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Abstract
Objectives: Drawing on UK Household Longitudinal Study data, this study assessed a pathway from early-life disadvantage to
suboptimal later-life health via health behavior. Methods: Latent class analysis was used to identify distinct smoking, nutrition,
alcohol, and physical activity health behavior profiles. Mediation analyses were performed to assess indirect effects of early-life
disadvantage via health behavior on allostatic load, an objective measure of physiological wear and tear. Results: Four health
behavior profiles were identified: (1) broadly healthy and high alcohol consumption, (2) low smoking and alcohol consumption, healthy
nutrition, and physically inactive, (3) broadly unhealthy and low alcohol consumption, and (4) broadly moderately unhealthy and high
alcohol consumption. Having grown up in a higher socioeconomic position family was associated with lower later-life allostatic
load. This was partly attributable to health behavioral differences. Discussion: Growing up under disadvantageous socio-
economic circumstances may initiate a chain of risk by predisposing people to health behavior profiles associated with poorer
later-life health.
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Introduction

Poor childhood conditions can be seen as “the launch pad
for a lifetime of health problems” (Raphael, 2011, p. 24).
Research consistently shows that growing up under disad-
vantageous circumstances, such as in poor financial con-
ditions or not living with both parents, is associated with poor
later-life health (Gilman et al., 2003; Gruenewald et al., 2012;
Kumari et al., 2013; Latham-Mintus & Aman, 2019;
Pakpahan et al., 2017). Such experiences may have an im-
mediate impact on the nervous, endocrine, and immune
systems that remains apparent in adulthood and later life
(Danese &McEwen, 2012). Life course epidemiologists have
argued that adversity experienced in childhood may also be
harmful for later-life health in an indirect way. Poor child-
hood circumstances may initiate a chain of risk, that is, they
may increase the risk of subsequent experiences or events that
are detrimental for health (Kuh et al., 2003).

Consistent with the idea of chains of risk, research shows
that children who grew up in poor economic circumstances
tend to have a lower socioeconomic position as adults
(Barboza Solı́s et al., 2016; Jenkins & Siedler, 2007), which
is, in turn, associated with poorer adult health (Barboza Solı́s
et al., 2016; Präg & Richards, 2019; Robert & House, 1996;
Whitley et al., 2018). The intergenerational transmission of

divorce is also well documented (Dronkers & Härkönen,
2008). People who experienced the divorce of their parents
in childhood are moreover relatively likely to become parents
at a young age (Quinlivan et al., 2004; Woodward et al.,
2004). Divorce and early transitions to parenthood are
both, in turn, known antecedents of poor later-life health
(Grundy & Read, 2015; Lorenz et al., 2006; Rote, 2017;
Sironi et al., 2020).

The current study’s focus is on a potential chain of risk via
health lifestyles. Cockerham (2005) has argued that the
disposition toward particular health lifestyles is the result of
the interplay between life chances and life choices. Both life
chances–the lifestyle options that are available to particular
people–and life choices–the choices that people make from
the options available–are, in part, shaped by structural var-
iables, such as class circumstances and the so-called col-
lectivities, that is, “collections of actors linked together
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through particular social relationships, such as kinship”
(Cockerham, 2005, p. 59). Fewer lifestyle options for healthy
living are available when growing up in poor economic
conditions, for instance because healthy diets tend to be
less affordable than unhealthy alternatives (Drewnowski,
2013) and because lack of money or access to transport
are a particularly strong barrier to sports participation for
members of families with a lower socioeconomic position
(Chinn et al., 1999).

Health behavioral choices within the set of options that are
available are also shaped by structural factors via sociali-
zation patterns and experiences (Cockerham, 2005). Growing
up in poor economic conditions or in a single parent family
may be detrimental for the acquisition of cultural capital, that
is, the symbolic and informational resources, such as
knowledge, values, and norms, that are acquired through
social learning (Abel, 2008). People who grew up under such
circumstances may thus have relatively poor opportunities for
the social learning of healthy lifestyle behavior. Plausibly due
to limited life opportunities and exposure to material hard-
ship, people with a low socioeconomic position are relatively
likely to view their health as something beyond their control,
to think less of the future, and to think less about how they can
stay healthy, all of which is, in turn, associated with unhealthy
lifestyle choices (Wardle & Steptoe, 2003). Certain forms
of unhealthy behavior, such as smoking or drinking, may
provide persons with a short-term reduction of the stress
associated with having grown up under disadvantageous
circumstances, albeit at the expense of a broad range of
longer-term health outcomes (McEwen & Stellar, 1993).
Growing up in a disrupted family or under poor economic
circumstances is furthermore associated with greater im-
pulsivity (Peterson & Zill, 1986), which, in turn, is associated
with unhealthy eating, drinking, and smoking behavior
(Hofmann et al., 2008).

Adverse health effects of various forms of health behavior
may offset or compound each other (Shaw & Agahi, 2012).
Therefore, many scholars have recently adopted a holistic
perspective on health behavior and considered various as-
pects of health behavior, such as smoking, drinking, diet,
and physical activity, conjointly, rather than in isolation, to
provide insights into which behavioral combinations should
be prioritized for interventions (Burgard et al., 2020; Griffin
et al., 2014; Saint Onge & Krueger, 2017; Shaw & Agahi,
2012). Although research in which multiple aspects of health
behavior are combined into an index has provided valuable
insights on the antecedents and later-life consequences of
health behavior in general (e.g., Barboza Solı́s et al., 2016;
Zaninotto et al., 2020), it should be noted that various forms
of health behavior are only weakly associated (Newsom et al.,
2005). Many people’s behavioral patterns are discordant, that
is, neither uniformly healthy nor uniformly unhealthy (Saint
Onge & Krueger, 2017). This suggests that health behavior is
a multidimensional concept that cannot fully be captured with
an index.

Acknowledging the multidimensional nature of health
behavior, the current study uses latent class analysis to dis-
tinguish distinct health behavior profiles that vary on the so-
called smoking, nutrition, alcohol, and physical activity
(SNAP) behavioral dimensions among people aged 50–
80 years in Great Britain. It also assesses how disadvanta-
geous early-life circumstances, such as growing up under
poor economic conditions or not with both parents, are as-
sociated with having particular health behavior profiles and
the extent to which effects of disadvantageous early-life
characteristics on later-life health is attributable to differ-
ences in health behavior profiles.

The outcome of interest is allostatic load, that is, the
physiological wear and tear of the body due to repeated or
chronic exposures to stressors (McEwen & Stellar, 1993).
When people are confronted with stressful challenges, neural,
neuroendocrine, and neuroendocrine–immune mechanisms
are activated in response. Although beneficial in the short
term, this response called allostasis–stability through change–
comes with increased physiological wear and tear over time.
This long-term damage is called allostatic load. McEwen
(1998) has argued that health behavior should be regarded
as part of the overall notion of allostasis. This is because
suboptimal health behavior, for example, smoking or
drinking, may help individuals to cope with stress and
challenges in the short term, while being physiologically
damaging in the long term (e.g., Barboza Solı́s et al., 2016;
Gruenewald et al., 2012).

Data and Methods

Analytical Approach

Latent class analysis (LCA) (McCutcheon, 1987) will be used
to identify distinct health behavior profiles that vary on
multiple SNAP dimensions. Health behavior profiles are
operationalized here as a latent categorical variable un-
derlying response patterns on a range of survey questions
covering different SNAP dimensions. Given that, LCA uses
the expectation–maximization (EM) algorithm that may only
produce a local rather than the global maximum of the log-
likelihood function dependent on the initial parameter values
chosen in the first iteration, all latent class models are esti-
mated 250 times with different starting values. A model with
two latent classes is first estimated and the number of classes
is then increased until the addition of a latent class does not
lead to a model fit improvement as indicated by the Bayesian
information criterion (BIC) score (Schwarz, 1978). Given
the current study’s considerable sample size (see next sub-
section), BIC is arguably the most appropriate criterion to
detect the number of classes because it sufficiently penalizes
model complexity to avoid overfitting (Dziak et al., 2020;
Tein et al., 2013). The AIC score (Akaike, 1974) is a com-
monly used alternative criterion to determine the number of
classes, but, although it may work well with small samples, it
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is marred by high overfitting rates in larger samples (Dziak
et al., 2020).

After estimating the LCA model with the optimal number
of classes, the posterior probabilities of class memberships for
each class will be stored for every respondent. Multinomial
logistic regression will subsequently be used to predict class
membership, whereby uncertainty regarding class member-
ship is taken into account through the use of weights inversely
related to the class membership classification errors (Bolck
et al., 2004).

Linear regression is used to predict allostatic load. In a first
model, allostatic load is regressed on early-life characteristics
and a range of contemporaneous controls. The health be-
havior profiles identified in the LCA are added in a second
model. Weights inversely related to the membership classi-
fication errors are again used to take uncertainty regarding
class membership into account (Bakk & Vermunt, 2016).
Bootstrapping is used to estimate the indirect effect of early-
life characteristics via health behavior profiles on allostatic
load (Preacher & Hayes, 2008).

Sample

Data are from the UK Household Longitudinal Study
(UKHLS) (University of Essex, Institute for Social and
Economic Research, NatCen Social Research, & Kantar
Public, 2018, 2019). The UKHLS is a prospective, nation-
ally representative study. Nurse visits took place in Wave
2, collected between 2010 and 2012. During these visits,
physical measures, blood samples, and other health-related
information were collected.

Analyses were restricted to 4700 people who participated
in both Wave 1 and Wave 2, were aged between 50 and
80 years when Wave 2 data were collected, and had a valid
blood sample analytical weight. 51 respondents were dropped
because they reported that they did not live with at least one
biological parent while growing up. This made it impossible
to derive information on childhood socioeconomic circum-
stances. This exclusion procedure resulted in a final analytical
sample of 4649 respondents.

Participation in the UKHLS nurse health assessment was
selective. Most notably, no nurse visits were carried out in
Northern Ireland. Furthermore, people with particular soci-
odemographic characteristics (e.g., people who were not
married, lower educated, or not born in the UK) were un-
derrepresented. The UKHLS team therefore prepared weights
specially for the biomarker data to enable estimation samples
to be representative of the general population of Great Britain
(Benzeval et al., 2014). These supplied biomarker weights
were used in this study.

Measures

Given the analytical approach, three types of measures are
distinguished: manifest items, explanatory variables, and the

distal outcome. Manifest items are observed realizations of
the underlying dimensions of the latent health behavior
profiles. The distal outcome is a measure of later-life health
predicted by one’s health behavior profile. Explanatory
variables considered are background variables that are
plausibly predictive of having a particular health behavior
profile as well as of allostatic load.

Manifest Items

Six smoking, nutrition, alcohol, and physical activity items
were considered. With regard to smoking, current smokers,
former smokers, and people who never smoked were dis-
tinguished. Two nutrition items were included: one capturing
the frequency of fruit consumption and other capturing the
frequency of vegetable consumption. Respondents were
asked how often they consumed fruit and how often they
consumed vegetables in a usual week, with response cate-
gories being never, 1–3 days per week, 4–6 days per week,
or every day. The two bottom categories were combined into
a new category for all respondents who consumed fruit,
respectively vegetables, 0–3 days per week because very few
respondents reported never eating any fruit or vegetables.

Respondents were also asked how often in the last week
they consumed at least one alcoholic drink, and how many
types of alcoholic drinks (beer or cider; alcohol shots, wine,
and alcopops) they had on the day in the last week on which
they drank the most. Alcohol consumption was subsequently
converted to alcohol units, with one unit being equal to 10 ml
of pure alcohol. Following the guidelines for low-risk
drinking agreed upon by the UK chief medical officers
(Department of Health and Social Care, 2016), respondents
were categorized as nondrinkers, people with low-risk
drinking behavior (≤14 units per week), or people with
risky drinking behavior (>14 units per week).

Two physical activity items were considered. The question
how many days of the past 4 weeks respondents had walked
for at least 10 minutes continuously was used to capture the
frequency of low-intensity physical activities (cf. Hughes &
Kumari, 2017). A distinction was made between respondents
who did so on not more than seven of the last 28 days, re-
spondents who did so between 8 and 21 of the last 28 days,
and respondents who did so on 22 or more of the last 28 days.
A range of moderate-intensity sports were also considered,
whereby a distinction was made between respondents who
had done sports two times or less in the last year, respondents
who had done sports more than twice in the last year, but less
than weekly, and respondents who had done sports at least
weekly.

Distal Outcome

Allostatic load is a measure of the physiological wear and tear
of the body due to repeated or chronic exposure to stressors.
McEwen and Stellar (1993), who coined the concept, defined
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it as “the cost of chronic exposure to fluctuating or heightened
neural or neuroendocrine response resulting from repeated or
chronic environmental challenge that an individual reacts to
as being particularly stressful” (p. 2093). Allostatic load is
typically measured with an index of markers of various bi-
ological systems (for an overview of various operationali-
zations, see Johnson et al., 2017). Johnson et al. (2017)
recently pointed out that there is no standard method of
calculating an allostatic load index in the scholarly literature.
What they deemed particularly problematic was the absence
of hypothalamic–pituitary–adrenal (HPA) axis biomarkers in
the operationalizations of allostatic load in approximately
half of the studies they considered in their review. They
argued that the absence of HPA-axis markers made the op-
erationalization of allostatic load inconsistent with McEwen
and Stellar’s conceptual definition in which the neuroendo-
crine response to stress was central. However, the UKHLS
data used here did include an HPA-axis marker: dehy-
droepiandrosterone sulphate (DHEA-S). Dehydroepian-
drosterone (DHEA) and its sulfate form DHEA-S are the
most common steroid hormones in the body and their levels
decline with age (Benzeval et al., 2014). In addition to
DHEA-S, 12 other markers of cardiovascular (systolic blood
pressure, diastolic blood pressure, and resting heart rate),
metabolic (waist-to-height ratio, total cholesterol-to-HDL
cholesterol ratio, HDL cholesterol, triglycerides, glycated
hamoglobin (HbA1c), and insulin-like growth factor-1),
kidney liver function (creatinine clearance rate), and im-
mune response (C-reactive protein and fibrinogen) biological
systems were included in the allostatic load measure.

Consistent with earlier work (Seeman et al., 2001), all 13
indicators were dichotomized based on quartiles in the
weighted sex-specific distributions, whereby scores in the
least favorable quartile were coded as one (See Supplementary
Appendix A). The dichotomized items were summed into
a scale ranging from 0 to 13, with higher scores indicating
a poorer physiological condition. The scale’s internal con-
sistency was acceptable (KR-20 = .59).

Explanatory Variables

Early-life characteristics taken into account included whether
or not respondents lived with both biological parents when
they were 16 years old and whether or not they were born in
the United Kingdom. Parental socioeconomic position when
growing up was also taken into account. Respondents were
asked to list the occupations of their parents when they were
aged 14 years, and these occupations were subsequently
coded according to the National Statistics Socioeconomic
Classification. A distinction was made between parents with
disadvantaged (“semi-routine and routine”), intermediate
(“intermediate,” “small employers and own account,” and
“lower supervisory and technical”), and advantaged (“man-
agement and professional”) socioeconomic positions. When
the respondent reported that the parent was not working when

the respondent was 14 years old, the parent was also coded as
having low socioeconomic position. Where the socioeco-
nomic positions of the father and the mother differed, the
parental socioeconomic position was coded according to the
parent with the highest socioeconomic position.

Early-life health was also considered. Respondents were
asked if they were ever diagnosed with any of a range of
diseases and health conditions, including diabetes, coronary
heart disease, and clinical depression. Respondents who
answered affirmatively were subsequently asked at what age
they were told that they had this health condition. Re-
spondents who were diagnosed with any of the listed health
conditions at the age of 18 years or younger were coded as
having health problems when growing up. Diseases most
commonly mentioned as being diagnosed with when growing
up were asthma and chronic bronchitis.

Contemporaneous explanatory variables taken into ac-
count are marital status, number of children, and educational
attainment. A fourfold distinction was made by marital status:
(i) currently in a marriage or civil union, (ii) divorced or
separated, (iii) widowed, and (iv) never married. Given the
nonlinear effects of fertility on health (Högnäs et al., 2017),
number of children was coded as a categorical variable, with
categories of 0, 1, 2, 3, and 4+ children (cf. Grundy et al.,
2019; Sironi et al., 2020). Respondents’ educational attain-
ment was coded according to their highest educational
qualification. A distinction was made between low (GCSE
[high school qualifications taken at age 16 years] or less),
intermediate (at least A-level secondary education, but no
university degree), and high (university degree) educational
attainment. Age in years was also included as an explanatory
variable. Sample characteristics are presented in Table 1.

Missing Values

The sample included 1636 respondents (35.2%) with missing
information on at least one variable of interest. Information
on blood pressure (n = 711), drinking behavior (n = 551),
HbA1c (n = 337), and C-reactive protein (n = 144) was
missing most often. For all variables except the manifest
items used to identify the latent categorical health behavior
profiles, multiple imputation with chained equations were
used to deal with missing information (Brand et al., 2019).
The missing at random (MAR) assumption underlying this
way of imputing missing information entails that any dif-
ferences between the distributions of missing values and
the distributions of observed values are to be explained by
variables included in the imputation model. The findings
from the substantive analyses on 20 imputed data sets were
combined into a single set of results following Rubin’s rules
(Little & Rubin, 1989), which take the variability in results
between the imputed datasets into account. The iterative
nature of the EM algorithm allows LCA-models to be esti-
mated with missing observations on manifest health behavior
items (Dempster et al., 1977), wherebyMAR is also assumed.
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Results

Four Health Behavior Profiles

A comparison of fit statistics indicated that a solution with
four classes fitted optimally with our data (See Supplemental
Appendix B). The BIC was lowest when a 4-class solution
was chosen. The Akaike information criterion (AIC), which
penalizes model complexity much more weakly, showed an
“elbow” at the 4-class point, that is, there were only small
further AIC declines with the addition of higher-order classes.
Figure 1 provides an overview of the class conditional re-
sponse probabilities on the considered manifest health be-
havior dimensions. The response probabilities displayed in
green represent the class-conditional likelihood of being in
the most favorable category in the particular behavioral di-
mension, respectively: never smoked, daily fruit consump-
tion, daily vegetable consumption, nondrinker, walking for
10+ minutes continuously on 22 or more days out of the last
28 days, and at least weekly sports participation. In contrast,
the response probabilities displayed in red respectively
represent the class-conditional likelihood of being a current

smoker, consuming fruit only 0–3 days a week, consuming
vegetables only 0–3 days a week, drinking beyond sensible
limits, walking for 10 minutes or more on not more than
7 days out of the last 28, and participating in sport fewer than
three times a year.

The latent health behavior profile with the largest prev-
alence was characterized by a low probability of smoking and
a high probability of frequent consumption of fruit and
vegetables. Moreover, people with this profile were relatively
likely to be physically active as indicated by a high proba-
bility of frequent walking and participation in sports. A final
feature of this profile that stands out is the high probability
of risky drinking behavior and the low probability of non-
drinking. This profile was labeled broadly healthy, but high
alcohol consumption.

The second profile also scored favorably on most health
behavior dimensions. Fruit and vegetable consumption was
high in this profile, and, albeit slightly higher than in the first
profile, and levels of smoking were low. Moreover, people
with this health behavior profile were highly likely to be
nondrinkers. A negative characteristic of this profile was the
high likelihood of nonparticipation in sports and of rarely

Table 1. Sample Characteristics, Means, and Percentages.

Women and Men (n = 4649) Women (n = 2551) Men (n = 2098)

Woman 55.0%
Allostatic load 3.2 3.2 3.2
(SD) (2.2) (2.3) (2.1)
Age 62.8 62.8 62.9
(SD) (8.5) (8.5) (8.4)
Parental socioeconomic position
Low 39.9% 39.0% 41.0%
Intermediate 36.3% 38.0% 34.2%
High 23.8% 23.0% 24.8%

Did not grow up with both parents 16.1% 15.7% 16.6%
Not born in the UK 7.4% 7.1% 7.9%
Diagnosed disease at the age of 18 years 5.3% 5.7% 4.9%
Marital status
Married 64.0% 59.7% 69.3%
Divorced 16.6% 18.5% 14.3%
Widowed 10.7% 14.7% 5.8%
Never married 8.6% 7.0% 10.6%

Number of children
No children 16.6% 14.3% 19.4%
1 child 12.6% 12.1% 13.3%
2 children 39.2% 40.2% 37.9%
3 children 20.0% 21.5% 18.1%
4 or more children 11.7% 11.9% 11.3%

Educational attainment
Low 56.5% 62.8% 48.7%
Intermediate 27.1% 24.6% 30.2%
High 16.4% 12.6% 21.1%

Notes. Data are from Understanding Society–The UK Household Longitudinal Study; Data are weighted; Multiple imputation using chained equations used to
deal with missing data.
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walking for more than 10 minutes continuously. This profile
was labeled low smoking and drinking, healthy nutrition, and
physically inactive.

The third latent health behavior profile identified was
characterized by relatively poor scores on most dimensions.
People with this profile were relatively likely to smoke and
their consumption of fruit and vegetables tended to be low. As
with the second profile, they had a high likelihood of non-
participation in sports and rarely walked for more than
10 minutes. However, they were considerably less likely to
report risky drinking behavior and more likely to be non-
drinkers than their counterparts in the first health behavior
profile. The label broadly unhealthy, but low alcohol con-
sumption was therefore assigned to this profile.

As with the broadly healthy, but high alcohol consumption
profile, people assigned to the final, and least prevalent,
profile were relatively likely to have risky drinking behavior.
On each of the other dimensions, they scored much more
poorly than people with broadly healthy, but high alcohol
consumption profile, albeit not quite as poorly as the people
with the broadly unhealthy, but low alcohol consumption
profile. This profile was therefore labeled broadly moderately
unhealthy and high alcohol consumption.

Early-Life Circumstances and Later-Life Health
Behavior Profiles

Table 2 shows the results of the multinomial logistic regression
models predicting class membership. Given that, coefficient
estimates of multinomial models are difficult to interpret,
average marginal effects are presented instead. These can be
interpreted as the average discrete change in the predicted
probability of having a specific health behavior profile asso-
ciated with being in the nonreference category of a particular
explanatory variable as opposed to the reference category.

The analyses showed that early-life circumstances predicted
later-life health behavior profiles. Compared to people whose
parents had high socioeconomic position, people whose parents
had a lower socioeconomic position were more likely to have
the broadly unhealthy and low alcohol consumption or the low
smoking and alcohol consumption, healthy nutrition, and
physically inactive health behavior profiles and less likely to
have the broadly healthy, and high alcohol consumption health
behavior profile. These effects were most pronounced for
people whose parents had a low socioeconomic, rather than
intermediate, position. Moreover, people born outside the UK
were more likely than their UK-born counterparts to have

Figure 1. Class-conditional response probabilities.
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a low smoking and alcohol consumption, healthy nutrition, and
physically inactive health behavior profile, and being di-
agnosed with a disease at the age of 18 years or younger was
associated with a lower likelihood of the broadly healthy and
high alcohol consumption health behavior profile.

The model moreover showed that women were more
likely than men to have the broadly healthy, but high alcohol
consumption and low smoking and alcohol consumption,
healthy nutrition, and physically inactive health behavior
profiles and less likely to have the broadly unhealthy, but low
alcohol consumption and broadly moderately unhealthy and
high alcohol consumption health behavior profiles. Higher
age was also associated with a lower likelihood of having the
latter two health behavior profiles and a higher likelihood of
having the low smoking and alcohol consumption, healthy
nutrition, and physically inactive health behavior profile.

Compared to their highly educated counterparts, people
with lower levels of educational attainment were more likely

to have the broadly unhealthy and low alcohol consumption,
the low smoking and alcohol consumption, healthy nutrition,
and physically inactive, or the broadly moderately unhealthy
and high alcohol consumption health behavior profiles and
less likely to have the broadly healthy and high alcohol
consumption health behavior profile. These effects were most
pronounced for people with low, rather than intermediate,
levels of education. Married people were more likely to have
the broadly healthy and high alcohol consumption health
behavior profile and less likely to have the broadly unhealthy
and low alcohol consumption health behavior profile than
divorced, widowed, and never married people. Few health
behavior differences by number of children were found.

Allostatic Load

Table 3 shows the results of the linear regression models
predicting allostatic load. The first model showed that

Table 2. Results of Multinomial Logistic Regression Analyses Predicting Class Membership and Average Marginal Effects.

HBP 1: Broadly Healthy,
High Alcohol
Consumption

HBP 2: Low Smoking and Alcohol
Consumption, Healthy Nutrition,

Physically Inactive

HBP 3: Broadly
Unhealthy, Low Alcohol

Consumption

HBP 4: Broadly Moderately
Unhealthy, High Alcohol

Consumption

Parental socioeconomic position
High Ref Ref Ref Ref
Intermediate �.046�� .008 .032� .006
Low �.102��� .028� .063��� .011

Did not grow up with
both parents

�.017 .008 .011 �.002

Not born in the UK �.021 .072��� �.025 �.026
Diagnosed disease at

the age of 18 years
�.045� �.006 .036 .015

Woman .032�� .107��� �.082��� �.057���
Age .001 .006��� �.005��� �.002���
Educational attainment
High Ref Ref Ref Ref
Intermediate �.125��� .018 .083��� .025�
Low �.246��� .043��� .163��� .040���

Marital status
Married Ref Ref Ref Ref
Divorced �.121��� .008 .105��� .008
Widowed �.085��� .008 .081��� �.004
Never married �.142��� �.003 .100��� .045�

Number of children
No children �.007 .010 .003 �.007
1 child �.039� �.002 .027 .015
2 children Ref Ref Ref Ref
3 children �.007 �.006 .014 �.001
4 or more children �.070��� .025 .053�� �.008

Notes: Data are from understanding society–The UK Household Longitudinal Study; n=4649; Data are weighted; Robust standard errors; Multiple imputation
using chained equations used to deal with missing data. � p < .05, �� p < .01, ��� p < .001.
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allostatic load was significantly higher for people whose
parents had an intermediate or low socioeconomic position
than for people with high socioeconomic parents. The model
further showed that higher age, male gender, lower educa-
tional attainment, being divorced or married as opposed to
married, and having one or four or more children as opposed
to two children were associated with higher allostatic load.

In the second model, the health behavior profiles iden-
tified in the LCAwere added. People with a broadly healthy
and high alcohol consumption had significantly lower al-
lostatic load than people in any of the other health behavior
profiles. Allostatic load was Furthermore significantly higher
for people with a low smoking and alcohol consumption,
healthy nutrition ,and physically inactive (Δb = .251, p < .01)
or broadly unhealthy and low alcohol consumption (Δb = .414,

p < .001) health behavior profile than for people with a broadly
moderately unhealthy and high alcohol consumption profile.

The addition of early-life characteristics of the health
behavior profiles to the model attenuated the effects of pa-
rental socioeconomic position. As shown in Table 4, the
indirect effects of low and intermediate versus high parental
socioeconomic position via the health behavior profiles were
both statistically significant. The indirect effect via health
behavior profiles accounted for 17.9% of the total effect of
low as opposed to high parental socioeconomic position and
for 17.0% of the total effect of intermediate as opposed to
high parental socioeconomic position as estimated inModel 1
in Table 3. Approximately, 70% of the indirect effects of
parental socioeconomic position via health behavior profiles
were driven by the greater disposition of people with low

Table 3. Results of Linear Regression Models of Allostatic Load.

Model 1 Model 2

B (SE) B (SE)

Early-life characteristics
Parental socioeconomic position
High Ref Ref
Intermediate .192� (.087) .160 (.085)
Low .401��� (.091) .330��� (.090)

Did not grow up with both parents .169 (.097) .156 (.096)
Not born in the UK .083 (.141) .068 (.139)
Diagnosed disease at the age of 18 .180 (.160) .150 (.157)

Health behavior profiles (HBPs)
HBP 1: Broadly healthy and high alcohol consumption Ref
HBP 2: Low smoking and alcohol consumption, healthy nutrition, and physically inactive .629��� (.054)
HBP 3: Broadly unhealthy and low alcohol consumption .791��� (.077)
HBP 4: Broadly moderately unhealthy and high alcohol consumption .377��� (.068)

Woman �.149� (.071) �.129 (.071)
Age .029��� (.004) .030��� (.004)
Educational attainment
High Ref Ref
Intermediate .356��� (.099) .269�� (.098)
Low .734��� (.094) .561��� (.094)

Marital status
Married Ref Ref
Divorced .336��� (.097) .243� (.096)
Widowed .346�� (.121) .278� (.119)
Never married �.000 (.151) �.099 (.149)

Number of children
No children .156 (.109) .149 (.107)
1 child .230� (.117) .204 (.114)
2 children Ref Ref
3 children .171 (.092) .164 (.091)
4 or more children .427��� (.123) .373�� (.122)

Constant .449 (.288) .210 (.285)

Notes: HBP = Health behavior profiles, Data are from Understanding Society–The UK Household Longitudinal Study; n = 4649; Data are weighted; Robust
standard errors; Multiple imputation using chained equations used to deal with missing data. � p < .05, �� p < .01, ��� p < .001.
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and intermediate socioeconomic position parents than their
counterparts with high socioeconomic position parents to
have a broadly unhealthy and low alcohol consumption as
opposed to a broadly healthy and high alcohol consumption
health behavior profile.

Discussion

It is well established that growing up under disadvantageous
circumstances, such as in poor financial conditions, is as-
sociated with poor later-life health. The current study as-
sessed a potential pathway from early-life circumstances to
later-life health via health behavior. Latent class analysis
(LCA) was used to distinguish particular health behavior
profiles that vary on multiple behavioral dimensions–smoking,
nutrition, alcohol consumption, and physical activity (SNAP) –
among people aged 50–80 years in Great Britain. Multinomial
logistic regression analyses then shed light on how disadvan-
tageous early-life circumstances are associated with having
particular health behavior profiles. Finally, the current study
assessed to what extent the effects of disadvantageous early-life
circumstances on allostatic load–an objective measure of the
physiological wear and tear of the body–were mediated by the
health behavior profiles identified in the latent class analysis.

Four distinct health behavior profiles were identified
among the older British population: (1) broadly healthy and
high alcohol consumption, (2) low smoking and alcohol
consumption, healthy nutrition, and physically inactive, (3)
broadly unhealthy and low alcohol consumption, and (4)
broadly moderately unhealthy and high alcohol consump-
tion. Marked differences in health behavior profiles were
found by parental socioeconomic position, but few systematic
differences were found by the other early-life characteristics
considered: growing up in a single-parent family, not being
born in the UK, and being diagnosed with a health condition
at the age of 18 years or younger.

The analyses furthermore showed that people who grew
up in a high socioeconomic position family had lower later-
life allostatic load than their counterparts who grew up in
families with a lower socioeconomic position, and that these
differences could to a substantial extent be attributed to
differences in health behavior profiles. The lion’s share of the
indirect effects of parental socioeconomic position via health
behavior profiles was due to people with low and intermediate
socioeconomic position parents’ high likelihood to have the
health behavior profile associated with the highest allostatic
load in later life (broadly unhealthy and low alcohol con-
sumption) and their low likelihood to have the health profile
with the lowest allostatic load (broadly healthy and high
alcohol consumption).

The current study extended earlier work by life course
epidemiologists on later-life health by assessing a chain risk
between early-life circumstances and later-life health via
health behavior, in a way that acknowledged that health
behavior is a multidimensional concept. Much earlier work

explored chains of risks via socioeconomic circumstances in
adulthood (e.g., Luo &Waite, 2005; Surachman et al., 2019),
and the few studies that explored chains of risk via health
behavior have tended to combine multiple aspects of health
behavior into an index (Barboza Solı́s et al., 2016). Com-
bining multiple aspects of health behavior into an index is,
however, at odds with the increasingly dominant view that
health behavior is a multidimensional concept. One of the
reasons for this is that various forms of health behavior are
only weakly associated (Newsom et al., 2005). In line with
this argument, a reliability analysis indicated that the six
health behavior items considered in the current study did
not form an internally consistent scale together (α = .35).
Moreover, the effects of various forms of health behavior may
offset or compound each other (e.g., Shaw & Agahi, 2012).
The results presented here are a case in point. The two most
prevalent health behavior profiles (broadly healthy and high
alcohol consumption and low smoking and alcohol con-
sumption, healthy nutrition, and physically inactive) were
both characterized by favorable scores on three of the four
SNAP dimensions of health behavior. This implies that
people with either of these two health behavior profiles would
have roughly similar scores on an index in which multiple
aspects of health behavior are simply summed. Nevertheless,
the analyses indicated that early-life antecedents as well as
the associations with allostatic load differed notably between
these two behavior profiles. This underlines the importance of
acknowledging the multidimensional nature of health be-
havior when investigating the mediating pathways of early-
life characteristics on later-life health via health behavior.

The main limitation of the current study is that the analyses
are cross sectional. Allostatic load was regressed on health
behavior profiles, but it is not implausible that health status
may also predispose people to a specific health behavior
profile. In particular, having a low smoking and alcohol
consumption, healthy nutrition, and physically inactive
health behavior profile may be driven by health problems.
Health problems may, for instance, be a barrier for physical
activity (Xiang, 2016) and a reason for medical practitioners
to urge the person with health problems to abstain from al-
cohol and smoking. However, earlier research showed that
only few persons diagnosed with a new chronic condition
adopt healthier behaviors (Newsom et al., 2012). Moreover,
this study did not show an association between being di-
agnosed with a disease when growing up and having this
particular health behavior profile. Nevertheless, analyses of
birth cohort data with frequently repeated measures of health
status and health behavior are needed to shed light on the
ways in which health behavior profiles and health mutually
shape each other.

A second notable limitation is that the information on
early-life circumstances used in the current study was col-
lected retrospectively, as were some important control vari-
ables. Retrospectively collected information may be of lower
quality than prospectively collected information (cf. Sironi
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et al., 2020) because it may be prone to recall bias. In a recent
study, in which prospective and prospective data on British
people in their 50s were compared, no systematic differences
in the distribution of important early-life characteristics
(socioeconomic position of father when growing up and
parental separation between birth and age of 16 years) were
found, but the authors noted that retrospectively collected
early-life characteristics were slightly, but statistically sig-
nificantly, more strongly associated with later-life health than
were prospectively collected early-life characteristics (Jivraj
et al., 2020). This suggests that the magnitude of the impact of
parental socioeconomic position on later-life allostatic load
may be overestimated in the current study.

Recall bias may also explain the considerably higher levels
of reported childlessness among men than among women
in the sample analyzed here. Rendall et al. (1999) analyzed
fertility histories in the British Household Panel Study and
the Panel Study on Income Dynamics concluded that be-
tween one-third and half of the men’s nonmarital births and
births within previous marriages were missed when in-
formation on fertility histories was collected retrospectively.
Men’s higher levels of reported childlessness in the current
study may, however, to some extent also capture the fact that,
in couples, men tend to be older than women. Female partners
of male respondents are thus typically born later than female
respondents. This is important because the median of birth
year of female respondents was 1948, and women born in
the second half of 1940s form a cohort with a considerably
lower prevalence of childlessness than subsequent cohorts of
women (Berrington, 2017).

It should also be considered that whereas multinomial
logistic regression was used to predict health behavior pro-
files, the indirect effects of parental socioeconomic position
were calculated based on linear probability estimates of class
membership (cf. Preacher & Hayes, 2008). However, these
linear probability estimates (see Supplemental Appendix C)
were very similar to average marginal effects from the
multinomial logistic regression model of class membership
presented in Table 2.

Older adults’ health behavior patterns tend to be highly
stable over time (Burgard et al., 2020), and even after the
development of health conditions, people find it difficult to
adopt a healthier lifestyle (Newsom et al., 2012). This sug-
gests that efforts to disrupt the chain of risk from early-life
socioeconomic disadvantage to poorer later-life health via
health behavior may be most promising if they focus on early
phases in the life course. Recent reviews suggested that in-
terventions targeting disadvantaged children may yield
modest improvements in health behavior among this group
(Craike et al., 2018; Wijtzes et al., 2017). However, the body
of evidence on which interventions can be based is still very
limited considering the need to battle the suboptimal health
behavior choices that follow from growing up under disad-
vantageous circumstances. Wijtzes et al. (2017) therefore
recently called for increasing scholarly attention for the

long-term effectiveness of interventions aiming to improve
health behavior among children growing up under disad-
vantageous circumstances. The current study’s finding of an
important pathway from early-life socioeconomic disad-
vantage to poorer later-life health via a disposition for sub-
optimal health behavior underlines the urgency of this call.
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