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Many of the biological applications and effects of nanomaterials are attributed to their
ability to facilitate the generation of reactive oxygen species (ROS). Electron spin resonance
(ESR) spectroscopy is a direct and reliable method to identify and quantify free radicals in
both chemical and biological environments. In this review, we discuss the use of ESR
spectroscopy to study ROS generation mediated by nanomaterials, which have various
applications in biological, chemical, and materials science. In addition to introducing the
theory of ESR, we present some modifications of the method such as spin trapping and spin
labeling, which ultimately aid in the detection of short-lived free radicals. The capability of
metal nanoparticles in mediating ROS generation and the related mechanisms are also
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1. Introduction

Rapid development of the nanoscience and technology has
produced numerous nanomaterials that offer revolutionary
benefits in electronics, energy, medical, and health applica-
tions, but unfortunately also lead to environmental, health,
and safety concerns [1]. For example, Au nanoparticles (NPs)
have been explored as nanopharmaceuticals for the treat-
ment of cancer [2], and Ag NPs have been established
as superior antibacterial materials [3]. However, the wide use
of nanomaterials has raised concerns regarding their

potentially hazardous effects on biological systems, and the
associated short- and long-term risks are not well under-
stood. A variety of nanomaterials can generate reactive ox-
ygen species (ROS) under certain experimental conditions
[4—9]. Among various toxic nanomaterial-
induced oxidative stress mediated by ROS has been studied
most extensively [10—12].

ROS, e.g., superoxide, hydroxyl radical, singlet oxygen, and
hydrogen peroxide, are powerful oxidants that can damage
cellular targets nonselectively. Free radicals, including ROS,
are short lived and represent a broad range of chemically
distinct entities; consequently, these species are difficult to
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detect in dynamic environments such as biological systems.
The wuse of fluorescent probes (e.g., dichlorodihydro-
fluorescein, hydroethidine, and dihydrorhodamine) and
chemiluminescent assays is a simple and easy way of
detecting free radicals and ROS in cellular systems, but there
are inherent limitations and many sources of artifacts [13,14].
Electron spin resonance (ESR) spectroscopy has become a
powerful and direct method to detect free radicals generated
chemically or formed in biological systems. We have a long-
standing interest in employing ESR techniques to identify and
quantify free radicals in biological systems, and study the
mechanisms of interactions between biologically relevant
systems and nanomaterials, metal ions, and organic mole-
cules [4,5,7,9,15—-43]. We have also published several book
chapters on this subject [44—46]. In this special issue, we
demonstrate that ESR spectroscopy is a powerful tool for
exploring the capability of NPs to generate ROS. The ESR spin-
trapping techniques used to detect ROS (including hydroxyl
radicals, superoxide radical anion, and singlet oxygen) and the
ESR oximetry methodology employed for monitoring oxygen
and the formation of lipid peroxidation are also discussed
briefly.

2. ESR spectroscopy
2.1. Principle of ESR spectroscopy

ESR, also called electron paramagnetic resonance, is a
powerful technique for studying chemical species or materials
that have one or more unpaired electrons. The basic physical
concepts of ESR are analogous to those of nuclear magnetic
resonance, except that in ESR electron spins are excited
instead of atomic nuclei. ESR has been studied for several
decades since it was first observed by Y. Zavoisky in 1944 [47].
A number of review articles and books are available that
provide a useful introduction to the basic concepts of ESR and
its applications [47—49]. An electron has a spin quantum
number s = 1/2 with magnetic components my; = +1/2 and -1/
2. In an external magnetic field, free electrons align with their
spin parallel (low energy) or perpendicular (high energy) to the
magnetic field (Fig. 1). A transition between low- and high-
energy states can occur when sufficient energy is absorbed.
This energy lies within the microwave frequencies of the
electromagnetic spectrum. The energy (hv) required for this
transition is given by the following equation:

m, =+1/2

Energy

-] AE = hv

mg=-1/2

Magnetic field, B

Fig. 1 — Energy diagram showing the origin of an electron
spin resonance signal.

hv = gepzBo

where up is the Bohr magneton, By is the magnetic field
strength, and g, is the Landé g-factor (2.0023 for free electron).
An ESR spectrum is usually obtained by varying the magnetic
field strength at a fixed microwave frequency. Magnetic field
strengths at which the microwave frequency is absorbed are
recorded in the ESR spectrum. A typical continuous wave X-
band (9.5 GHz) ESR instrument, as shown in Fig. 2, includes the
following major components: (1) a magnet that generates and
modulates a magnetic field; (2) a microwave supply system
that includes an electromagnetic radiation source and a de-
tector to control the microwave power; (3) a sample cavity to
which microwave energies are directed and in which samples
are placed; and (4) a data processing and display system.
Under certain conditions, each free radical exhibits a specific
ESR spectrum, and the intensity of an ESR signal is propor-
tional to the concentration of free radicals; therefore, quali-
tative identification of free radical species along with their
quantitative measurements can be performed.

Spin trapping and spin labeling are the two principal ESR
techniques used for the detection and identification of free
radicals [9,44,50]. ROS are usually very reactive and present in
low concentrations, which is a major limitation to the detec-
tion of ROS. However, the instability of free radicals is largely
solved by the use of either spin trapping or spin labeling. The
ESR spin-trapping technique uses chemical species called spin
traps, which react with short-lived free radicals to form rela-
tively stable adducts having a half-life long enough for ESR
measurement [50]. The ESR spin-labeling technique uses a
stable paramagnetic spin label agent to interact with the
target chemical, e.g., the oxygen molecule or electrons, and is
a powerful tool for probing structural and/or dynamic changes
in complex chemical or biological systems [51,52]. Here, our
discussion focuses on oxygen-centered free radicals, particu-
larly ROS. In this review, carbon- and sulfur-centered free
radicals have not been included.

| —
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Fig. 2 — Photograph of a typical Bruker EMX continuous-
wave electron spin resonance instrument. The
components A, B, C, D, and E represent magnet, microwave
supply and control system, sample cavity, data processing,
and display system, respectively.
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2.2. ESR spin-trapping technique

There are three kinds of spin traps, compounds with nitrone,
nitroso, and piperidine/pyrrolidine groups [50], as displayed in
Fig. 3. Most of these spin traps are soluble in water and polar
organic solvents, can capture a variety of free radicals, and can
reveal specific hyperfine splitting information, which aids in the
identification of radicals. Nitrone spin traps include cyclic and
open-chain nitrones. Spin traps including 5,5,-dimethylpyrro-
N-oxide (DMPO), 5-tertbutoxycarbonyl-5-methyl-1-
pyrroline N-oxide (BMPO), 5-diethoxyphosphoryl-5-methyl-1-
pyrroline-N-oxide (DEPMPO), and other derivatives have
similar cyclic nitrone structures and are highly useful for trap-
ping oxygen-centered free radicals, including superoxide and
hydroxyl radicals. Phenyl-tert-butylnitrone and «-(4-pyridyl N-
oxide)-N-tert-butylnitrone (POBN) are common open-chain

S
N

line

nitrone spin traps, which are typically used to trap carbon-
centered free radicals. Nitrone spin traps can capture the
radical at a carbon adjacent to the nitrogen, which results in the
loss of chemical information. However, the most popular spin
traps have a B-hydrogen that can provide considerable qualita-
tive information about the trapped radicals. DMPO, BMPO, and
DEPMPO can be used to trap hydroxyl radicals and superoxide,
forming adducts with *OH or *OOH. However, in the detection of
superoxide using DMPO as a spin trap, the resulting DMPO/*OOH
adducts are unstable and decay to DMPO/*OH adducts, leading
to a misinterpretation of the generation of hydroxyl and su-
peroxide radicals [53]. The spin adducts BMPO/*OOH and
DEPMPO/*OCH are highly stable, especially BMPO/*OOH that
does not decompose into the corresponding hydroxyl adduct.
Nitroso spin traps such as 2-methyl-2-nitrosopropane and
nitrosobenzene, and their derivatives, can provide more
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Fig. 3 — Chemical structures of common spin traps and spin labels including (A) a piperidine nitroxide derivative, (B) an
unsaturated pyrrolidine nitroxide derivative, and (C) a saturated pyrrolidine nitroxide derivative. BMPO = 5-
tertbutoxycarbonyl-5-methyl-1-pyrroline N-oxide; CPH = 1-hydroxy-3-carboxy-pyrrolidine; DEPMPO = 5-
diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide; DMPO = 5,5-dimethylpyrroline N-oxide; MNP = 2-methyl-2-
nitrosopropane; NOB = nitrosobenzene; PBN = phenyl-tert-butylnitrone; POBN = «-(4-pyridyl N-oxide)-N-tert-
butylnitrone; TEMP = 2,2,6,6-tetramethylpiperidine; TTBNB = 2,4,6-tri-tert-butylnitrosobenzene.
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Fig. 4 — Measurement of oxygen by ESR oximetry. (A) Oxygen consumption is measured in a closed chamber using liposome
suspensions and the spin label >N-PDT mixed with a free radical initiator of lipid peroxidation such as AAPH. (B) The black
line indicates ESR spectra of CTPO in a nitrogen-saturated aqueous solution and the blue line indicates that in an air-
saturated aqueous solution; the K parameter is used to determine oxygen concentration and is calculated by the equation
K = (b + c)/2a. (C) The ESR spectra of '>N-PDT in a nitrogen atmosphere is shown by the red line and that in an air-saturated
aqueous solution is shown by the black line. The presence of oxygen results in a broader and less intense ESR signal for the
spin probe [57]. CTPO = 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl; ESR = electron spin resonance; *°N-

PDT = 4-0x0-2,2,6,6-tetramethyl piperidine-d,¢-1-*N-oxyl; AAPH = 2,2'-azobis(2-amidino-propane)dihydrochloride.

information than nitrones because the radical to be trapped
adds directly to the nitroso nitrogen. However, these spin
traps are not suitable for studying oxygen-centered radicals
because their resulting spin adducts are photochemically and
thermally unstable [53].

Representative  piperidine-based spin traps, 2,2,6,6-
tetramethylpiperidine (TEMP) and 4-o0xo0-2,2,6,6-tetramethyl
piperidine (4-oxo-TEMP), can be specific traps for reacting with
singlet oxygen to yield a nitroxide radical TEMPONE with a stable
ESR signal, as shown in reaction (1) [9]. Consequently, TEMP has
widely been used in ROS characterization for the detection of
singlet oxygen. The spin trap 1-hydroxy-3-carboxy-pyrrolidine
(CPH) was found to be more suitable than 1-hydroxy-2,2,6,6-
tetramethyl-4-oxo-piperidine (TEMPONE-H) for trapping super-
oxide radicals and peroxynitrite in biological systems [54]. CPH
reacts with superoxide radicals or peroxynitrite forming the
stable nitroxide radical 3-carboxy-2,2,5,5-tetramethylpyrro
lidine 1-oxyl, which can be detected by ESR spectroscopy.

O
1 H*
+ 10, ———— + H,O (2)
N N
H o
TEMP TEMPONE

2.3. ESR spin-labeling technique

Spin labels are stable nitroxide free radicals, which possess an
unpaired electron that has the ability to bind to another
molecule. The magnetic resonance signal of this unpaired
electron can be detected by ESR, which would provide infor-
mation about the motion, distance, and orientation of un-
paired electrons in the sample with respect to each other and
to the external magnetic field. ESR spin labeling is particularly
useful in the field of biology for probing local dynamics of
proteins or biological membranes [55]. Most spin labels are
derived from five- or six-membered hybrid rings (Fig. 3), with
various functional groups indicated by R [45,56]. For
example, commonly used spin labels 2,2,6,6-tetramethyl-
1-piperidinyloxy, 2,2,6,6-tetramethylpiperidine 1-oxyl
(TEMPO, R = H), 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl
(TEMPON, R = oxo), 4-hydroxy-2,2,6,6-tetramethylpiperidine
1-oxyl (TEMPOL, R = OH), and 4-amino-2,2,6,6-tetramethyl
piperidine-1-oxyl (4-amino-TEMPO, R = NH,) are derived
from the piperidine structure (Fig. 3A). The spin labels 3-
carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO)
and (1-oxyl-2,2,5,5-tetramethyl-A-pyrroline-3-methyl) meth-
anethiosulfonate have the same pyrroline structure with
different R groups. 3-Carboxy-2,2,5,5-tetramethylpyrrolidine
1-oxyl is one representative free radical from saturated pyr-
rolidine structure (Fig. 3C). These nitroxide free radicals have
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Table 1 — Generation of ROS mediated by metal NPs, based on the data from previous reports.

NPs ROS production Experimental conditions and detection methods Refs
Ag *OH 0.5 mM H,0,, pH < 4.5, 10—-100 nm, different coatings, ESR [4]
ROS, *OH 9-21 nm, with light, fluorescence [60]
ROS In cell, 15-55 nm, fluorescence [61]
ROS In human liver cell, 5-10 nm, fluorescence [62]
Free radicals 10 nm, ESR [63]
ROS In cell, 6—20 nm, fluorescence [64]
05° Protein/membrane, SOD [65]
05 1.0 M KOH, H,0,, Al supported, ESR [66]
ROS In cell, 25—-70 nm, fluorescence [67]
ROS Intracellular, PVP coated, 70 nm, fluorescence [68]
*OH, O5* Under UV, fluorescence [6]
03} Ag NPs, photoirradiation, fluorescence [8]
Au *OH 0.5mM H,0,, pH < 3.6, 10—100 nm, different coatings, ESR [5]
03 Under UV, fluorescence [6]
03 Au NPs, photoirradiation (NIR), fluorescence [8]
ROS Under laser pulse irradiation, in cell, fluorescent marker [2]
ROS Protoporphyrin IX coated, under light, fluorescence [69]
*OH, 05 2—-250 nm, X-ray and UV irradiation, fluorescence [70]
Pt *OH Pt surface, H,0,, under high-voltage power supply [71]
CoPts *OH, O3°* 0.11M H,0,, ESR [72]
FePt ROS In cell, PBS, fluorescence [73]
Cu ROS Mercaptocarboxylic acid coated, 15 nm, fluorescence [74]
*OH 1mM H,0,, 1mM PBS, ESR [75]
0o} 4-5 nm, PBS, citrate coated, by NaNj, fluorescence [76]
Fe *OH O,, pH < 5, fluorescence [77,78]
03 0O,, PBS, in cell, fluorescence [79]
ROS Escherichia coli, fluorescence [80]
*OH 28mM H,0,, ESR [81]
FeCo *OH 28mM H,0,, ESR [81]
Co *OH 28mM H,0,, ESR [81]
ROS Dose dependent, in cell, fluorescence [82]
Ni 03 Under UV, fluorescence [6]
ROS ~30 nm, in human liver cell, fluorescence [83]
ROS 65 nm, human lung epithelial A549 cells, fluorescence [84]

ESR = electron spin resonance; NP = nanoparticle; PBS = phosphate-buffered saline; PVP = polyvinylpyrrolidone; ROS = reactive oxygen species;

SOD = superoxide dismutase; NIR = near infrared.

the advantage of high sensitivity and unambiguous spectral
information. A concentration of 1 uM TEMPO in a 50 pL volume
can be detected easily by conventional ESR.

Spin label oximetry is a highly useful method to detect
dissolved oxygen in biological environments [56]. Spin label
oximetry is based on the bimolecular collision between oxy-
gen (O,) and spin labels. As O, is paramagnetic, a physical
collision between the spin label and O, produces a Heisenberg
spin exchange, which results in a shorter relaxation time
leading to a broader line width and lower peak intensity in the
ESR spectrum of the spin label. Because the extent of spin
exchange is dependent on the concentration of molecular O,
a change in O, concentration results in a corresponding
change in the line width of the spin label. Therefore, a real-
time study of O, generation or consumption is feasible in
biological systems. The most commonly used spin labels in
oximetry are CTPO and 4-o0x0-2,2,6,6-tetramethyl piperidine-
dy6-1-"°N-oxyl (**N-PDT; Fig. 4). Their ESR spectral shapes are
dependent on the amount of O, molecule interacting with
spin labels. Practically, CTPO, because of its superhyperfine
structure in the ESR spectrum, is more sensitive to O, than
5N-PDT. The choice of spin labels is dependent on the O,
concentration. The spin label »*’N-PDT is suitable for use at a

high O, concentration (>150 mM), whereas CTPO is preferred
at a low O, concentration. A limit of detection for molecular
oxygen of 0.1 uM can be achieved using the CTPO spin label
oximetric method [57]. By repeatedly measuring the line
widths of the spin probe, one can assess the rate of lipid
peroxidation in the biological sample (Fig. 4).

3. ROS generation mediated by metal NPs

Owing to the quantum size effect, nanomaterials possess
unique physiological and chemical properties that are
different from those in either macroscopic (bulk) or atomic
form. Concerns have been raised that these unique properties
may lead to nanomaterial-induced toxicity. A variety of
nanomaterials, including metal NPs, carbon nanostructures,
and semiconductor NPs, have been shown to be toxic to living
systems. One important mechanism of nanomaterial-induced
toxicity is the generation of ROS. In this special issue, a review
article by Fu et al [58], titled “Mechanism of Nano-
toxicity—Generation of Reactive Oxygen Species,” discusses
the mechanisms and decisive determinants of the generation
of ROS by nanomaterials. As an illustration for this review, we
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Fig. 5 — (A) Demonstration of hydroxyl radicals generated by Ag NPs in the presence of hydrogen peroxide at pH 3.6 (10mM
acetate buffer) using different spin traps. (B) ESR signal intensity versus buffer pH. (C) Schematic presentation of Ag NPs
triggering the generation of hydroxyl radicals and oxygen controlled by pH [4]. BMPO = 5-tertbutoxycarbonyl-5-methyl-1-
pyrroline N-oxide; DEPMPO = 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide; DMPO = 5,5-dimethylpyrroline N-
oxide; ESR = electron spin resonance; NP = nanoparticle; POBN = o-(4-pyridyl N-oxide)-N-tert-butylnitrone.

focus our presentation on the generation of ROS mediated by
metal NPs.

A variety of metal NPs have been reported to exhibit
intrinsic activity in generating or scavenging ROS. Some
representative results are summarized in Table 1, including
NPs of metals Ag, Au, Pt, Cu, Fe, Co, Ni Fe, and Co [4—6,60—84].
Ag, Au, Cu, Fe, Ni, and Co NPs have been reported for their
ability to induce the generation of ROS under certain experi-
mental conditions. Au NPs generate ROS, including *OH, 03,
and O°, in various environments [2,5,6,8,69,70], whereas Ag
NPs enable the production of *OH and O;* [4,6,8]. Cu NPs have
been reported to generate *OH in the presence of hydrogen
peroxide [75] and proposed to form O} when present with DNA
in phosphate-buffered saline [76]. Most of these studies used
fluorescent probes, instead of ESR, to measure ROS and

reported only the total ROS production-related oxidative
stress [61,62,64,67—69,73,74,82—84]. These studies indicate
that physiochemical factors, including the size, shape,
composition, and surface coating, of metal NPs affect ROS
levels significantly. ROS production occurs mainly through
two mechanisms: (1) Fenton-like reaction and (2) surface
plasmon resonance enhancement; both of these are discussed
in detail in the following subsections.

3.1 ROS generation via Fenton reaction
A Fenton or Fenton-like reaction is a process that leads to the

generation of hydroxyl radicals, as illustrated in reaction (2),
which is best exemplified by reactions between H,0, and
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Fig. 6 — Generation of hydroxyl radicals by irradiation of TiO, samples under UV light. ESR spectra (A) with DMPO recorded
after 3 minutes of irradiation with UV radiation of 320 nm [89], and (B) with BMPO after 2 minutes of irradiation with UV
340 nm [9]. (C) Catalytic activity of GO/PP in the formation of ‘OH by decomposition of H,0,, using DEMPO as a spin trap. (D) A
possible decomposition mechanism of hydrogen peroxide catalyzed by coronene [94]. BMPO = 5-tertbutoxycarbonyl-5-
methyl-1-pyrroline N-oxide; DEPMPO = 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide; DMPO = 5,5-
dimethylpyrroline N-oxide; ESR = electron spin resonance; GO/PP = graphene oxide modified with PEGylated poly-L-lysine.

Fenton-like reagents involving transition metal ions such as
Fe?* and Cu™ [59]:

H,0; + M" >M""?! 1 *OH 4 OH™ )

Zero-valent metal NPs with relatively low redox potentials,
such as Ag, Cu, and Fe NPs, can be viewed as Fenton-like NPs.
They all have redox potentials less than that of H,0,/H,0
(1.77 V). For example, elemental silver (pag./ag = +0.7996 V),
copper (pcui/cu = 0.52 V, and ¢cuyz./cu = 0.34 V), and iron
(¢rea-/re = —0.44 V) are thermodynamically favorable to trigger
the Fenton reaction in the presence of H,0,, as displayed in
reaction (3) [4]:

M(NP) + H,0, + nH" = M"* + *OH + H,0

3)

Therefore, a Fenton reaction is always accompanied by
oxidation and dissolution of metal NPs. Dissolved metal ions
such as Fe?" and Cu™ can further promote the Fenton reaction
shown in reaction (2).

He and coworkers [4] have reported the hydroxyl radicals
generated from the interaction between H,0, and Ag NPs. The
formation mechanism of hydroxyl radical was suggested to
take place through a Fenton reaction between Ag NPs and
H,0,. Therefore, they named Ag NPs as Fenton-like NPs. Cu

NPs may go through a similar process to generate hydroxyl
radicals, as indicated in another study, although the authors
of the study did not make such a proposal [75]. Zero-valent Fe
NPs not only trigger the Fenton reaction in the presence of
H,0, to form hydroxyl radicals, but also activate dissolved
oxygen to produce superoxide and H,0,, which can generate
hydroxyl radicals [77—79,81]. Reactive oxygen production at
neutral and alkaline pH is typically lower than that at acidic
PH, due to the precipitation of metal ions and the mechanism
involved in the Fenton reaction. Spherical Co and FeCo alloyed
NPs were investigated by ESR spectroscopy, using DMPO as a
spin trap, to generate hydroxyl radicals in the presence of
28 mM H,0, through a Fenton-like reaction [81]. Bimetallic
NPs such as CoPt and FePt were also found to produce ROS
(hydroxyl radicals and superoxide) in the presence of H,0, due
to leaching of active metal ions (Fe and Co) from the particle
surface, triggering a Fenton reaction [72,73].

3.2. Surface plasmon resonance enhancement

Because metal NPs contain free electrons, they can interact
with an incident electromagnetic wave, resulting in the col-
lective oscillation of electrons. When the frequency of the
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incident light photons equals the oscillating frequency of
electrons, a resonance phenomenon, called localized surface
plasmon resonance, occurs [85]. A local enhanced electro-
magnetic field formed on the surface of metal NPs makes the
NPs useful not only in optical sensing and imaging [86], but
also in enhancing the generation of ROS [2,6,8,69,70]. Zhang
and coworkers [6] found that, under UV irradiation (365 nm),
Ag NPs generated superoxide and hydroxyl radicals, whereas
Au NPs and Ni NPs generated only singlet oxygen. They pro-
posed that the ROS generation from Au, Ag, and Ni was pri-
marily due to surface plasmon resonance effects. In another
study, Vankayala et al [8] reported that both Ag and Au NPs
can generate singlet oxygen upon photoirradiation of the
surface plasmon resonance band, even at near-infrared
wavelengths. Researchers characterized and quantified,
using different fluorescent markers, the significant elevation
in ROS generation from antibody-coated Au NPs irradiated by
a few resonant femtosecond laser pulses, which resulted in a
high concentration of ROS and local damage of cancer cells [2].
Au NPs can also enhance and improve the generation of ROS
from photosensitizers located near the Au NP surface. Oo et al
[69] have demonstrated that ROS formation by Au NPs is
significantly enhanced upon irradiation with a PpIX photo-
sensitizer because of the localized electromagnetic field of
surface plasmon resonance of the illuminated Au NPs. They
also found that ROS enhancement, leading to damage of
breast cancer cells, is proportional to the size of Au NPs.
Additionally, photo- and Auger-electron charge transfer may
influence the generation of O;°* near the Au NP surface,
whereas X-rays are involved in the generation of *OH [70].

4, Application of ESR for the detection of ROS
generated by nanomaterials

4.1.  Application of ESR spin trapping for the detection of
hydroxyl radicals mediated by nanomaterials

Hydroxyl radicals are extremely reactive and can cause
oxidative damage to a majority of macromolecules in biolog-
ical systems [87]. A hydroxyl radical has a very short half-life
(about 1 nanosecond) and a high reactivity [88], which makes
its detection challenging. However, they readily react with
diamagnetic nitrone spin traps, forming stable free radicals
(spin adducts) that can be identified from the magnetic pa-
rameters of the ESR spectrum. We have used ESR spin trap-
ping to study the generation of hydroxyl radicals by Ag and Au
NPs during their interactions with H,0, [4,5]. Four spin traps,
DMPO, BMPO, DEPMPO, and POBN, were employed to char-
acterize the generation of hydroxyl radicals in the presence of
H,0, and Ag NPs under acidic conditions (pH 3.6; Fig. 5).
Compared with control conditions, we observed ESR spectra
characteristic of adducts formed between each of the four
spin traps and hydroxyl radicals, indicating that hydroxyl
radicals are generated when the decomposition of hydrogen
peroxide is assisted by Ag NPs under acidic conditions. Most
notably, the generation of hydroxyl radical is dependent not
only on the size and concentration of Ag NPs, but also on the
buffer pH, as shown in Fig. 5. The pH dependence and Ag NP
induction of hydroxyl radical generation were suggested to be

due to the pH-dependent redox behavior of H,O, and the
ability of Ag NPs to facilitate electron transfer in different
chemical environments (Fig. 5C). By employing spin-trapping
ESR, we also demonstrated that Au NPs can facilitate
generation of hydroxyl radicals in the presence of
hydrogen peroxide [5], the pH dependence being similar to Ag
NPs.

Metal oxide NPs, for example TiO, and ZnO, are photo-
catalytically active and generate ROS when photoexcited.
Under some experimental conditions, particularly those
found in in vitro studies, this photochemical activity can lead
to cytotoxicity [9,89—91]. We employed DMPO or BMPO as a
spin trap to determine whether hydroxyl radicals can be
produced from irradiated TiO, and ZnO NPs [89—91]. When
TiO, is irradiated with UV in the presence of DMPO, an ESR
spectrum characteristic of the spin adduct DMPO/*OH is
observed (Fig. 6A) [89]. Using BMPO as a spin trap, we further
examined the generation of hydroxyl radicals for different
crystalline types of TiO,. The results showed that rutile,
anatase, and P25 all can produce hydroxyl radicals when
irradiated, while irradiation of P25 results in the strongest
signal of BMPO/OH (Fig. 6B) [9]. Similarly, ZnO NPs can
generate hydroxyl radicals in a dose-dependent manner when
exposed to UVA radiation, which may result in the death of
human-derived keratinocytes [91]. In our collaborative work
with other groups, we performed ESR spectroscopy and
demonstrated that iron oxide NPs (e.g., Fe,03 and Fe304 NPs)
can induce the formation of hydroxyl radicals in an acidic
biological microenvironment through Fenton or Fenton-like
reactions [7,92].

In collaboration with Zhao et al [93,94], we employed ESR to
study the ability of carbon nanostructures, such as carbon
nanotubes and graphene oxide, to generate hydroxyl radicals.
Using DMPO as a spin trap, hydroxyl radicals were generated
using carbon nanotubes by interaction with H,0,. This gen-
eration of hydroxyl radicals may be caused by the existence of
carbonaceous and transition metallic impurities (e.g., Fe) [93].
In the study of graphene oxide (GO), functionalized GO
modified with PEGylated poly-L-lysine (GO/PP) was found to
catalyze the decomposition of H,0, to form hydroxyl radicals.
The hydroxyl radicals were captured by DEMPO and detected
by ESR (Fig. 6C). A theoretical calculation suggests a possible
decomposition mechanism of hydrogen peroxide catalyzed by
coronene (Fig. 6D) [94].

4.2. Application of ESR spin trapping for the detection of
superoxide anion radicals generated by nanomaterials

Among the spin traps, DMPO and BMPO are used most often
for detecting superoxide anions. Harbour and Hair [95] have
detected the superoxide generated from photoexcited CdS
dispersions using DMPO as a spin trap. The ESR technique
along with the spin trap DMPO was also used by Wang et al
[96] for studying illuminated CdIn,S; microspheres. These
investigators observed the characteristic peaks of the DMPO/
0O3* adducts in methanol dispersion under irradiation. Zhao
et al [53] have shown that use of the spin trap BMPO has ad-
vantages over DMPO as a spin trap for superoxide. This is
because the BMPO/*OOH adduct is more stable and does not
decompose into the corresponding hydroxyl adduct (i.e.,
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Fig. 7 — ESR spectra of active oxygen radicals generated during the photocatalysis of BOC-001 and BOC-010 under UV
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BMPO/*OH). However, the spin adducts BMPO/*OOH and
BMPO/*OH have overlapping ESR spectra, and so also the ESR
spectra for DMPO/*OOH and DMPO/*OH. Therefore, it is diffi-
cult to distinguish between hydroxyl radicals and superoxide
if they are generated simultaneously in one system. An ex-
amination of the quenching effect of superoxide dismutase
(SOD) on superoxide or that of DMSO on hydroxyl radicals can
provide additional confirmation of the existence of these free
radicals. Zhao et al [97] have reported that excitation of BiOCl
nanostructures with UV results in the appearance of a strong
four-line ESR spectrum with splitting parameters of
a = 13.56, a’y = 12.30, and a"y = 0.66, which is the charac-
teristic spectrum of BMPO/*OH adduct. Similar results were
obtained for BiOCl with dominantly exposed faces 001 (BOC-
001) and 010 (BOC-010). The superoxide was also captured to
form the BMPO/O,— adduct having a four-line spectrum with
relative intensities of 1:1:1:1 and hyperfine splitting parame-
ters of a = 13.56 and a’y = 12.10, which overlaps with the
BMPO/*OH spectrum. To verify whether the ESR signal
involved superoxide, SOD was added. After the addition of
SOD, the ESR signal intensity decreased; however, no similar
decrease was observed for BOC-001 and BOC-010 (Fig. 7).
These observations indicated that although both *OH and O,
were generated from irradiated BOC, *OH dominated, resulting
in the unclear characteristic ESR signal for O, [97].

4.3.  Application of ESR spin trapping for the detection of
singlet oxygen generated by nanomaterials

Singlet O, is a very important ROS involved in peroxidation of
olefins, photobiological cytotoxicity, and, importantly, clinical
photodynamic therapy for killing cancer cells. Upon irradia-
tion, a variety of nanomaterials, including metal NPs (Au, Ag,
Ni, etc.) [6,8], semiconductor NPs (Si, TiO,, ZnO, etc.) [9,41,98],
and fullerenes [39,40], can efficiently generate singlet oxygen.
Singlet oxygen can be formed by photoexcitation of metal NPs
due to their surface plasmon resonance properties. For
example, Au nanorods generate singlet oxygen via photoex-
citation in the near-infrared region, which may potentially
lead to their use in photodynamic and photothermal therapies

for cancer treatment [8]. Additionally, semiconductor NPs
such as TiO,, ZnO, etc. are well-known photocatalysts.
Because of their electronic structure, these materials are
capable of generating singlet oxygen on photoexcitation. As
discussed in Part 2.2, TEMP and 4-oxo-TEMP are two typical
spin traps used for the detection of singlet oxygen in ESR. We
have examined the generation of singlet oxygen from irradi-
ated TiO, by the ESR trapping technique using TEMP [9]. Irra-
diation of different nanoscale TiO, samples containing 20 mM
TEMP resulted in an ESR spectrum consisting of three lines
with equal intensities (ay = 16.0 G), which is typical of nitro-
xide radicals (Fig. 8, inset). The hyperfine splitting constant
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Fig. 8 — Generation of singlet oxygen by photoexcitation of
TiO, samples under UVA light in time- and crystal type-
dependent manners. ESR spectra were recorded at room
temperature. Samples containing 20mM TEMP and 0.1 mg/
mL P25 (curve A), 0.1 mg/mL A25 (curve B), 0.1 mg/mL A325
(curve C), and 0.1 mg/mL R100 (curve D), and that
containing 10 mM NaNj; and 0.1 mg/mL P25 (curve E) were
irradiated with UVA light at 340 nm. Inset: ESR signal of
TEMPONE (ax = 16.0 G) [9]. ESR = electron spin resonance;
TEMP = 2,2,6,6-tetramethylpiperidine.
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and g factor are characteristic of TEMPONE. The ESR intensity
of the TEMPONE signal increased as a function of time during
irradiation of different nano-TiO, samples. A control solution
containing only TEMP did not lead to an increase in the ESR
signal. For P25 nano-TiO,, the addition of a singlet oxygen
quencher, NaNs, caused a significant reduction in the rate of
increase of the electron paramagnetic resonance signal (Fig. 8,
curve E). The rates of production of singlet oxygen for the
different species followed the trend P25 > A25 > A325 > R100
nano-TiO, (Fig. 8).

Zhao et al [41] studied the encapsulation of silicon phtha-
locyanine 4 (Pc4) in silica NPs to enhance photodynamic effi-
cacy toward melanoma cells. Using the spin trap TEMP, they
showed that photoexcited Pc4 encapsulated in silica NPs, with
a particle size in the range of 25—30 nm, generated singlet
oxygen. Intensity of the ESR signals from TEMPONE was
enhanced progressively when the irradiation time was
extended. These results provide direct evidence that the
photoexcitation of Pc4 encapsulated in silica NPs with visible
light (>550 nm) generates singlet oxygen and that the quantity
of singlet oxygen formed is dependent on the dose of
administered light. In addition to Pc4 and silica NPs, fullerenes
were also studied. The water-soluble fullerene derivative vy-
cyclodextrin bicapped Ceo [(v-CyD)./Ceo, CDFO] was found to be
a highly efficient photosensitizer for the generation of singlet

oxygen. In a study assessing its potential phototoxicity in
human lens epithelial cells (HLE B-3) in vitro, using the same
ESR/TEMP trapping technique, Zhao et al [40] found that (y-
CyD),/Ceo (CDFO) can produce singlet oxygen efficiently. A
solution of (y-CyD),/Ceo (CDFO) showed the highest rate of
singlet oxygen production; the rate decreased with increasing
aggregation, with no production by the fully aggregated
sample after 150 minutes of heating (CDF150). They concluded
that singlet oxygen is an important intermediate in the
phototoxicity of monomeric (y-CyD),/fullerene.

4.4.  Application of ESR spin label oximetry for studying
lipid peroxidation by nanomaterials

In the detection of O,, ESR oximetry has a number of advan-
tages. For example, ESR oximetry does not lead to consump-
tion of O, during measurement and it is nondestructive. In
addition, ESR oximetry has less interference with small mol-
ecules and requires less sample volume while maintaining
high sensitivity [57]. Chemically, lipid peroxidation can be
caused by O, light, ROS, and other free radicals. Importantly,
lipid peroxidation is associated with the consumption of O,.
Therefore, ESR spin label oximetry is very suitable for sensi-
tive detection of lipid oxidation by measuring O, consump-
tion. In addition, ESR oximetry can also provide dynamic
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peroxidation was initiated by UV (340 nm) irradiation [9]. >N-PDT = 4-0x0-2,2,6,6-tetramethyl piperidine-d;¢-1-'>N-oxyl.

information on the rate of lipid oxidation; this can be obtained
by assessing the variation in O, uptake with time, calculated
from the line widths of the spin label.

We have used ESR oximetry in conjunction with the spin
label CTPO to monitor the effect of Au NPs in triggering the
production of oxygen under biologically relevant conditions
[5]. Resolution of the superhyperfine structure of the low-field
line of the ESR spectrum of CTPO strongly depends on the O,
concentration in the sample solution. An increase in the ox-
ygen concentration results in a progressive reduction of the
superhyperfine structure, with the eventual loss of the hy-
perfine structure. As seen in Fig. 9, the structure of the ESR
signal of spin label CTPO was affected by various conditions.
An ESR signal with a typical sharp superhyperfine structure
and a high intensity of hyperfine structure was observed in
the control sample without catalysts, indicating a low con-
centration of oxygen. However, when Au NPs were added, the
superhyperfine structures diminished along with a corre-
sponding decreased signal intensity that suggests the forma-
tion of O,. The superhyperfine splitting of spin label clearly
diminished with increasing pH, especially in samples with pH
ranging from 6.0 to 11.

It is well known that ROS can induce time-dependent
peroxidation of the polyunsaturated lipids in plasma mem-
brane. Yin et al [9] studied lipid peroxidation by UVA

irradiation of nano-TiO, using ESR oximetry. Consumption of
oxygen associated with lipid peroxidation was measured from
the time-dependent narrowing of the ESR signal for the spin
probe ®N-PDT (Fig. 10). The narrowing of the ESR signal was
accompanied by an increase in its peak height within the scan
range. The final ESR signal intensities of R100, A325, A25, and
P25 nano-TiO, samples were approximately 7.5%, 11.7%,
16.2%, and 26.3%, respectively, higher than the control
(Fig. 10). The progressive increases in peak-to-peak signal in-
tensity along with narrowing of the line width in each panel
were due to time-dependent oxygen consumption associated
with lipid peroxidation. Fig. 10F presents the data as a
decrease in oxygen concentration, reflecting the variations in
the slope (oxygen concentration vs. time) with different nano-
TiO, species, which is in the following order: P25 > A25 > A325
> R100.

5. Conclusions

The production of ROS induced by nanomaterials is a double-
edged sword, bringing not only the benefits of efficient
nanomaterials for therapeutic treatment of diseases, but also
possible health and environmental risks associated with
them. Therefore, it is important to identify ROS for developing
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nanomaterials for specific applications and understanding
risks associated with their use. The use of ESR techniques to
study ROS generation mediated by nanomaterials has several
advantages compared to other techniques. Most importantly,
ESR provides a more direct and chemically specific method for
detecting ROS formation and identifying free radical species.

Because nanomaterials can affect cellular function
through the production of ROS, ESR is an important technique
used to study the free radical mechanisms of nanomaterial
toxicity. In fact, the ability of nanomaterials to facilitate
electron transfer, and thereby promote ROS generation, may
be a fundamental property of these materials. It is still not
clear whether and how the ROS production is associated with
the physicochemical characteristics in terms of mechanisms
and activity. For example, what factors cause the different
type of ROS generated by different kinds of nanomaterials? Is
there any dependence on the size, shape, or crystal facet of
nanomaterials in the generation of ROS? In addition, how does
ROS contribute to the toxicity of nanomaterials? To answer
these questions, one requires to have not only a clear under-
standing of the mechanism of ROS generation in different
types of nanomaterials, but also the knowledge of standard
nanomaterials with well-controlled size, shape, composition,
and surface states to compare their abilities in generating
ROS.
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