism that are usually not fully
captured by sheer mRNA or protein abundance. Consequently,
there have been many attempts to infer the metabolic state by
computational methods. Here, flux balance analysis (FBA) is
the most prominent one and has proven to be helpful in the
analysis of cancer metabolism in cell lines and tissue-specific
metabolic models (Orth et al., 2010; Resendis-Antonio et al.,
2010; Agren et al., 2014; Yizhak et al., 2015). There are several
algorithms performing this task but they all aim to reconcile
gene expression or proteome data with the presence of distinct
biochemical reactions in the model in some way or another
(Becker and Palsson, 2008; Agren et al., 2012; Wang et al.,
2012). The major limit to those models are the lack of metabolic
data and the weak association between enzyme expression
and metabolic fluxes. Due to this, many of the reconstruction
methods use discretized enzyme expression values in order to
exclude biochemical reactions with a lacking enzyme (Wang
et al., 2012; Pornputtapong et al., 2015; Schultz and Qutub,
2016). This strategy has shown to be a promising approach in
constraining the feasible metabolic space in cells or tissues and
predicting the metabolic capacities of several cancers (Agren
et al., 2014). One of the challenges in using FBA-based methods
is finding sufficient constraints to identify the unique set of
metabolic fluxes for a biological sample. Here, parsimonious
FBA, where one only uses the most economic flux distribution
for a metabolic objective, has shown to reproduce experimentally
measured fluxes and may in some cases even outperform
methods based on gene expression data (Lewis et al., 2010;
Machado and Herrgård, 2014). Furthermore, it has also been
shown that knowledge of the associated proliferation rate will
yield to an improvement of those predictions making it desirable
to complement expression data with at least a limited set of
fluxome data such as growth rates or measurements of key fluxes
(Yizhak et al., 2014). Growth rates for simpler eukaryotes can be
predicted from gene expression signatures (Airoldi et al., 2009),
thus raising the question whether one can identify growth or
proliferation rates for clinical samples from gene expression data.

The combination of genome-scale metabolic modeling,
personalized reconstruction, and inference of additional
metabolic constraints forms the core of a strategy that shows
high promises in personalized medicine. Here, accurate
prediction of metabolic fluxes may help to identify distinct
metabolic alterations and the causality underlying diseases in
individual patients by identifying a patient-specific set of altered
metabolic processes (Bordbar et al., 2015; Resendis-Antonio
et al., 2015).

In this work we present a strategy capable of predicting
proliferation rates for more than 12,000 cancer samples in the
Cancer Genome Atlas by training a machine learning model for
proliferation on the NCI60 data set. We show that the predicted
proliferation rates correspond well with clinical data and employ
them to estimate the fluxes driving cancer proliferation for more
than 3500 samples from nine different cancer subtypes. Overall,
our study provides a computational strategy that is able to predict
the proliferation rate of cancer biopsies from cell line gene
expression data alone and this allows detailed surveys of the
potential metabolic activity underlying each case. As a result, our
methodology can contribute to the identification of the common
and specific metabolic alterations associated with cancers across
different tissues, which is of importance during the development
of personalized treatments for cancer.

DATA AND METHODS

Data Availability and Software
All source code and additional data needed to run the analysis
is hosted on GitHub in a dedicated paper repository at https://
github.com/cdiener/proliferation and is archived by Zenodo
(http://doi.org/10.5281/zenodo.166813). We also provide
intermediate data sets for the NCI60 (http://doi.org/10.5281/
zenodo.61980) and TCGA data (http://doi.org/10.5281/zenodo.
61982). The repository includes Rmarkdown documents
(http://rmarkdown.rstudio.com/) detailing the exact steps
to produce the reported results and this information is also
contained in the Supplementary Protocol S1 in PDF format.
Respective software versions are reported in Protocol S1
under “Software versions.” We also provide a docker image in
order to reproduce our entire analysis interactively on a local
machine or in the cloud at https://hub.docker.com/r/cdiener/
proliferation.

NCI60 and TCGA Data Sets
HuEx ST 1.0 gene expression data for the NCI60 cancer cell lines
was obtained from the GEOdatabase from experiment GSE29682
(Reinhold et al., 2010; Barrett et al., 2013). The data was read
using the oligo package from Bioconductor and normalized by
RMA (Carvalho and Irizarry, 2010). This was followed by a
summary step where we calculated the expression for each gene
in each sample as the mean log expression across all probesets
that were mapped to this gene. Here, the probeset-gene mapping
was obtained from biomart (http://www.biomart.org) and is
also provided in the paper repository (Smedley et al., 2015).
Finally, replicates for a given cell line were summarized again by
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obtaining the mean log expression values across all replicates for
a given cell line and gene.

TCGA data was obtained and parsed from the NCI
Genomic Data Commons (GDC) repository (see https://gdc-
portal.nci.nih.gov/). HuEx 1.0 ST data was obtained from
the GDC legacy archive (https://gdc-portal.nci.nih.gov/legacy-
archive). Download and parsing was performed in an automated
manner using the tcgar package for the R programming language
(https://github.com/cdiener/tcgar) which we created for that
purpose. A complete list of downloaded files can be found in
the “GDC” subfolder of the data repository (https://github.com/
cdiener/proliferation). All analysis was based on Level 3 data
(already preprocessed data) since this subset available to the
general public.

Generalized Linear Models
Generalized linear models were fitted using the glmnet package
for R (Friedman et al., 2010). Regularization was performed using
the L1 norm where the regularization strength λ was chosen as
the one yielding the smallest mean squared error during cross-
validation. In order to improve regularization we also discarded
very small coefficients in the final step of feature selection. Thus,
for the final model we included only coefficients larger than the
25% quartile of the non-zero absolute coefficients (see Protocol
S1). The resulting fits were analyzed using a set of 5 metrics,
namely mean squared error (mse), root mean squared error
(rmse), mean absolute error (mae), mean relative error (mre) and
R2. Those metrics were calculated for the training set as well as
for leave-one-out cross validation. Here, predictive power was
evaluated by the leave-one-out cross validation alone.

Flux Analysis
Flux analysis was performed using the Python programming
language (https://python.org) and the COBRApy package
(Ebrahim et al., 2013). Metabolic models were obtained from
theHumanMetabolic Atlas (https://metabolicatlas.org) using the
available cancer models which contain a proliferation objective
function (Gatto et al., 2014). Given the predicted proliferation
rates rp, fluxes for themodels were obtained by parsimonious flux
balance analysis (pFBA) by first splitting each reversible reaction
into its forward and backward reaction and then solving the
resulting linear programming problem for each sample (Lewis
et al., 2010):

Minimize
∑

i vi
Sv = 0
vi ≥ 0
vp = rp

(1)

Here, S denotes the stoichiometric matrix of the respective
irreversible metabolic model, vi denotes the flux with index
i and vp denotes the the flux of the proliferation objective.
Note that, given the proliferation rate rp this does not
require constraints for the fluxes other than positivity. Given
the large number of optimization problems we employed a
strategy similar to FastFVA during optimization where each
optimization was performed once de novo for each model
and subsequent optimizations on the same model recycled the

previous solution basis which allows for fast computation of the
fluxes (Gudmundsson and Thiele, 2010). Optimization was only
performed for samples with a positive proliferation rate and we
only used fluxes in further analysis which were non-zero for at
least one sample, yielding a total of 1026 used fluxes.

Specificity for a given cancer subtype was scored for each flux
as the relative difference of the mean flux within the cancer panel
vs. all other cancer panels.

sip = log2µ
i
p − log2µ

i
o (2)

Here µi
p denotes the mean of flux vi across all samples in cancer

panel p and µi
o the mean of flux vi in all other samples. Thus, the

resulting specificity score sip described the log-fold change of the
target flux between the target cancer panel and the rest of all the
samples.

Pathway enrichment was obtained by using an enrichment
score similar to GSEA (Mootha et al., 2003; Subramanian et al.,
2005). First, specificity scores sip were sorted from highest to
lowest absolute value across all panels and fluxes, yielding the
ranked list R containing n elements. Then we calculated a raw
enrichment score for a metabolic pathway mp mapping to nh
elements in R as

ES = maxi/mini Ph (i) − Pm (i)

where Ph (i) =

∑

vi ∈mp, j ≤ i
Rj/nr , nr =

∑

j∈mp
Rj (3)

and Pm
(

i,mp
)

=

∑

vi not ∈mp, j≤ i
1/ (n− nh)

ES will be large when the respective pathway is enriched in the
beginning of R (specific fluxes are enriched in the pathway),
and will be negative when the the pathway occurs in the
tail of R (specific fluxes are depleted in the pathway). The
score was then normalized by randomly permuting the pathway
labels 100 times for each pathway, obtaining the respective
mean permuted enrichment score ESperm, and calculating the
normalized enrichment score as NES = ES/ESperm. Empirical
p-values for the normalized enrichment scores were obtained
from the 100 random permutations separately for the positive
and negative tails. Thus, the normalized enrichment score NES
denotes the fold change between the real pathway mapping and a
randomly generated one. If NES is larger than one this denotes an
enrichment of the given pathway in the specific fluxes, whereas a
NES smaller than one denotes absence of the given pathway in the
specific fluxes. Hence, NES> 1 identifiesmetabolic pathways that
are active in cancer cell panel-specific manner whereas NES < 1
identifies metabolic pathways that are underrepresented in the
panel-specific fluxes and thus form a set of core pathways whose
activity does not vary across the cancer panels.

RESULTS

Identification of Stable Gene Signatures
Across Technologies and Cell Types
One of the major challenges when studying two large data sets
such as NCI60 and TCGA together is the conservation of gene
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expression across different technologies and cell types. In the
NCI60 data set gene expression was measured by microarrays
with the HuEx 1.0 ST arrays being the most recent technology
used. TCGA howevermostly used RNA-seq for the quantification
of gene expression and provides microarray data for only a small
subset of cancer panels. For instance, TCGA includes HuEx 1.0
ST data for 1211 samples across 3 cancer panels but RNA-seq
data for 11,093 samples across all 33 cancer panels. In order to
include the majority of cancer panels in TCGA into the analysis,
we thus tried to identify a subset of genes that showed similar
global expression across NCI60 and TCGA.We first obtained the
mean log expression values for all genes contained in the NCI60
HuEx 1.0 ST data as well as in the TCGA RNA-seq and HuEx
1.0 ST data. For the NCI60 data set this mean log expression
was calculated across all cell lines for which proliferation rates
were available (57 of 60), whereas the mean log expression for the
TCGA data set was obtained by averaging over all samples.

Within the NCI60 and TCGA sample subsets that were

measured by the HuEx microarrays sets expression values were

similar (correlation 0.82, p < 2.2e-16, compare Figure 1A),
indicating that the used cell lines are an adequate model system

for human cancer cells. Comparing themicroarray log expression

values fromNCI60 to RNA-seq log expression values fromTCGA

we found a more complex relation. Here, genes that showed a

high expression in the RNA-seq data showed a linear relationship

with the NCI60 microarray log expression values (compare
Figure 1C). However, most of the genes with low expression

in the TCGA RNA-seq data showed almost random expression

values in the NCI60 HuEx data and a similar behavior could be

observed when comparing the TCGA microarray data with the
TCGA RNA-seq data (see Figure 1B). There are several possible
explanations for this discrepancy, such as a the low dynamic
range of microarrays, cell line-specific expression of some genes,
or technical errors. Thus, we aimed at selecting only those genes
that showed a globally correlated expression between the NCI60
microarray data and the TCGA RNA-seq data. Genes, whose

expression was conserved across both platforms were identified
by a linear model relating mean log gene expression values from
the NCI60 HuEx experiments (eiN) and and the TCGA RNA-Seq
experiments (eiT) as

eiT = αeiN + β (4)

Here, α denotes a platform-specific factor that describes the
mapping from microarray to RNA-seq expression values for the
same samples, whereas β denotes a sample parameter which
adjusts for different sample quantities between the NCI60 and
TCGA data set. One could fit those parameters directly using the
NCI60 Huex and TCGA RNA-Seq data, however, we chose to use
a more robust approach in which each of the two parameters was
obtained individually from other data set combinations. Here, α
was obtained by fitting the HuEx and RNA-Seq data contained in
TCGA to a zero-intercept linear model (same samples implies β

= 0), whereas β could be obtained by calculating the difference
between the mean log expression values of the HuEx data from
NCI60 and TCGA (same platform implies α = 1). The full model
was then validated using the NCI60 Huex and TCGA RNA-
Seq and showed good agreement with the data as is shown in
Figure 1. As a consequence the fitted model could be used to
correct the NCI60 log expression values to its respective TCGA
RNA-seq log expression value.

Following the model fit, genes with conserved expression
across both data set could be obtained by enforcing the linear
relationship described before. In detail, genes were considered
acceptable for further analysis if

• The gene ID (mapped to its Ensembl ID) was contained in
the NCI60 HuEx data, the TCGA HuEx data and the TCGA
RNA-seq data

• The distance between the corrected mean log expressions of
the gene in the NCI60HuEx data set and the TCGAHuEx data
set was less than one (corrected maximal difference of 2-fold)

FIGURE 1 | Gene expression across NCI60 and TCGA. In all figures the red dots denote the gene that were used in the final predictor for proliferation rates and

dashed lines enclose the area used for filtering viable gene candidates. (A) HuEx expression data cross NCI60 and TCGA. The blue solid line denotes a 1:1

relationship offset by the parameter beta. (B) Gene expression between microarray and RNA-Seq data within TCGA. The solid blue line denotes the slope given by

alpha and passes through the origin. (C) Gene expression between microarray and RNA-Seq data across NCI60 and TCGA. The solid blue line is given by the slope

alpha and intercept beta which were obtained individually from the data shown in (A,B).
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• The distance between the corrected mean log expressions of
the gene in the NCI60 HuEx data set and the normalized
TCGA RNA-seq data set was less than one (corrected maximal
difference of 2-fold)

Of the 14,943 genes contained in all three data sets, 7799 passed
the filter and showed a correlation of 0.91 (Pearson correlation, p
< 2.2e-16) between NCI60 HuEx 1.0 ST and TCGA RNA-seq log
expression values. Consequently, the filtered genes could now be
used to construct a predictor for proliferation rates.

Expression Interactions Enable a Strong
Predictor for Cancer Proliferation
The statistical model chosen for the prediction of the NCI60
proliferation rates was a LASSO generalized linear model
(Friedman et al., 2010). Here, we aimed at obtaining a predictor
which would not only have good prediction properties on the
training data, but would also be able to generalize to new data.
Thus, all models were evaluated in a training and validation
setting. In the training setting the models were trained using
the entire NCI60 data set as in usual linear regression. For the
validation step, in each iteration one of the 57 data points was
removed from the data set, the model trained on the remaining
56 data points and the proliferation rate predicted for the
omitted data point. The strategy of predicting and evaluating
each data point by a model trained on all other data points is
commonly known as leave-one-out cross-validation or LOOCV.
Performance was evaluated across a set of five different metrics
shown in Table 1.

We observed that a simple linear model (1st order model)
yielded good performance in the training step but poor
performance in the validation step denoting a strong overfitting
to the training data and poor generalization (see Figure 2). To
alleviate this limitation we increased the order of the model
by allowing for products between 1 and 2 genes as variables.
This increases the computational complexity of the model
training drastically since one would now have to consider more
than 30 million possible combinations of the more than 7700
input genes. However, we found that it was sufficient to only
consider combinations of those genes that had obtained non-
zero coefficients in the 1st order case. Because merely 54 genes
showed clearly non-zero regression coefficients in the 1st order
model the number of tested combinations could be reduced to

1485 (1431 combinations between 2 genes and 54 squares of the
individual genes). Training a pure 2nd order model with those
1485 interaction variables yielded amuch stronger predictor than
the first order case, particularly in the validation step where the
R2 was raised from 0.2 to 0.85 compared to the 1st order model
(see Figure 2, Table 1). Adding the original 1st order variables to
the second order ones however did not improve the performance
of the model further and we thus decided to continue with
the pure 2nd order model. In a final step we tried to further
improve the generalization of the predictor by removing those
gene combinations with only very small regression coefficients
to avoid overfitting. This was achieved by removing the 25%
smallest non-zero absolute coefficient values from the model.
This gave a slight improvement in the validation step to an
R2 of 0.98 which now allowed stable prediction of the NCI60
proliferation rates with a relative error of 4% (Figure 2, Table 1).

Using the trained model we now predicted proliferation rates

for all 11,483 tumor tissue and all 756 normal tissue samples

in TCGA having either associated RNA-seq or HuEx data (see
Figure 3). Since the prediction is bound to make some errors it
is possible that some of the proliferation rates are predicted to
be negative which has no clear interpretation. In our analysis
more than 98% of the predicted proliferation rates were larger
than zero and negative proliferation rates were in the order of
the absolute error predicted by the leave-one-out cross-validation
(LOOCV 8e-3 vs. 9e-3 observed) suggesting that the negative
proliferation rates actually were from samples that did not
proliferate (proliferation rate is zero). As shown in Figure 3

proliferation rates were heterogeneous within and across the
different cancer panels. Interestingly the separation between
normal and tumor samples was only pronounced in some of
the cancer panels. This is consistent with previous studies that
have found large heterogeneities in proliferation rates where
proliferation rates may differ even more between different cancer
panels than between normal and tumor cells within the same
panel (Burrell et al., 2013; Wang et al., 2013; Tomasetti and
Vogelstein, 2015). For instance, the predicted proliferation rates
for normal and tumor tissue samples separated well for lung
squamous cell carcinomas, but not for lung adenocarcinomas.

Unlike for cancer cell lines, there are no reported proliferation
rates across the analyzed cancer panels. Thus, we looked for
alternative strategies to validate the predicted proliferation
rates and studied their association with clinical data. Here,

TABLE 1 | Several performance metrics evaluated for the models shown in Figure 2.

mse rmse mae mre R2 strategy order

2.00e-07 0.0004688 0.0003391 0.0163479 0.9960625 train 1st

4.49e-05 0.0067003 0.0052876 0.2611128 0.1958045 validation 1st

2.00e-07 0.0004420 0.0003570 0.0169304 0.9965005 train 2nd

8.10e-06 0.0028480 0.0022301 0.1047906 0.8547042 validation 2nd

2.00e-07 0.0004420 0.0003570 0.0169304 0.9965005 train 1st and 2nd

8.10e-06 0.0028480 0.0022301 0.1047906 0.8547042 validation 1st and 2nd

1.00e-07 0.0003543 0.0002643 0.0132028 0.9977519 train 2nd + cutoff

1.00e-06 0.0010053 0.0008111 0.0398894 0.9818972 validation 2nd + cutoff
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FIGURE 2 | Predictors for proliferations rates. Panels above the figures denote the order of the model where 1st order means just the log expression values and

2nd order products between two log expression values. Black lines denote a hypothetical perfect fit (1:1 relation between measurement and prediction). “Cutoff”

denotes a model where variables with very small fitted coefficients were removed from the model. Panels to the right denote the used predictions where “train” means

performance on the training set and “validation” the predictions obtained from leave-one-out cross validation (LOOCV).

FIGURE 3 | Predicted proliferation rates across 33 cancer panels. Cancer panels are ordered by their mean proliferation rate. Red triangles denote tumor

samples and blue dots normal samples.

12,111 samples had reported clinical data from 10,706 unique
individuals. Comparing the Kaplan-Meier survival curves of
the lower and upper quartiles of predicted proliferation rates
(Figure 4A) we found a clear protective effect of lower
proliferation rates on patient survival which could also be
confirmed by a Cox proportional hazards model (β = 16.7, p
<2.2e-16). This indicates that, for instance, an increase of 0.01
in predicted proliferation rate leads to a 19% in risk. This is
consistent with the expectation that more proliferative cancer

should be more aggressive in general. Because cancer is mostly
characterized by its ability for uncontrolled proliferation we also
hypothesized that the tumor samples should show globally higher
predicted proliferation rates than the normal tissue samples.
This was indeed the case with tumor samples having 75%
higher proliferation rates than normal tissue samples in average
(Figure 4B, Wilcoxon rank sum test p <2.2e-16, see Protocol
S1). Finally, we also tested the association of the predicted
proliferation rates with the cancer TNM staging system. Here,
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FIGURE 4 | Relationship between predicted proliferations with survival

and sample type. (A) Kaplan-Meier plots showing survival for the patients

with samples falling in the lowest 25% of proliferation rates (blue) and top 25%

of proliferation rates (red). (B) Proliferation rates between normal and tumor

samples.

we found a significant association of the predicted proliferation
rates with 3 of the 4 substages (Kruskal-Wallis rank sum test for
T, N, stage with all p-values smaller 2.2e-16, see Protocol S1),
however, this was accompanied by large variations. Proliferation
rates across the subclasses of the staging system are shown
in Figure 5. Predicted proliferation rates seemed to increase
linearly across the T subclass between classes T1-T4 (associated
with tumor size) and general tumor stage between stages I-IV
(Figures 5A,D). Interestingly, subclasses such as T0, N0, or Stage
0 which are carcinomas in situ or tumor that were to small to
be classified showed higher proliferation rates than many of the
higher classes (compare for instance T0 and T1) suggesting that
correct diagnosis of those small tumors is important since they
might be more aggressive than tumors in the other low stages.

Flux Analysis Suggests the Metabolic
Liabilities of Cancer
As mentioned earlier, one of the prevalent methods to study
metabolism in cancer patients is the use of metabolic modeling
and FBA. One of the usual limitations in trying to obtain
the flux distribution for a specific tissue or sample is that
even under knowledge of the model there is some uncertainty
about the upper and lower flux bounds which may strongly
influence the solution. One method to overcome this limitation
is parsimonious FBA which looks for the most economic
flux distribution yielding a predefined metabolic target (Lewis
et al., 2010). In cancer proliferation this target can be set
to be the measured or predicted proliferation rate of the
cancer. Parsimonious FBA can then be used to obtain the flux
distribution yielding the given proliferation rate and minimizing
the sum of absolute flux values. Since this is a minimization
problem it can be obtained from a model with infinitely large
upper bounds and, thus, requires no knowledge about constraints
in an irreversible model. Here the limiting factor is the availability
of tissue reconstructions that allow for the required metabolic
function (in our case proliferation). Unfortunately, many
previously published reconstructions obtained by mCADRE or
tINIT tissue reconstructions do not use a growth objective and

are therefore not suitable for parsimonious FBA with known
proliferation rates (Wang et al., 2012; Pornputtapong et al., 2015).
However, there are some cancer-specific reconstructions which
do allow for proliferation and have been validated qualitatively
validated with experimental data (Gatto et al., 2014). Those
models were reconstructed using proteome data specific for the
cancer panel, thus representing the inclusion of an additional
data source next to the gene expression data used to predict the
proliferation rates.

Here, we used parsimonious FBA to obtain the flux
distributions for 3825 samples from nine cancer panels across
unique five tissues. Fluxes were split up into their forward and
reverse reaction respectively and we only considered fluxes that
were non-zero in at least one sample (1026 fluxes, see Figure 6A).
We observed varying usage of Glycolysis/Gluoneogenesis,
Oxidative phosphorylation and the TCA cycle across the nine
cancer panels (shown in Figure S1). Here, bladder cancers and
breast cancers showed the highest fluxes in Glycolysis, whereas
breast cancers showed diminished fluxes in the TCA cycle
compared to bladder cancers. All other panels showed relatively
low metabolic fluxes compared to bladder and breast cancers.
Fluxes varied considerably within and across different samples
(compare Figure 6A). Within a single cancer panel, this is
expected since all samples in a panel used the same metabolic
model constrained by the predicted proliferation rates which
show strong variations as shown in Figure 3. However, the
clearest pattern could be observed in the presence of absence
of particular fluxes across cancer panels, indicating that the
model reconstruction has more impact than the exact flux values.
Direct comparison of fluxes or metabolic processes between
normal and tumor conditions is difficult because of the lack
of reconstructions for normal tissues with the ability to grow.
Thus, we rather tried to find metabolic processes that were either
regulated specifically in one cancer panel or homogeneously
across all cancer panels. In order to identify pathways which were
specific for a particular cancer panel we calculated a specificity
score sip as the log fold-change of the mean for each flux vi
between the target panel and all other panels (see Data and
Methods). A value of 0 marks fluxes that are homogeneous
across all cancer panels, whereas a high positive or negative
value denotes fluxes which are higher (or lower, respectively)
in the target cancer panel. The distribution of specificity score
across different metabolic pathways and cancer panels is shown
in Figure S2.

Finally, cancer panel-specificity of the fluxes was mapped
to the metabolic pathway level by calculating an enrichment
score as used by GSEA (Subramanian et al., 2005) for metabolic
pathways based on the specificity scores (shown in Figure 7).
Here, an enrichment score of 1 denotes that the pathway is
not enriched in any manner, whereas scores larger than one
denotes pathways whose fluxes are specific across cancer cell
panels and a score smaller than one denotes pathways which are
homogeneous across panels and define a set of core pathways (see
Data andMethods). Themost specific pathways were the Pentose
phosphate pathway, retinol metabolism and the metabolism
of branched amino acids whose specificity scores are shown
in Figures 6B–D. Our results suggest that pentose phosphate
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FIGURE 5 | Proliferations rates across the TNM cancer staging system. Predicted proliferation rates across subclasses of the TNM staging system. The

shaded area denotes the distribution (density) for the proliferation rates in the staging subclass. Shown are the subclasses for the size and extent of the main tumor

(A), number of affected lymph nodes (B), distant metastasis (C), and overall stage (D).

FIGURE 6 | Fluxes and metabolic specificity forn nine cancer panels. (A) Fluxes as predicted by metabolic modeling incorporating the predicted proliferation

rate across 3825 samples from nine cancer panels. Rows denote samples, columns denote non-zero fluxes (1026 in total) and colors the flux value. Cancer panels

are indicated by color annotations on the rows and have the same colors and order (from top to bottom) as the panels in (B). (B) Specificity scores for each of the

fluxes of the pentose phosphate pathway. Each point denotes a single flux. A specificity score of 0 means the flux has the same value in samples within the panel as in

samples outside the panel. Positive and negative values denotes a higher (or lower respectively) flux within the panel than outside the panel. (C) Specificity scores for

each of the fluxes of retinol metabolism. (D) Specificity scores for each of the fluxes of branched-chain amino acid (BCAA) metabolism.

activity is highly heterogeneous across the studied cancer panels
with metabolic fluxes being specifically up-regulated in breast
cancer, cholangiocarcinoma, hepatocellular carcinoma and lung
cancers (Figure 6B). The observed heterogeneity of pentose
phosphate pathway activity is consistent with the literature
(Cancer Genome Atlas Research Network, 2013; Du et al., 2013;
Li et al., 2014; Patra and Hay, 2014; Dick and Ralser, 2015).
Retinol metabolism has been shown to be altered in breast
cancer and, as shown in Figure 6C, we find its fluxes specifically
up-regulated in the breast and bladder cancer panel (Chen
et al., 1997; Wei et al., 2015). Similarly, branched amino acid
metabolism was specifically up-regulated in the bladder cancer
panel (Figure 6C). Branched chain amino acid metabolism is
known to be affected in cancers as well (Mayers et al., 2014; Chang
et al., 2016), however, its relation to cancers is complex since it
may also indicate a prior diabetic condition (O’Connell, 2013).
Pathways showing homogeneous activity across the cancer cell

panels all fell in the category of fatty acid metabolism-related
pathways or reactive oxygen species detoxification. This is not
surprising since fatty acid metabolism and oxidative stress have
long been known to be involved in various cancers (Moreno-
Sánchez et al., 2007; Reuter et al., 2010; Carracedo et al., 2013;
Currie et al., 2013; Sosa et al., 2013; Camarda et al., 2016; Yang
et al., 2016).

DISCUSSION

In this study we extended the gene expression profiling data
contained in the Cancer Genome Atlas with predictions of
proliferation rates for more than 12,000 samples. Our results
suggest that the heterogeneity between and within different
cancer panels is also found on the level of proliferation. Even
though there is a tendency for certain cancer types to have
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FIGURE 7 | Enrichment scores between metabolic pathways and

specificity. Enrichment for each metabolic pathway in relation to its specificity

score. Scores are split into positive (enriched in specific fluxes) and negative

(enriched in homogeneous fluxes). Colors denote the empirical p-value

obtained from 100 random permutations of pathway labels.

higher proliferation rates, there is a large overlap in proliferative
capabilities between different cancers. As we show the predicted
proliferation rates are connected with patient survival and in
differentiating normal from tumor samples and thus might be
consequential for clinical investigations, particularly in early
cancer stages where pathological classification is difficult.

This opens the door for more complex schemes where
phenotypic traits frommodel systems such as cancer cell lines can
be extrapolated to individual patients. However, the proliferation
rate is only one of many features that determines the outcome
of a particular cancer. Additionally, metabolic fluxes seem to
dependmore on the presence or absence of biochemical reactions
than the bounds imposed by achieving a particular proliferation
rate. In this analysis we used the same metabolic model for
all samples of a given cancer panel. This is obviously only
an approximation, albeit a recent study found sample-specific
metabolic reconstructions to differ only moderately within a
single cancer panel (preprint, http://dx.doi.org/10.1101/050187).
There may exist many additional metabolic constraints that vary
across different cancer cell samples and cancer panels such as
availability of metabolites in the microenvironment, mutations
of metabolic enzymes and the required metabolic capacities to
resist the immune system or apoptosis. Therefore, it would be
worthwhile to predict several additional phenotypic traits for the
samples of The Cancer Genome Atlas. This could for instance
be based on particular metabolic indicators such as the redox
balance, the level of oxidative stress or the balance between the
Glycolysis and the TCA cycle. As we have shown, data obtained
from cell lines can be an acceptable alternative and has the
potential to further constrain the solution space of metabolic
modeling.

The advantages of having predictions for distinct biological
phenotypes for single patient data lie in its ability to predict
metabolic alterations in a more complex fashion than just
analyzing the gene expression and mutations of metabolic
enzymes. Particularly, it allows the inclusion of additional
data through the metabolic model such as the fulfillment of
metabolic requirements such as the maintenance of a viable
redox balance and the uptake of the necessary nutrients
from the microenvironment. As shown in Figure 4, this
allows to identify the metabolic liabilities within and across
cancer panels and could also be used to find metabolic
alterations specifically for a single patient. Here, we found that
identified metabolic liabilities were consistent with previous
publications in predicting alteration in lipid metabolism as
a general theme across different cancers and identifying
several specific metabolic alterations in the pentose phosphate
pathway, retinol metabolism, and branched chain amino acid
metabolism as alterations. As more reconstructions for normal
tissues become available this list is likely to be extended by
comparisons between normal and tumor tissues, however that
would require the inference of metabolic constraints beyond
proliferation or growth rates as many normal tissues do not
grow significantly. Additionally, themethodology could probably
be improved by using patient-specific reconstructions for the
metabolic models that better capture the inherent heterogeneity.
However, that would require fast reconstruction methods in
order to produce personalized models in a high-throughput
fashion.

Finally, after initial model training, prediction for new
samples is very efficient and can help to reduce the amount of
required data. In our study we only required gene expression
levels for 38 unique genes in order to predict proliferation rates
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with an accuracy of 96%. Additionally, all of those genes were
consistently expressed across all cancer panels and cell lines and
had sufficiently high expression values to be quantified reliably
by RNA-Seq and microarrays. This enables cost efficient clinical
probing in order to quantify phenotypic traits that can usually
not be observed directly.
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