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Abstract

Compelling evidence continues to build to support the idea that SARS-CoV-2

Neutralizing Antibody (NAb) levels in an individual can serve as an important

indicator of the strength of protective immunity against infection. It is not well

understood why NAb levels in some individuals remain high over time, while in

others levels decline rapidly. In this work, we present a two-state mathematical

model of within-host NAb dynamics in response to vaccination. By fitting only

four host-specific parameters, the model is able to capture individual-specific

NAb levels over time as measured by the AditxtScore™ for NAbs. The model can

serve as a foundation for predicting NAb levels in the long-term, understand-

ing connections between NAb levels, protective immunity, and breakthrough

infections, and potentially guiding decisions about whether and when a booster

vaccination may be warranted.
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of1. Introduction

SARS-CoV-2 Neutralizing Antibody (NAb) levels in an individual have been

shown to be correlated to the strength of protective immunity against infection

[1, 2, 3, 4]. Antibodies develop both in response to infection and to vacci-

nation. Both non-neutralizing and neutralizing antibodies are involved in the5

immune response to viral infection, serving to alert effector cells to the presence

of pathogen in infected cells as well as to disrupt the ability of a virus to enter

a host cell. As pointed out in [5], neutralizing antibodies that develop under

viral load pressures serve as sentinels that provide insight into the associated

humoral response.10

The focus of the model in our study is on understanding changes in individual-

specific NAb concentrations in fully vaccinated individuals using a novel flow-

cytometry-based NAb assay. NAb activity levels can be measured using two

general approaches: Bioassays, which determine the ability of NAb to prevent

viral infection of cells in culture media, and binding assays, which evaluate the15

ability of NAb to prevent binding of SARS-CoV-2 spike protein to the ACE-2

receptor on the surface of human cells. While the former is the gold standard

for determining the effectiveness of antibodies to neutralize viral entry into cells,

bioassays require more time and higher safety level laboratories and are, there-

fore, more expensive. Binding assays can serve as a more practical and scalable20

methodology to assess NAb levels. The novel flow-cytometry test that was used

in this study was compared to a bioassay [6] to determine its performance us-

ing samples from 40 positive and negative samples in a blinded study. Results

showed 100% concordance between the two methodologies in quantifying NAb

levels in the samples (unpublished data).25

Our interest is in whether an individual is protected from getting infected,

which is directly connected to the action of the NAbs. Over time, NAb levels in

some individuals remain high, while in others levels decline rapidly. Since NAb

levels are promising as indicators of the protective potential of the immune

response to a viral challenge, our goal is to develop a mathematical model that30
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NAb response to mRNA vaccine dosing, persistence of immune strength, and

how quickly immunity levels may wane.

Note that the question we are asking is not about how severe the illness

will be in an infected individual. To address that question, we would also35

consider the cellular immune response. In our case, however, it is clear that

if we do not have upstream T-cell recognition, we will not have formation of

memory or B cell activation, and subsequently we will not have plasma cells or

antibody production. For the purpose of addressing the question of protection

against infection, using neutralizing antibodies in the context of the two mRNA40

vaccines studied to evaluate the durability of neutralization and likely degree of

immune protection against infection within an individual is an approach that

is both simple (with relatively few model parameters required) and can provide

insight. The data used in our study are all from COVID-19-naive individuals.

We recognize that in individuals who have had a convalescence history there45

will be more involved in the immune response to vaccination than just response

to the to the spike protein, since through natural infection, the immune system

would have been exposed to more than just the spike protein.

In this work, we present a two-population mathematical model of within-

host NAb dynamics in response to vaccination. By fitting only four subject-50

specific parameters, model simulations can capture NAb level changes within

an individual measured by the AditxtScore™ for NAbs. The model can serve

a foundation for predicting NAb levels over time and guiding decisions about

whether and when a booster vaccination may be warranted.

1.1. mRNA Vaccines55

Both of the newly developed mRNA vaccines widely available in the U.S. func-

tion differently from traditional live-attenuated or disabled virus vaccines. The

SARS-CoV-2 mRNA vaccine encodes for the spike protein, which harbors the

receptor binding domain (RBD), to elicit the immune response. One of the

effects of the immune response is production of neutralizing antibodies (NAb)60
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correlation between how mRNA vaccines work and elicit production of NAb,

which then interfere with binding of the spike protein to the cell receptor re-

quired for viral entry into the cell, indicates that evaluating NAb levels and

NAb trajectories over time is important in understanding the likelihood of an65

individual having protective immunity against infection.

1.2. Mathematical Models of Within-Host Responses

Since the outbreak of SARS-CoV-2 near the end of 2019, a number of math-

ematical models have been created to help guide medical care providers and

health policy makers in establishing approaches to stemming the spread of dis-70

ease and determining best practices for treatment and prevention. While many

useful models focus on modeling epidemiological dynamics and answering ques-

tions about population-level effects of interventions such as vaccination and

treatment (c.f. [7], [8]), our interest is in addressing questions about protective

immunity within a vaccinated individual. Some excellent within-host mathe-75

matical models have been developed to focus on a variety of questions about

response to virus, treatment, and vaccination. Most of these models use patient

data to determine population-level parameterization, that is, parameter values

that are meant to reflect the within-host responses of an “average” individual.

New models are continually being created, so our sample of within-host models80

below is by no means a comprehensive list, but is meant to provide the context

that motivated us to build our model.

Li et al. [9] have a within-host viral dynamic model of live infection with

SARS-CoV-2 using chest radiograph score data to determine model parameters.

The focus of the model is on simulating viral growth within the lung. With a85

system of ordinary differential equations, it tracks three populations: uninfected

and infected pulmonary epithelial cells and viral load. The model is used to

explore the effect of treatment timing and patient immune strength, and was

later analyzed mathematically in [10] with the aim of laying a foundation for

exploring treatment interventions in silico. There are nine model parameters,90
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[11] and [12] via Markov-Chain Monte Carlo optimizations.

Farhang-Sardroodi et al. [13] created a within-host model of the immune

response to an adenovirus-based vaccine. Using ordinary differential equa-

tions, they investigated the impact of various dosing strategies, and captured95

dose-dependent responses. Model parameters were fit to clinical trial data for

the AstraZeneca/Oxford vaccine [14]. Data from a binding and neutralization

study collected from COVID-19 recovered patients [15] were used to compare

antibody-level predictions. The overarching aim of the Farhang-Sarhoodi inves-

tigation was to determine how best to conserve vaccine doses while providing100

necessary levels of protection. The model includes seven population state vari-

ables: non-replicating vaccine cell particles, helper T cells, cytotoxic T cells,

IFN-γ, IL-6, plasma B-cells, and an antibody population.The antibodies in this

model are stimulated by plasma B-cells which are indirectly stimulated by the

presence of vaccine cell particles. The model antibodies in turn clear or neu-105

tralize vaccine cell particles. There are twenty-one model parameters, twelve

of which are found by fitting the model to data to determine population-level

ranges.

The goal of the model by Kim et al. [16], which does not account for vac-

cination, is to use viral-load data to compare within-host dynamics of SARS-110

CoV2, MERS-CoV, and SARS-CoV with the aim of gaining more insight into

SARS-CoV2 behaviors and improved treatment strategies. Using simplifying

assumptions the model is reduced to a set of two bilinear ordinary differential

equations that track levels over time of the number of coronavirus RNA copies

and the fraction of infected target cells. With this simple form, the authors are115

able to insert treatment terms to explore hypothetical combination therapies.

Patient data were fit simultaneously using a nonlinear mixed effects approach to

determine model parameter values. With this model the authors determine that

therapies that block virus production are likely to be effective only if initiated

before the viral load peak. There are eight population-level parameter values120

for each of the three virus types.
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tween SARS-CoV-2 and the immune response, and is meant to provide a testbed

for simulating the effects of drug treatments against SARS-CoV-2 infection.

The strength of this model is in how comprehensive it is. The authors track the125

control of SARS-CoV-2 infection by both the innate and adaptive immune re-

sponses. Data from viral load studies are used to determine model parameters,

and three treatment options are simulated: Remdesivir, convalescent plasma,

and a hypothetical therapy that inhibits virus entry into host cells. The popu-

lations tracked by the model include viral load, healthy cells, latent cells (which130

serve as hosts for replicating virus), infected cells, antigen presenting cells, in-

terferon, effector cells, plasma cells, virus-specific antibodies that serve to neu-

tralize and eliminate virus, the fraction of damaged cells, and a measure of

specificity (a metric that increases as plasma cells produce antibodies that are

more compatible with viral antigen). The model provides a foundation for the135

development of a platform for in silico testing of potential therapies and vaccines

for COVID-19.There are twenty-nine population-level model parameters.

Other mathematical models of SARS-CoV-2 within-host dynamics include

[18], [19], [20], [21], and [22] with each model focusing on somewhat different

questions. Model parameters are fit to a variety of data sets measuring vi-140

ral load, antibody levels, and certain immune response rates, and tend to be

determined at a population level.

We have learned a great deal since the start of the world-wide outbreak

about how SARS-CoV-2 affects individuals, but it is still not well-understood

why some infected individuals experience only mild symptoms, with some even145

remaining asymptomatic, while for others, infection with SARS-CoV-2 can re-

sult in severe respiratory symptoms and even death. As Chatterjee et al. [22]

point out, the reasons for the extreme heterogeneity in outcomes of SARS-CoV-2

infection across individuals is still unclear, but they hypothesize that this het-

erogeneity arises from variations in the strength and timing of an individual’s150

immune response. Most within-host models provide model parameterization

for immune responses to infection at a population level, but we want to move
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mune response is likely to be. Our aim is to provide a mathematical model

that is as simple as possible (our model has only two state variables), with as155

few parameters as possible (only four subject-specific parameters must be fit for

an individual), so that determining subject-specific parameters is a tractable

task. With the model in this paper we can provide subject-specific insight re-

garding individual levels of likely immune protection against infection in a fully

vaccinated individual using neutralizing antibody (NAb) levels as our indicator.160

2. Materials and Methods

2.1. Assay Data

The AditxtScore™ test for neutralizing antibodies to SARS-CoV-2 is a novel

flow cytometry based competitive inhibition assay for the measurement of total

neutralizing antibodies to SARS-CoV-2 in human plasma samples. Microparti-165

cles coated with the recombinant SARS-CoV-2 RBD antigen are incubated with

biotinylated angiotensin converting enzyme-2 (ACE-2), human subject plasma

or phosphate buffered saline (PBS), and fluorescent labeled streptavidin. Neu-

tralizing antibodies in the subject plasma sample bind to the RBD antigen and

inhibit binding of ACE-2 to the RBD antigen. Following incubation, the beads170

are washed and then measured by flow cytometry to determine the degree of

inhibition of ACE-2 binding. The degree of inhibition of the ACE-2 binding

is proportional to the amount of neutralizing antibodies present in the human

subject sample. Zero or near zero percent ACE-2 binding inhibition is observed

when phosphate buffered saline is used as sample or when no neutralizing anti-175

bodies are present in the subject sample. Human subject plasma samples with

higher concentrations of neutralizing antibodies will produce % binding inhi-

bition values up to 100%. One hundred percent binding inhibition is achieved

when ACE-2 is completely inhibited from binding to the RBD coated micropar-

ticles by the neutralizing antibodies in the sample. Sample % ACE-2 binding180

inhibition values are compared to a standard curve with known neutralizing
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inhibition values into units of IU/mL for each subject sample tested. A standard

curve was generated using dilutions of the human NIH SARS-CoV-2 serology

standard, Lot # COVID-NS01097, characterized and made available by Fred-185

erick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland,

USA. The FNLCR standard has been assigned Potency for Functional Activ-

ity (Neutralizing Unitage) of 813 IU/ml as calibrated to the primary standard

WHO SARS-CoV-2 Serology Standard. A dilution series of standard was pre-

pared with standard concentrations accounting for values of 2032.5, 1626, 1016,190

813, 406.5, 203.2, 101.6, 50.8, and 25.4 IU/mL. IU/mL values were plotted

against neutralizing antibody % inhibition values measured by flow cytometry

for each standard dilution. The resulting standard curve was fit using a poly-

nomial curve fit function and the curve equation was used to generate IU/mL

values from % inhibition values for all samples measured. Figure 1 shows the195

calibration curve derived over four days of runs and the resulting polynomial

equation.

Precision of the method was determined using 4 subjects with 4 different

IU/mL values, 6 assays per day for 3 days. Precision varied somewhat among

subjects (details are included in Appendix B). The coefficient of variation (%CV)200

was inversely proportional to IU/mL, thus precision is higher for higher NAb

levels in IU/mL. For our visualizations of the data, we used a coarse-grained

assignment of precision results for four concentration ranges. Values are shown

in Table 1:

2.2. NAb cut-point values205

Cut-points for NAb concentrations were based in part on an analysis by

Khoury et al. [1], in which NAb activity elicited by seven different SARS-CoV-

2 vaccines and a reference group of convalesced non-vaccinated subjects was

associated with the observed reduction in subsequent infections over the next

several months compared to placebo. By determining NAb concentrations in210

a comparable cohort of convalesced subjects and referring to their analysis, we

8
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0 – 89 20

90 – 149 15

150 – 699 10

700 – 2200 5

Table 1: Coarse-grained precision of method to determine AditxtScore™ for neutralizing an-

tibodies (NAb) to SARS-CoV-2, given in four IU/mL interval ranges. Precision as measured

by coefficient of variation (% CV) increases with IU/mL.

y = 0.000073080x
4
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Figure 1: Calibration curve for converting % inhibition to IU/mL. Resulting polynomial fit:

y = (7.3 × 10−5)x4 − (9.8 × 10−3)x3 + (4.9 × 10−1)x2 − 2.9x.

estimated that for the wild type SARS-CoV-2, NAb values below 90 IU/mL

were associated with no significant protection and considered to be in the “no

response (N)” range. Values within 90 IU/mL - 150 IU/mL were associated with

60−75% protection are were considered to be in the “weak response (W)” range,215

while values above 150 IU/mL were associated with > 75% protection and were

considered a “positive response (P).” Values above 300 IU/mL were associated

with > 90% protection and were considered to be a “strong response (S).” The

90 IU/mL cutpoint was validated against a set of known positive/negative sam-

ples made available by the Frederick National Laboratory for Cancer Research220
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2.3. Human Subject Data Samples

Time-series NAb data were collected through venous blood draws from 27

human subjects over a period of several months. Subjects included in this225

analysis were a subset of study participants enrolled in a prospective cohort

study evaluating SARS-CoV-2 immune responses (NCT05379478), approved by

WCG IRB (IRB #20202768). At successive study visits at an Aditxt center in

Mountain View, CA (MV), subjects with a history of COVID-19 vaccination

provided blood (EDTA plasma) for determination of antibody profiles and neu-230

tralizing antibody activity. Each subject was, to the best of our knowledge,

not previously infected with SARS-CoV-2, and each subject received two mRNA

vaccine doses: some received two Pfizer doses, and some received two Moderna

doses. From a sample of 27 subjects, 9 received Pfizer and 18 received Moderna.

The number of samples, the number of days between samples, and the timing235

of the two vaccine doses varied from subject to subject. Once model develop-

ment was completed and run on the 27 subject data sets, we further tested the

model with NAb values from 5 additional subjects (1 received Pfizer, 4 received

Moderna) and were able to achieve good fits without modification to the model.

In the complete set of 32 subjects, 22 received Moderna and 10 received Pfizer.240

Additionally, 21 are female and 11 are male. The fraction neutralization time

course data for all 32 subjects are pictured in Figure 2, with colors assigned

to distinguish between the results of Moderna and Pfizer vaccination, as well as

between male and female subjects. Additional observations about this data set

are in Appendix C.245

A deeper exploration of the data category differences is certainly of interest,

but a thorough investigation would require a larger balanced data set, and is

outside the scope of this paper. The focus of this work is on the development

of a mathematical model for capturing within-host NAb time dynamics. The

model fitting process, which is discussed in section 3, showed that consideration250
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Figure 2: Fractional Neutralizing Antibody Activity: 32 Subjects, 22 Moderna (13 female, 9

male) 10 Pfizer (8 female, 2 male).

of vaccine type or biological sex did not significantly impact model fits. With

larger and better balanced data sets, however, this model may prove to be useful

in the future for further exploring the differences between mRNA vaccine types

and between biological sexes.

2.4. Mathematical Model255

The mathematical model we introduce is a two-state system describing NAb

response to vaccine. The system of ordinary differential equations captures the

high-level mechanistic dynamics of a vaccine-triggered immune response within

an individual. Model states are:

• A: Neutralizing antibody (NAb). Units: IU/mL260

• V: Proxy for transfected cells in response to mRNA vaccine. Units: mL

11
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differential equations. The time scale is a 24-hour day:

dA

dt
= r1V + r2AV +A (r3 − r4A) (1)

dV

dt
= αu(t) − k1V

(k2 + V )
(2)

Here αu(t) represents a normalized vaccine dose in mL/day. The role of the

vaccine dose in this model is simply as a trigger to engage an immune response;265

the model is not constructed to explore the effect of varying dosage levels. As

discussed in section 2.5.2, a sensitivity analysis showed that at a population

level, the dosage parameter α had very little impact on model outcomes rela-

tive to the other model parameters, and that setting α = 1 for all subjects was

sufficient to achieve model accuracy. State variable V (t) in mL is a proxy270

for the activity of cells transfected as a result of vaccination. In a traditional

dose-response model, an equation of this form would capture the pharmakoki-

netics of medication in the system, but mRNA vaccines behave differently, so

V is not the “amount of vaccine in the body.” Nonetheless, for the purposes

of predicting antibody dynamics over time, the system as modeled reflects the275

initiation of the immune response with the saturation-limited clearance term

conceptualized as “vaccine clearance.” Equation 2 has the same form as the

PK submodel presented in equation (1) in [23] that captures drug concentra-

tion pharmacokinetics. As in the PK submodel of [23], this form allows the

vaccination to be administered at a time-dependent rate u(t), and cleared at a280

Michaelis-Menten rate k1V
(k2+V ) . Vaccine administration term u(t) has units of

mL/day. Since u(t) is a proxy for the effect of vaccination, it does not represent

the actual injection volume of either the Pfizer or Moderna vaccines. The

presence of the transfected cells V initiates an antibody response, represented

by state variable A(t). The dynamics of the antibody population within the285

individual, once triggered, are represented with a logistic term.

In particular, in equation (1):

12
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• r2AV represents an antibody boost in response to vaccine.

• A (r3 − r4A) models intrinsic antibody dynamics as logistic.290

In equation (2):

• αu(t) represents a vaccine dose that triggers the development of trans-

fected cells. The time-dependent function u(t) has units mL/day and is a

discrete pulse with total input set to 1 on the days vaccine is administered,

and 0 otherwise.295

• k1V
(k2+V ) is a Michaelis-Menten type decrease in transfected cells over time.

Table 2 lists all model parameters, along with units and descriptions.

Parameter Units Description

r1 IU/(day mL2) Antibody initialization in response to vac-

cine dose

r2 1/(day mL) Increase in existing antibody in response

to vaccine dose

r3 1/day Proportional to intrinsic antibody growth

rate

r4 mL/(day IU) Proportional to intrinsic antibody decay

rate and intra-species competition

α Unitless Scaling of vaccination administration

function u(t).

k1 1/day Michaelis-Menten scaling for clearance of

V.

k2 mL Michaelis-Menten half-saturation.

Table 2: Model parameters, units, and descriptions.
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For our investigations of parameter fitting and parameter influence, we ran a

number of numerical experiments using both Monolix [24] for nonlinear mixed300

effects modeling (NLMEM), and MATLAB [25] with MATLAB’s Global Op-

timization Toolbox [26]. Global optimization computations with MATLAB

achieve high accuracy when fitting model parameters to individual data sets, but

computations can be very slow in practice. The nonlinear mixed effects modeling

approach allows us to fit model parameters to individual subject data sets while305

also taking into account population-level trends. Subject-specific parameters

are found by incorporating both within-subject and between-subject variability

when fitting a model to data.Use of between-subject constraints may yield some

individual fits to data that are less precise than those that can be achieved by

separately fitting each subject data set without considering population-level in-310

formation. A significant advantage to the NLMEM approach, however, is that

when a data set for one subject alone is insufficient to compute individual param-

eters accurately, determining parameters in the context of the entire population

can significantly reduce the the level of uncertainty in the individual parameters,

c.f., [27, 28, 29]. In addition, Monolix software is computationally efficient and315

provides a number of statistical tests that are helpful in exploring correlations

between parameters as well as covariates, such as vaccine type and biological

sex, that may influence model parameters. In light of the advantages to using

NLMEM for fitting multiple subject data sets, we have not included MATLAB

optimization outcomes in this paper, and instead have chosen to present model320

outcomes using parameter sets computed with Monolix.

Our parameter sensitivity analysis and the nonlinear mixed effects experi-

ments informed the selection of which model parameters should be fit to each

individual. We found that allowing all four parameters r1, · · · , r4 of equation

(1) to be subject-specific improved fitting outcomes and yielded biologically325

reasonable results. For the remaining three model parameters α, k1, and k2 in

equation (2), we used Monolix to investigate whether fitting these parameters

14
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stated, the function V (t) of equation (2) represents the activity of transfected

cells, and in its current form is not directly measurable. When considering the330

selection of the parameters of equation (2), therefore, we must prioritize cap-

turing biologically reasonable behavior: a surge in response to vaccine adminis-

tration, and clearance within a few weeks or less, a time frame that is consistent

with that of currently understood spike protein decay rates [30]. The use

of Monolix to explore selection of values for k1 and k2 is discussed in section335

2.5.1. We also performed a one-at-a-time sensitivity analysis in MATLAB to

assess the influence of each model parameter. Both the Monolix experiments

and the MATLAB sensitivity analysis showed that α, which scales the vaccine

administration function u(t), is not an influential parameter and does not need

to be fit to each individual. We therefore set α = 1 for all subjects, which was340

sufficient to achieve model accuracy. The sensitivity analysis also showed that

parameters k1 and k2, which scale the Michaelis-Menten decay dynamics for

state variable V, are more influential at earlier time points, and less influential

than other parameters at later simulation times. As discussed in section 2.5.2,

our focus is on long term outcomes, so fine-tuning of the selected values for k1345

and k2 is not necessary for addressing our modeling question.

2.5.1. Monolix Population Level Parameter Fitting

With Monolix [24] for computing nonlinear mixed effects on our structural

model, we explored a number of statistical models, and investigated whether the350

population parameters k1, k2, and α would give better outcomes if fit to each

individual. Using both a sensitivity analysis in MATLAB (see section 2.5.2)

and parameter fitting in Monolix, we confirmed that the parameter α, which is

used as a proxy for “dosage strength,” is not influential relative to other model

parameters, most likely because function u(t) does not represent vaccine volume355

but instead is an immune trigger activated by vaccine administration. Compar-

ing various statistical models and using the Akaike Information Criterion (AIC)
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yielded the the best fit in combination with good outcomes for statistical tests.

360

Our structural model is our ODE system (1), (2). For the observation

model, we used Monolix’s “constant” error model, in which a random error

term with constant variance is added to our prediction of the NAb response.

For the individual model, the transformations that yielded the best statistical

outcomes were a logitnormal transformation for all four of the ri parameters.365

Allowing correlation between r1, r2, and r4 also led to improved outcomes.

Although our data set indicates there may be some differences in the NAb

dynamics of Moderna-vaccinated and Pfizer-vaccinated individuals, as well as

possible difference between male and female subjects, the inclusion of vaccine

type and biological sex as covariates did not improve statistical outcomes or fits370

for any of the model parameters. Further details of Monolix’s implementation

can be found in the Monolix documentation [24] . We found that we could

achieve a somewhat lower AIC when allowing k1 and k2 to vary by individual,

but those fits led to model behavior that was not biologically justifiable; with

individually fit k1 and k2, state variable V (t) persisted at high values for the375

entire simulation. State variable V (t) is a proxy for transfected cells which are

meant to decay away within a few weeks, a time frame consistent with that

of spike proteins [30]. Given our model assumptions that dosing function

u(t) does not represent vaccine volume, it is reasonable that the vaccine trigger

effect be the same for all subjects. Assigning constant values to k1 and k2 led380

to biologically reasonable dynamics and appropriately rapid decay of V (t) over

time. We selected the values k1 = 10 and k2 = 50 by noticing a trend that when

we allowed individual fitting, k2 tended to be on the order of 5 times larger than

k1 in several cases.

385

2.5.2. Sensitivity Analysis

The sensitivity analysis in MATLAB [25] was initiated with individual
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k1 = 10, and k2 = 50. A one-at-a-time analysis ran up and down shifts in

all 7 parameters on all 32 subjects, and computed the mean responses. We390

extracted the ODE solutions at two time points: 14 days after the final vaccine

administration, and on day 400, which is past the final day of our simulations.

This sensitivity analysis indicates that k1 and k2 are more influential in the early

time transient stage of the solution and less so at later times. More sophisticated

uncertainty and sensitivity analysis techniques that employ Latin Hypercube395

Sampling, Sobol’s method, eFAST, or Multi-test-eFAST can be used, and may

be of interest in future work, c.f.,[31, 32, 33]

(a) 14 Days After Final Vaccine Day (b) Final Simulation Day

Figure 3: Parameter sensitivity analysis in MATLAB evaluating change in NAb levels resulting

from a one-at-a-time 5% increase (yellow) and decrease (blue) in parameters. All 32 subject

parameter sets were tested individually. Mean parameter changes with Standard Error of

the Mean (SEM) are shown. Panel 3a: Parameter sensitivity two weeks after second vaccine

administration. Parameters r2, k1, k2 are more influential than the remaining parameters at

this time point. Parameter α is not influential. Panel 3b: Parameter sensitivity on final day of

simulation. Influence ranking has shifted so that parameters r3 and r4 now have the greatest

effect on long-term outcomes. Parameter α remains non-influential.

For the question we are asking, the early time transient stage of the vaccine

response is less important than that of the long term outcome. In the long term,

the influence of k1 and k2 has waned. In addition, as discussed in section 2.5.1,400
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achieve biologically reasonable and useful outcomes as well as good overall fits

to data when keeping k1, k2, and α constant and individualizing only the four

parameters ri, i = 1 · · · 4 of equation (1). We present a comparison of fitting

outcomes in section 3. A full list of parameter values used in the simulations405

is included in Appendix A.

2.5.3. Markov-Chain Monte Carlo for Generating Prediction Envelopes

Markov-Chain Monte Carlo (MCMC) methods can be used to enhance the

process of fitting models to data. MCMC methods are sampling methods, and

are not primarily used to find the best fit parameters to a particular data set.410

Optimizers such as those cited above are better choices for finding optimal pa-

rameter values. Starting with optimum parameter choices, MCMC produces a

chain (a large set) of likely parameter combinations and generates a distribution

of model outcomes by sampling parameter combinations from the chain. Using

the package mcmcstat [34] for MATLAB, we ran MCMC on each subject’s data415

set to produce predictive envelopes for model outcomes. The mcmcstat package

provides tools to generate and analyze Metropolis-Hastings MCMC chains us-

ing multivariate Gaussian proposal distribution [35] [36]. The parameter values

found by MATLAB’s Global Optimization routine were used as initial param-

eter guesses. For our data sets, we set a burn-in time of 500 iterations, and420

generated an MCMC chain of length 5000. Predictive envelopes were deter-

mined by sampling the chain 1000 times, then determining predictive quartiles

of 50%, 90%, 95%, and 99%.

2.5.4. Model Simulations

Model simulations were run using a stiff ODE solver ode15s in MATLAB425

2021a [25]. The assay data provide results in percent neutralization, which

ranges from 0 to 100. To increase numerical stability, the data were rescaled to

range between 0 and 1. After solutions were computed and parameter values

were found, results were then scaled up to units of IU/mL via the percent
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function can take on values between 0 and 2200.

3. Results

3.1. Individual Subject Outcomes: Immune Protection Stratification

In Figures 4 and 5 we explore the immune protection categories to which an

individual belonged at the time a subject’s last sample was taken, along with the435

immune protection category projected by the model simulation approximately

3 months after the final sample day. Model simulations are aligned so that the

first day of each simulation is set to 0. In Figure 4, we show three examples

of subjects whose immune categories are maintained three months after the

final sample was collected. One subject remains in the no-response (NR) range,440

one maintains a weak response (WR), and one maintains a positive response

(PR). In Figure 5 are three examples of subjects whose immune categories

are projected to drop over the three months following the collection of the final

sample. One subject drops from a weak response to no response, one drops from

a positive response to a weak response, and one drops from a strong response445

to a positive response. In general, we see a pattern of a subject’s projected

immune protection over a three month period either matching that of the last

sample, or dropping into a lower category. In the subject samples we have,

final samples for the majority of the subjects were collected approximately six

months after completion of the two-vaccine series. Individuals tended to drop450

by no more than one immune strength category 3 months after the final sample

was collected.
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(a) Subject 101: Moderna
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(b) Subject 200: Moderna
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(c) Subject 1: Moderna

Figure 4: Example subjects for whom the immune-strength category of the final data sample

and on final projected day remains unchanged. Panel 4a, Subject 101: Last sample and final

simulation both show no response (NR). Subject remains in NR range on final simulation day.

Panel 4b, Subject 200: Last sample and final simulation both show weak response (WR).

The boundaries of the 50% predictive envelope range from NR to PR on final simulation day.

Panel 4c, Subject 1: Last sample and final simulation both show a positive response (PR).

Subject is predicted to remain within the PR range on final simulation day.
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(a) Subject 215: Pfizer
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(b) Subject 76: Pfizer
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(c) Subject 42: Moderna

Figure 5: Example subjects for whom the projected immune-strength on the final simulated

day drops one category relative to the immune strength category of the final data sample.

Panel 5a, Subject 215: Last sample shows a weak response (WR) but final simulation predicts

no response (NR) 3 months later. The boundaries of the 50% predictive envelope range

from NR to WR. Panel 5b, Subject 76: Last sample shows a positive response (PR) but

final simulation predicts a weak response (WR) 3 months later. The boundaries of the 50%

predictive envelope range from NR to WR. Panel 5c, Subject 42: Last sample shows a strong

response (SR) but final simulation predicts a positive response (PR) 3 months later. The

boundaries of the 50% predictive envelope are within the PR range.
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The cohort data set includes 5 male-female married couples. Understanding

sex difference in response to vaccine can be complicated because of so many455

confounding factors that vary from individual to individual, including risks en-

countered via household practices, profession, and quality of adherence to safety

protocols. Since these married couples live in the same household, one factor

is normalized. The comparison within male-female married couples revealed a

tendency in this small sample set for the overall strength of response of the fe-460

male partner to be more robust than that of the male partner. In our data set,

we saw one case (subjects 20 and 21) in which the early-time male response was

slightly stronger than that of the female partner, but we saw no cases in which

the male partner had a significantly stronger overall response than the female

partner. On the other hand, in the majority of cases the female partner had a465

more robust response than the male partner. This observation is consistent

with prior studies demonstrating stronger immune responses, and specifically

stronger antibody responses to vaccines, in women, c.f.[37]. This distinction

is clear when comparing individuals within married-couple pairs, but the sex

difference is not as clear when these subjects are mixed back into the general470

population. Further discussion about biological sex differences within the gen-

eral population can be found in Appendix C. In Figure 6 comparing subjects 4

(male partner) and 5 (female partner), it is clear that both the initial response

to vaccine and persistence over time is stronger in subject 5. One confounding

factor in this case, however, is that subject 5 received the Moderna vaccine, but475

her partner, subject 4, received Pfizer. In Figure 7, the difference in response

between married subjects 20 and 21 is not as clear, and the male partner has

a stronger early response, but the long-term 50% predictive envelopes indicate

a similarly strong response in the female partner. In Figure 8 it is apparent

that subject 30 (female partner) has a stronger overall NAb response than does480

subject 25 (male partner). The difference in response is also distinct in Figure

9 between subject 64 (female partner) whose initial response was much stronger

than that of subject (65) male partner, and persistence is somewhat stronger
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introduces more uncertainty into simulated outcomes. Since no samples were485

collected until nearly three months after the final vaccination, the initial post-

vaccine response of both subjects is inferred by the ODE solutions alone.

Nonetheless, subject 173 (female partner) has a strong persistent response to

vaccine whereas the response of subject 175 (male partner) has dropped to the

no-response (NR) category both on the final sample day and on the last sim-490

ulated day. The pattern of the stronger female response in the majority

of married-couple cases indicates that further exploration of within-household

responses may be warranted.
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(a) Married Subject 4 - Male
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(b) Married Subject 5 - Female

Figure 6: Married Subjects 4 (M), 5 (F): Male-Female comparison of response predicted

through the final simulated day.
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(a) Married Subject 20 - Male
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(b) Married Subject 21 - Female

Figure 7: Married Subjects 20 (M), 21 (F): Male-Female comparison of response predicted

through the final simulated day.
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(a) Married Subject 25 - Male
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(b) Married Subject 30 - Female

Figure 8: Married Subjects 25 (M), 30 (F): Male-Female comparison of response predicted

through the final simulated day.
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(a) Married Subject 64 - Female
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(b) Married Subject 65 - Male

Figure 9: Married Subjects 64 (F), 65 (M): Female-Male comparison of response predicted

through the final simulated day.
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(a) Married Subject 173 - Female
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(b) Married Subject 175 - Male

Figure 10: Married Subjects 173 (F), 175 (M): Female-Male comparison of response predicted

through the final simulated day.
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In this section we ask whether we can sample fewer data points and still495

produce useful model outcomes. We first explore whether an initial strong

response to vaccine translates into strong NAb persistence over time (it does

not). We then investigate whether using only three strategically-timed sample

points after the second vaccination produces useful model fits (it does, in most

cases).500

3.3.1. Strong Initial Response versus Persistence

Model simulations show a fairly weak maximum NAb response to the first

vaccine dose among nearly all individuals in the cohort, indicating at best low

levels of protection after only one administration of the vaccine. The second

vaccine dose shows a much stronger response, both in maximum NAb level and505

in persistence of higher levels. This behavior is captured by the model as a

response to a vaccine challenge when there is preliminary immune system prim-

ing in place. In the data sets we analyzed, it was clear that an initially strong

response to the second vaccine dose did not always predict high NAb levels over

time. In certain cases, a strong response persisted, but in others, an initially510

strong response can be seen to decline to nearly no response several months

later, whereas initial responses that are only moderate can persist. When the

initial response is relatively weak, NAb levels remain low. Subjects 23 and 44

are examples of individuals for whom the initial response does predict long term

behavior. Subject 23 in Figure 11a shows a very robust initial response to the515

second vaccine dose, and by the final simulated day, NAb levels remain above

the strong response threshold. Subject 44 in Figure 11b, on the other hand,

shows a weak initial response to the second vaccine dose, and as expected, by

the final simulated day, the response has dropped below the weak response

threshold. The pattern of persistence we see in subjects 23 and 44, however,520

is not a pattern seen in all subjects. While a weak initial response is a good

indicator that the response will remain weak, a strong initial response does not

necessarily guarantee persistence of high levels of NAbs in an individual over
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see that the stronger initial response of 226 does not guarantee stronger persis-525

tence. We also note that the predictive envelopes for these two subjects cover

much broader ranges than do the envelopes for subjects 23 and 44. Subject

226, in particular, has a 50% predictive envelope on the final simulated day

that covers all response thresholds from weak to strong. The best fit simulation,

however, projects that NAb levels in subject 226 will have declined to the weak530

response category 3 months after the final sample.
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(a) Subject 23

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

(b) Subject 44

Figure 11: Predictive Envelopes with Best Fit Curve. Subjects 23 and 44: Strong and weak

initial responses correspond to long-term high and low NAb levels, respectively. A very strong

initial response in subject 23 to the second vaccine dose persists with strong protective im-

munity over time. A relatively weak initial response in subject 44 to the second vaccine dose

continues to show weak protective immunity over time.
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(a) Subject 79
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(b) Subject 226

Figure 12: Predictive Envelopes with Best Fit Curve. Subjects 79 and 226: Stronger initial

responses do not predict stronger long-term protective immunity over time. A moderate initial

response in subject 79 to the second vaccine dose persists with strong protective immunity

over time, and the 50% predictive envelope is within the strong response (SR) range. A very

strong initial response in subject 226 to the second vaccine dose declines to positive protective

immunity (PR) over time, and the 50% predictive envelope even allows for a weak response

by the last projected day.
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In our data set, most of the subjects were able to supply samples at frequent

time intervals, which was helpful in getting a good picture of general NAb

dynamics over time. In practice, people may be less willing to supply blood535

samples as frequently, so we explored the question of whether it is still possible

to get useful model fits with fewer data samples. As discussed in section 3.3.1,

it may seem intuitive to assume that a strong initial NAb response to vaccination

would predict a persistent NAb response over time, but we saw counter-examples

to this (subjects 79 and 226 were such examples). It is therefore clear that one540

post-vaccine data point is not sufficient to predict the long-time NAb dynamics

within an individual.

In ongoing Aditxt studies, new subjects who are currently enrolling are be-

ing asked to submit samples about two weeks after the final vaccination and

subsequently at 3 month intervals. This led us to investigate what we are call-545

ing our “sparse sampling hypothesis:” the idea that with samples collected

at only three strategically-timed post-vaccination points, our model can pro-

duce outcomes that closely mirror outcomes produced using larger sets of more

frequently sampled data.We investigated this hypothesis by evaluating model

solutions with fits that were constrained to using only post-vaccination data550

points that were collected at times that align with current study guidelines:

two weeks, 3 months, and 6 months after the second vaccination. Although, as

we have seen, the strength of the initial response alone is not sufficient to predict

long-term NAb levels, we do see evidence from this subject data set that taking

samples at the currently recommended time intervals produces results that are555

well-aligned with results produced when using more frequently collected sam-

ples. We performed numerical experiments by creating “synthetic” subjects out

of our real subjects by creating a subject “twin” with the constraint that the

synthetic twin uses only three of the post-vaccine data samples. That is, given

the time series data from an individual with four or more post-vaccination data560

points, we extracted just the 3 points sampled around 2 weeks, 3 months, and

33



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of6 months after vaccination, and re-ran the model fits with Monolix. Of our

32 original subjects, there are 21 who have more than four post-vaccination

samples with a subset of the samples collected at times within the desired time-

frames. We present comparisons between sparse data and full data model fits565

and projections using these 21 “real/synthetic” pairs.

In Figure 13, we show the “real/synthetic” comparison for subject 3. Sub-

ject 3 has 6 associated data points. We plotted “3M” alongside “3MS.” Here,

the label “M” designates the Monolix fit using the full set of data points, and

“MS” designates the “synthetic” subject fit by Monolix using only the sparse570

subset of data points. In panel 13a we see the ODE solutions fit to the full

data set (solid line) and the sparse data set (dashed line) plotted on top of each

other. The sparse data subset used to fit the dashed line is highlighted in red.

In this example, we see that 3 months after the final sample was collected, the

difference in the NAb values computed by the full-fit and sparse-fit ODEs is575

less than 3%. As one measure of numerical goodness-of-fit, the computed root

mean squared errors (RMSE) are also printed for comparison. The case “Full

ODE w/ Full Data” is the RMSE computed when comparing the differences

between the full data set (in blue) and the ODE fit to the full data set (solid

line). The case “Sparse ODE w/ Sparse Data” is the RMSE computed when580

comparing the differences between the sparse data set (in red) and the ODE fit

to the sparse data set (dashed line). Finally, the “Sparse ODE w/ Full Data”

measure is the RMSE computed when comparing the differences between the

full data set (in blue) and the ODE fit to the sparse data set (dashed line). For

subject 3, the RMSE of the “Full ODE w/ Full Data” case (ODE fit with 6 data585

points) is about 0.02323, and and the RMSE of “Sparse ODE w/ Full Data”

case (ODE fit with only 3 data points) is 0.026203, a difference of less than

0.003.

We ran the same comparisons for all 21 Full-Sparse (i.e., real-synthetic)

pairs. The comparison plots for all 21 pairs are included in the Appendix. In590

Figure 14 we summarize the RMSE comparisons for the entire set of 21 Full-

Sparse subject pairs with a boxplot. We compare the RMSE measures for the
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measures for the full data set against the ODE fit to sparse data (labeled

MSRMSEFulldata). We see that the distributions of the RMSEs in these two595

cases are similar. The median Full-ODE/Full-Data RMSE is 0.021, with 50%

of the RMSE values between 0.014 and 0.03. The median Sparse-ODE/Full-

Data RMSE is 0.024, with 50% of the RMSE values between 0.015 and 0.033.

We ran a simple two-sample paired permutation test with 10,000 permutations.

In this case, the magnitude of the estimated mean RMSE difference is 0.0030600

with a p-value of 0.0001. The small p-value indicates that the nonzero difference

in the mean RMSEs is statistically significant. For our purposes, however, the

RMSE difference is sufficiently small to conclude that the sparse sample fit still

provides useful outcomes. We also ran a two-sample unpaired permutation test,

also with 10,000 permutations. The magnitude of the estimated mean RMSE605

difference is still 0.0030, but with this test the p-value is 0.4084, which means

that if we treat the samples as independent, then the difference in means between

the full-data and sparse-data group is not significant.

We also compared projected response strength categories. Individual re-

sponse strengths are provided in every plot in Appendix D and Appendix E,610

and are also listed in Table 3. In all but two cases, the projected response

strength categories were identical. The two exceptions were subjects 21 and 64.

For subject 21, the full-fit forecasts a positive response 3 months after the final

sample point was taken. The associated sparse-fit forecasts a strong response.

It is interesting to note, however, that the full-fit projection is very close to615

the strong-response threshold. In the case of subject 64, the full-fit forecasts a

weak response, and the sparse-fit forecasts a positive response. Once again, the

full-fit projection lies very close to the positive response threshold.

With only these 3 post-vaccine samples, the ODE model generates NAb

curves and prediction envelopes that are well-aligned with the curves and pre-620

diction envelopes of the same subject with all data points included. Future work

could involve applying optimal control theory to help determine ideal time inter-

vals and the minimum number of samples needed to produce useful simulation
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 13: Full-data fit by Monolix compared to sparse-data fit by Monolix. In panel 13a,

solutions are plotted on a normalized [0,1] scale indicating the fraction of virus inhibition.

The three post-vaccine data points are a subset of the full data set and are highlighted in

red. Also shown is the percent difference between the full-data fit and the sparse-data fit in

final NAb level forecast, as well as the root-mean-squared errors (RMSE) for the following

scenarios: ODE solution fit with full data compared to full data set; ODE solution fit with

sparse data compared to sparse data set; ODE solution fit with sparse data compared to full

data set. In panel 13b, the ODE solution and the MCMC prediction envelopes for the full-data

fit and sparse-data fit are plotted side-by-side on an IU/mL scale. In both scenarios, 3 months

after the final sample point was collected, the 50% predictive envelopes are within the strong

response (SR) range, the 99% envelopes cover the positive response (PR) to strong response

(SR) ranges, and a positive protective immune response for this subject (PR) is forecast.
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(a) RMSE Boxplot Comparisons.

Figure 14: Population distribution of RMSEs across 21 full-sparse pairs: ODE fit to full data

compared to full data set and ODE fit to sparse data compared to full data set. In the boxplot

the central mark indicates the median, and the bottom and top edges of the box indicate the

25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points

not considered outliers. RMSE data are plotted with the “•” symbol.
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4. Discussion625

Our new mathematical model tracks levels of subject-specific neutralizing

antibodies within an individual over time. Starting with 27 sets of longitudinal

NAb level data from twice-vaccinated individuals, we developed our model to

simulate NAb level changes in IU/mL to help predict the subject-specific within-

host dynamics of antibody decay. Once the model was developed and tested on630

the 27 data sets, we tested the model on 5 additional longitudinal NAb level data

sets, giving us a total of 32 data sets on which we ran the model. The model is

sufficiently simple to be tractable, and can provide a high-level view of changing

NAb levels within a specific host by fitting only four parameters to individual

subject data. One of the advantages of the novel AditxtScore™ flow cytometry635

assay is that one can run more assays for less cost, thereby making the collection

of longitudinal subject data easier. The availability of subject-specific data

from this type of assay makes the implementation of our model practical. The

model is phenomenological-mechanistic: phenomenological in how it captures

the general dynamics of the vaccination trigger, and mechanistic in that the640

parameters for NAb level changes can be connected to biological meaning. The

model state representing the action of an mRNA vaccine serves as a proxy for

transfected cells. The model state representing the levels of NAbs in a system

in IU/mL is a proxy for the neutralizing strength of the NAbs present in the

system. The timing of the delivery of first and second vaccine doses varies from645

individual to individual. Even the with non-uniform collection of the number

of samples and timing between samples, and the varying time gaps between the

first and second vaccine administration for each subject, the model has sufficient

flexibility to be able to achieve good fits to subject data. We applied NLMEM

in Monolix to the 32 data sets to determine subject-specfic parameter values,650

and the MCMC sampling method in MATLAB to generate predictive envelopes.

Each subject data set has between four and eleven time points at which NAb
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Optimization Toolbox (results not pictured). The NLMEM approach yielded

overall very good fits to subject data as measured by the RMSE.655

The model is simple yet sufficiently complex to be able to capture a range of

dynamics evidenced in the cohort of 32 subjects. Our analysis brought to light

some NAb dynamic patterns worth noting. The first of these is a connection

between married couples in the same household, which showed a tendency for

the female partner to have a more robust NAb response than the male partner.660

The second is an observation that although a relatively weak initial response to

a second vaccine dose tends to predict weak persistence of NAb levels over time,

strong responses do not necessarily guarantee strong NAb persistence. Third,

we showed that we could reduce the number of sample points used for ODE

fitting to only three strategically timed post-vaccine samples and still capture665

useful outcomes. These patterns could be explored more deeply once more

subject data sets are collected.

4.1. Future Directions

Vaccine efficacy for immunity against infectious agents is primarily assessed

in clinical studies designed to evaluate reduction in disease incidence compared670

to placebo. Determination of differences between subjects that receive the active

product versus placebo requires a large sample size, which extends the time and

cost required for vaccine development. The ability to enroll a high number of

subjects in these clinical trials is easier when infection rates are prevalent in

pandemic conditions; however, subject recruitment becomes more challenging675

in the absence of a pandemic. Furthermore, clinical studies are not ethically

feasible if the pathogen is extremely virulent and/or deadly. Finally, observation

of changes in the incidence of infection may not provide information on the level

of protective immunity for each individual subject. Immunity status is not all

or nothing and can be impacted by a variety of factors including viral load and680

replication rate, level of initial immune response elicited by the vaccine, which

may vary from one individual to another, time from immunization, mode of
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reduce the number of subjects and evaluation time needed for clinical trials. A

correlate of protection can also provide information about individual immune685

responses.

The purpose of this study was to select a correlate, neutralizing antibody

(NAb), that has been reported in the literature as a measure of protection, and

to create a mathematical model to determine its trajectory over time. This

mathematical model can potentially help determine the rate of decay of NAb690

levels in individuals as well as responses in a population. The model was able

to achieve good fits to individual subject data sets, even though there was

significant individual variability in NAb dynamics, including in the strength

of response to vaccine and persistence of NAb levels. We saw that long-term

NAb persistence could not necessarily be predicted by the strength of the initial695

NAb level increase immediately following a second vaccine dose. Khoury and

coworkers [1] used NAb levels in individuals who had convalesced from SARS-

CoV-2 infection and individuals who received one of 7 commonly used COVID-

19 vaccines to estimate the likelihood of protection. Using their findings as a

starting point, we established multiple cut-points in NAb levels using a novel700

flow-cytometry-based test. Multiple cut points were identified to categorize

NAb levels as none to minimal, weak protective response and strong protective

response against the wild type virus. We analyzed the decay rate of NAb in

33 subjects who had no known history of SARS-CoV-2 infection and who had

been fully vaccinated with two doses of the Moderna or Pfizer mRNA vaccines,705

and hypothesized protective immunity status using these cut points. While

these cut points are meant to serve as guidelines to categorize the levels of

NAb at a given time with respect to likelihood of protection, the levels required

for protection may be impacted by the SARS-CoV-2 variant. Future studies

are planned to test the model in different cohorts and with different SARS-710

CoV-2 variants, as well as to correlate the protective levels with incidence of

breakthrough infections. Once the model has been tested in the context of these

additional scenarios, we see several potential model applications, including more
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of vaccine development; determination of immune responses on a case by case715

basis to identify vulnerable populations; and, more accurate assessment of the

timing of boosters, again on a personalized level.

Appendices

A. Parameter Values, Vaccine Type, Biological Sex
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Subject ID r1 r2 r3 r4
Vaccine 

Type
Sex of 

Subject

Projected Long 
Term 

Response: Full 
Fit (Sparse Fit)

1 0.019 0.26 0.014 0.038 Moderna F PR (PR)
3 0.0062 0.4 0.0072 0.027 Pfizer F PR (PR)
4 0.011 0.35 0.0079 0.026 Pfizer M PR
5 0.045 0.17 0.014 0.025 Moderna F SR
19 0.11 0.04 0.0064 0.028 Pfizer M WR
20 0.026 0.23 0.014 0.03 Moderna M PR (PR)
21 0.015 0.28 0.015 0.032 Moderna F PR (SR)
23 0.063 0.12 0.014 0.023 Moderna F SR (SR)
25 0.03 0.21 0.014 0.031 Moderna M PR (PR)
28 0.022 0.25 0.015 0.033 Moderna F PR (PR)
30 0.066 0.12 0.014 0.022 Moderna F SR (SR)
40 0.026 0.22 0.015 0.029 Moderna F SR
41 0.013 0.26 0.0063 0.028 Pfizer F WR
42 0.0089 0.41 0.016 0.043 Moderna M PR
44 0.021 0.18 0.0061 0.028 Pfizer F WR
64 0.012 0.36 0.014 0.047 Moderna F WR (PR)
65 0.0048 0.46 0.013 0.073 Moderna M NR (NR)
76 0.025 0.21 0.0061 0.029 Pfizer F WR (WR)
79 0.035 0.17 0.014 0.026 Moderna M SR (SR)
94 0.028 0.21 0.013 0.034 Moderna M PR (PR)

100 0.013 0.29 0.016 0.033 Moderna F SR (SR)
101 0.0079 0.32 0.012 0.074 Moderna M NR (NR)
139 0.024 0.22 0.015 0.028 Moderna F SR (SR)
146 0.021 0.26 0.0069 0.027 Pfizer F PR (PR)
147 0.047 0.15 0.014 0.026 Moderna F SR
173 0.039 0.17 0.014 0.029 Moderna F PR
175 0.0057 0.43 0.012 0.073 Moderna M NR
179 0.011 0.32 0.011 0.067 Moderna F NR (NR)
200 0.011 0.34 0.014 0.053 Moderna M WR (WR)
215 0.01 0.21 0.0053 0.029 Pfizer F NR (NR)
216 0.016 0.19 0.0053 0.03 Pfizer F NR (NR)
226 0.0061 0.49 0.0069 0.027 Pfizer F PR

Table 3: Subject-specific parameter values for equation (1), computed via Monolix. Fixed

parameter values for equation (2): α = 1; k1 = 10 k2 = 50. Sex is indicated with F (female)

and M (male). The projected long-term response of each subject is shown in the rightmost

column. If a subject has a synthetic sparse-data twin, the long-term response of the synthetic

twin is shown in parentheses. Response strength key: NR = no response. WR = weak

response. PR = positive response. SR = strong response.
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To quantify the precision of the method for determining NAb IU/mL based

on the percent inhibition AditxtScore™ assay for neutralizing antibodies to

SARS-CoV-2, we ran the precision on 4 subjects with 4 different IU/mL values,

6 assays per day, for 3 days. Figure 15 shows a log-fit to the data. Interpolated

percent variation values, based on the log fit, are in Table 4, given at 50 IU/mL725

intervals.

y = -4.676 ln(x) + 35.191

R
2
 = 0.9328
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Figure 15: Approximate relationship between % CV as measured by the AditxtScore™ test

for neutralizing antibodies to SARS-CoV-2 and NAbs in IU/mL.
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50 16.9

100 13.7

150 11.8

200 10.4

250 9.4

300 8.5

350 7.8

400 7.2

450 6.6

500 6.1

550 5.7

600 5.3

650 4.9

700 4.6

750 4.2

800 3.9

Table 4: Precision of method to determine AditxtScore™ for neutralizing antibodies (NAb) to

SARS-CoV-2, given in 50 IU/mL intervals. Precision is inversely proportional to IU/mL.

C. Data Categories: Vaccine Type and Biological Sex

In Figure 16, we decompose the NAb level data from the 32 subjects

into vaccine-type and sex categories: Female-Moderna, Male-Moderna, Female-

Pfizer, Male-Pfizer. Using the immune-strength response categories outlined in730

section 2.2 (no-response (NR), weak-response (WR), positive-response (PR),

and strong-response (SR)), we also show in Figure 17 the final immune strength

categories by percentage, comparing Moderna to Pfizer, and female to male. In

Figure 17, Panels 17a and 17b, we see that 45% of Moderna subjects main-

tained a strong immune response, compared to only 20% of Pfizer subjects735
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43% of the female subjects remained in the strong response category, while

only 27% of the male subjects maintained a strong response.

Figure 16: Fractional Neutralizing Antibody Activity: 21 Female Subjects in Left Column

(top left 13 received Moderna, bottom left 8 received Pfizer), 11 Male Subjects in Right

Column (top right 9 received Moderna, bottom right 2 received Pfizer).

This data set does point to the possibility of differences in the time-course be-

haviors between Moderna and Pfizer vaccinated subjects and between male and740

female subjects. The sex differential is not definitive, however. The pie charts in

Figures 17c and 17d show a clearly stronger response by the final sample time

in female subjects than in male subjects, and the top row of Figure 16 could

indicate that Moderna-vaccinated females have stronger overall response than

Moderna-vaccinated males. The bottom row of Figure 16, however, shows that745
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none (18%)

weak (9%)

positive (27%)

strong (45%)

(a) Moderna

Pfizer Responses: Last NAb Sample

none (10%)

weak (20%)

positive (50%)

strong (20%)

none weak positive strong

(b) Pfizer

Female Responses: Last NAb Sample

none (10%)

weak (14%)

positive (33%)

strong (43%)

none weak positive strong

(c) Female

Male Responses: Last NAb Sample

none (27%)

weak (9%)

positive (36%)

strong (27%)

(d) Male

Figure 17: Immune Protection Category of Final NAb Sample: Panel 17a 22 Moderna Sub-

jects, Panel 17b 10 Pfizer Subjects; Panel 17c 21 Female Subjects, Panel 17d 11 Male Subjects.

the Pfizer-vaccinated male subjects have a more robust response than do the

Pfizer-vaccinated female subjects. We must be cautious with drawing general

conclusions from these observations. The sizes of the subsets in the sample set

may be too small to assert definitively that the population trend differences seen

here reflect true trends in the larger population. In addition, the set is not bal-750

anced with respect to vaccine type and sex: there are more than twice as many

Moderna-treated individuals as there are Pfizer-treated individuals, and there

are nearly twice as many female subjects as there are male subjects. Finally,
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vironment and lifestyle that make it difficult to make accurate assertions about755

differences between individuals in different vaccine and sex categories. Never-

theless, in section 3.2, we compare the outcomes of male-female pairs from this

data set who are married and who live in the same household, a comparison that

at least removes the confounding factor of household environment.
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Envelopes

Shown in sections D and E are simulations for all 32 subjects using pa-

rameters fit with Monolix’s NLMEM software, superimposed on plots of the

MATLAB-generated MCMC predictive envelopes for each subject. The ID

numbers for the 11 subjects in this section who were not used to test the765

sparse sampling hypothesis are 4, 5, 19, 40, 41, 42, 44, 147, 173, 175, 226.

Immune-strength thresholds are superimposed on the plots of ODE solutions

and MCMC predictive envelopes. For each subject we have also identified the

immune strength category in which the subject is forecast to be three months

after the final sample was collected.770
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Figure 18: Subject 4, Pfizer, Male
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Figure 19: Subject 5, Moderna, Female
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Figure 20: Subject 19, Pfizer, Male
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Figure 21: Subject 40, Moderna, Female
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Figure 22: Subject 41, Pfizer, Female
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Figure 23: Subject 42, Moderna, Male
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Figure 24: Subject 44, Pfizer, Female
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Figure 25: Subject 147, Moderna, Female
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Figure 26: Subject 173, Moderna, Female
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Figure 27: Subject 175, Moderna, Male
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Figure 28: Subject 226, Pfizer, Female
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The ID numbers for the 21 subjects used to test the sparse sampling hy-

pothesis are 1, 3, 20, 21, 23, 25, 28, 30, 64, 65, 76, 79, 94, 100, 101, 139, 146,

179, 200, 215, 216. In the associated figures, comparisons with the sparse-data

fit ODE solutions are provided, including RMSEs of the full-data and sparse-775

data fits. Immune-strength thresholds are superimposed on the plots of ODE

solutions and MCMC predictive envelopes for both the full-data real subject

and the sparse-data synthetic twin. For each subject (both real and synthetic)

we have also identified the immune strength category in which the subject is

forecast to be three months after the final sample was collected.780
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 29: Moderna, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 30: Pfizer, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 31: Moderna, Male. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 32: Moderna, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 33: Moderna, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 34: Moderna, Male. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 35: Moderna, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 36: Moderna, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 37: Moderna, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 38: Moderna, Male. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 39: Pfizer, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 40: Moderna, Male. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 41: Moderna, Male. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 42: Moderna, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 43: Moderna, Male. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 44: Moderna, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 45: Pfizer, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 46: Moderna, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 47: Moderna, Male. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 48: Pfizer, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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(b) Response Projections and Predictive Envelopes: Left panel, full data fit. Right panel, sparse

data fit.

Figure 49: Pfizer, Female. Full-data and sparse-data Monolix fits and MCMC predictive

envelopes compared
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A Mathematical Model of the Within-Host Kinetics of SARS-CoV-2 
Neutralizing Antibodies Following COVID-19 Vaccination 
 

1. New ODE model predicts within-host strength of antibody response to 
mRNA vaccine 

2. ODE model tracks subject-specific persistence of SARS-CoV-2 NAbs 
over time 

3. Subject-specific predictive envelopes generated via MCMC application to 
ODE system 

4. Time series data from twice-mRNA-vaccinated Covid19-naive human 
subjects captured 

5. Model reflects range of subject-specific variation in protective immunity 
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