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Abstract
Purpose: This study aimed to evaluate the clinical utility of a novel iterative cone beam computed
tomography (CBCT) reconstruction algorithm for prostate and head and neck (HN) cancer.
Methods and Materials: A total of 10 patients with HN and 10 patients with prostate cancer were
analyzed. For each patient, raw CBCT acquisition data were used to reconstruct images with a
currently available algorithm (FDK_CBCT) and novel iterative algorithm (Iterative_CBCT).
Quantitative contouring variation analysis was performed using structures delineated by several
radiation oncologists. For prostate, observers contoured the prostate, proximal 2 cm seminal
vesicles, bladder, and rectum. For HN, observers contoured the brain stem, spinal canal, right-left
parotid glands, and right-left submandibular glands. Observer contours were combined to form a
reference consensus contour using the simultaneous truth and performance level estimation
method. All observer contours then were compared with the reference contour to calculate the Dice
coefficient, Hausdorff distance, and mean contour distance (prostate contour only). Qualitative
image quality analysis was performed using a 5-point scale ranging from 1 (much superior image
quality for Iterative_CBCT) to 5 (much inferior image quality for Iterative_CBCT).
Results: The Iterative_CBCT data sets resulted in a prostate contour Dice coefficient improvement
of approximately 2.4% (P Z .029). The average prostate contour Dice coefficient for the Iter-
ative_CBCT data sets was improved for all patients, with improvements up to approximately 10%
for 1 patient. The mean contour distance results indicate an approximate 15% reduction in mean
contouring error for all prostate regions. For the parotid contours, Iterative_CBCT data sets resulted
in a Hausdorff distance improvement of approximately 2 mm (P < .01) and an approximate 2%
improvement in Dice coefficient (P Z .03). The Iterative_CBCT data sets were scored as
equivalent or of better image quality for 97.3% (prostate) and 90.0% (HN) of the patient data sets.
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Conclusions: Observers noted an improvement in image uniformity, noise level, and overall image
quality for Iterative_CBCT data sets. In addition, expert observers displayed an improved ability to
consistently delineate soft tissue structures, such as the prostate and parotid glands. Thus, the novel
iterative reconstruction algorithm analyzed in this study is capable of improving the visualization
for prostate and HN cancer image guided radiation therapy.
� 2019 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

On-board cone beam computed tomography (CBCT)
has provided an invaluable tool for targeting of radiation
therapy procedures in the last 20 years.1 The 3-
dimensional anatomic information provided by CBCT
has allowed for soft tissue visualization for prostate ra-
diation therapy (RT),2 direct target visualization in lung
stereotactic body RT,3,4 and even frameless radio-
surgery,5,6 to name a few. However, the cone beam ge-
ometry inherent to CBCT imaging results in more
scattered radiation at the flat-panel detector, causing
degradation in image quality.7,8

Several modifications of the CBCT setup and acqui-
sition have resulted in improved efficiency and image
quality.9,10 Techniques to account for the effects of scatter
have also resulted in improvements in clinical CBCT
image quality. These techniques fit into several cate-
gories, according to Maslowski et al,11 including modu-
lation of the source x-ray fluence, scatter deconvolution,
using knowledge of the object, Monte Carlo modeling,
and other empirical approaches. The current CBCT im-
aging available on Varian TrueBeam linear accelerators
(Varian Medical Systems, Palo Alto, CA) uses a kernel-
based scatter deconvolution technique12,13 to account for
the influence of scatter, resulting in improved image
quality.14

Recently, a novel scatter estimation algorithm, Acuros
CTS, has been developed.11,15 The Acuros algorithm
seeks to deterministically solve the linear Boltzmann
transport equation to rapidly and accurately estimate the
influence of scatter in x-ray projection images. In short,
the Acuros CTS algorithm involves first-pass recon-
struction using the current TrueBeam reconstruction
method, incorporation of the treatment couch model,
creation of a patient-object model in terms of material
type and mass density, calculation of primary and scatter
images, scatter correction, and second-pass reconstruc-
tion.15 During the scatter correction, the Acuros CTS al-
gorithm discretizes the spatial, energy, and angular
domains of the x-ray fluence to deterministically solve the
linear Boltzmann transport equation.11 The Acuros CTS
algorithm has been validated against the Monte Carlo data
for a heterogeneous phantom and realistic pelvis phantom
based on CT data.11

In Part II of their manuscript introducing the Acuros
CTS algorithm, Wang et al noted the potential for sta-
tistical iterative reconstruction to be used as second-pass
reconstruction.15 Statistical iterative reconstruction for
computed tomography (CT) offers the potential to reduce
imaging dose and improve image quality relative to
standard filtered back-projection approaches.16e20 In
particular, statistical iterative reconstruction can recognize
and then correct local variations in pixel value that are
unlikely to be due to the subject’s anatomic features.16 In
other words, iterative reconstruction can help reduce the
impact of quantum mottle without increasing the imaging
dose or losing image features.

Historically, the output of statistical iterative recon-
struction algorithms was promising, but the efficiency of
the reconstruction was a barrier to real-time clinical use.
Recent advancements have allowed for substantial im-
provements in reconstruction efficiency by at least an
order of magnitude, including the algorithm described by
Wang et al that takes into account the Poisson quantum
noise distribution while applying edge-preserving image
regularization.17,21

A newCBCT reconstruction algorithm, iterative CBCT,
has recently been introduced into the TrueBeam system,
and combines the 2 image reconstruction approaches
mentioned previously: efficient scatter correction using
Acuros CTS and statistical iterative reconstruction forfinal-
pass image reconstruction for on-board CBCT imaging.
The use of the new algorithm results in an increase of
approximately 10 to-25 seconds in reconstruction time,
depending on the reconstruction mode. For pelvis imaging
protocols, the new algorithm uses both new components
(statistical iterative reconstruction and scatter correction
using Acuros CTS), but the algorithm does not employ
Acuros CTS for head protocols.

The purpose of this study was to perform a compre-
hensive clinical evaluation of the iterative CBCT (referred
to as Iterative_CBCT) image reconstruction for both the
prostate and HN patient data sets. To this end, we per-
formed a quantitative (contouring variation) and
qualitative (image quality observer scoring) analysis of
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the Iterative_CBCT images, comparing the new
reconstruction algorithm with the currently available
TrueBeam on-board imager reconstruction (referred to as
FDK_CBCT).

Methods and Materials

A total of 10 patients with head and neck (HN) cancer
and 10 patients with prostate cancer were randomly
selected from a 6-month time window in early 2017 for
analysis in this institutional review boardeapproved
retrospective study. Patients with truncation of image
data in the central portion of the superoinferior field of
view were excluded based on the intended use of the
Iterative_CBCT reconstruction algorithm. The analysis
included 2 image sets for each patient: 1) conventional
CBCT image acquired on TrueBeam on-board imager
systems, and 2) CBCT reconstructed with a novel itera-
tive method (Iterative_CBCT; Varian Medical Systems,
Palo Alto, CA).11,15

The study is divided into 2 parts: (1) quantitative
analysis of the contouring variation for both types of
images, and (2) qualitative analysis of the clinical image
quality using a 5-point scale. The Iterative_CBCT
reconstruction has 5 options for noise suppression: very
low, low, medium (default), high, and very high. For our
clinic, image sharpness is a priority, so the very low
setting was used for image reconstruction.

Contouring variation analysis

Contouring work was performed for both prostate and
HN data sets in the ARIA (version 13) Contouring
workspace (Varian Medical Systems, Palo Alto, CA).
For 9 prostate data sets, 4 to 5 physician observers
delineated the following structures on each image set:
prostate gland alone, proximal 2 cm seminal vesicles,
rectum, and bladder. One patient with prostate cancer
from the original group of 10 patients was excluded
because of truncation of data in the axial plane; the
iterative CBCT algorithm is not recommended for use in
instances of patient data truncation. For the contouring
analysis, the observers contoured patient data sets for 1
patient at a time and were blinded to the image set
reconstruction mode. The image sets were labeled with
_A and _B for each patient to represent the FDK and
Iterative data sets, and the labels were randomly assigned
for each patient.

To guide the observers for prostate contouring, the
following guidance was provided: Rectum borders are
defined inferiorly as the pubic ramus and ischial tuberosity
and superiorly as the flexure of sigmoid colon. For 10 HN
data sets, 3 physician observers delineated the following
structures on each image set: brain stem, spinal canal, left-
right parotid glands, and left-right submandibular glands.
For each structure type, a consensus contour was created
using the simultaneous truth and performance level esti-
mation (STAPLE) method in the Computational Environ-
ment for Radiotherapy Research software package.22

Further details on the STAPLE method were previously
published.23 The statistical analysis of the contouring re-
sults was performed using a Student’s t test (1 tail, P< .05;
significant).

Several metrics were used to evaluate the agreement
between observer and consensus contours. The Dice co-
efficient was used to evaluate the general overlap between
the observer and consensus contours24:

DCZ
2jXXY j
jXj þ jY j :

The Hausdorff distance was used to evaluate gross
error between the observer and consensus contour. The
Hausdorff distance is the maximum distance of a point in
1 contour to the nearest point of the other contour and is
defined as

hðA;BÞZmaxa˛Afminb˛Bfdða;bÞgg;
where a and b are points of sets A and B, respectively, and
d(a,b) is the Euclidean metric between these points.25

The mean contour distance was used for prostate
contours only to evaluate the mean distance error as a
function of prostate region (Fig. 1). The mean contour
distance was previously used to evaluate prostate con-
touring variation on CT and CBCT images.26 The mean
contour distance was calculated for each region and for
the overall contour.

Image quality analysis

Image quality evaluation for 10 HN cancer patients and
10 prostate cancer patients was performed in the ARIA
(version 13) plan evaluation workspace. For the prostate
cohort, 11 observers (4 radiation oncologists, 4 medical
physicists, 2 medical dosimetrists, and 1 radiation thera-
pist) performed image evaluations. For the HN cohort, 11
observers (4 radiation oncologists, 4 medical physicists, 2
medical dosimetrist, and 1 radiation therapist) performed
image evaluations.

For the image quality evaluations, the observers
reviewed the image sets side by side and adjusted
window-level settings as needed to visualize the relevant
anatomy. The observers were given 2 image sets and were
blinded to the image set reconstruction mode. The image
sets were labeled _A and _B for each patient to represent
the FDK and Iterative data sets (labels were randomly
assigned for each patient). The observers were instructed
to compare the image sets in all 3 orthogonal views and
grade them based on characteristics such as tumor/target
visualization, normal organ visualization, sharpness of the
image, soft tissue contrast, image noise and uniformity,



Fig. 1 Schematic of the framework to calculate mean contour distance. (Left) Axial view. The contour is divided into 3 regions:
Anterior, posterior, and lateral. The regions are defined by 2 orthogonal lines with intersection at the center of mass, and oriented 45�

relative to the sagittal and coronal planes. (Right) Sagittal view. The superior and inferior regions of the prostate are defined as the
superior-most and inferior-most 6 mm regions of the prostate. Figure used with permission.26
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and overall clinical usability. For each patient in the
analysis, the observers provided the label (A or B) of the
image set with the better image quality and then provided
a score based on a 3-point scale:

1. Image quality is similar overall.
2. Image quality for the listed image set is slightly

superior to those of other image sets.
3. Image quality for the listed image set is far superior

to those of other image sets.

For cases in which the image quality was deemed to be
far different between the 2 image sets (eg, scores of 3), the
observers were required to provide comments on the
observed differences. For all other image evaluations,
Table 1 Contouring variation data for all prostate contouring stud

Structure Dice coefficient

FDK_CBCT Iterative_CBCT P

Mean SD Mean SD

Prostate 0.853* 0.075* 0.877* 0.047* .0
Seminal Vesicles 0.720 0.124 0.703 0.166 .4
Bladder 0.936 0.033 0.938 0.032 .3
Rectum 0.893 0.050 0.902 0.044 .1

Mean contour distance for prostate contours (Mean � SD) (mm)

Contourdoverall Superior Infer

Iterative_CBCT 1.37 � 1.62 1.62 � 1.40 1.40
FDK_CBCT 1.57 � 1.74 1.74 � 1.51 1.51

Abbreviations: CBCT Z cone beam computed tomography; FDK_CBCT Z
gorithm; SD Z standard deviation.

* Data values that correspond with statistically significant improvement
observers provided comments on the comparison where
appropriate. Once all observers had graded the image sets,
the observer score was converted to a 5-point scale as
follows:

1. Image quality for Iterative image set is far superior
to that of the FDK image set.

2. Image quality for Iterative image set is slightly su-
perior to the DFK image set.

3. Image quality for Iterative image set is similar to
that of the FDK image set.

4. Image quality for Iterative image set is slightly
inferior to that of the FDK image set.

5. Image quality for Iterative image set is far inferior to
that of the FDK image set.
y

Hausdorff distance (mm)

-value FDK_CBCT Iterative_CBCT P-value

Mean SD Mean SD

29* 8.57 4.63 7.69 2.96 .19
16 10.25 4.70 10.88 4.65 .47
56 7.17 4.29 6.89 3.04 .35
20 9.73 6.92 8.72 6.14 .20

ior Anterior Posterior Lateral

� 1.21 1.21 � 1.87 1.87 � 1.16 1.16 � 1.06
� 1.33 1.33 � 2.12 2.12 � 1.51 1.51 � 1.21

currently available algorithm; Iterative_CBCT Z novel iterative al-

for Dice coefficient and Hausdorff distance.
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The 5-point scale was used to report the image quality
results. The sequence of scoring (ie, observers selecting
the image set with better image quality and then selecting
the comparison score) was used to avoid biasing ob-
servers based on the grading scale itself.

Results

Contouring variation analysis

Prostate data sets
The contouring variation data (Dice coefficient and

Hausdorff distance) for all structure types for the
prostate data sets is shown in Table 1. For the prostate
contours, the Iterative_CBCT data sets resulted in a
statistically significant improvement in Dice coefficient
of approximately 2.4% (P Z .029). For all 9 patients,
the average Dice coefficient among all observers was
improved for the Iterative_CBCT data sets relative to
the FDK_CBCT data sets. For 3 patients, the
improvement in average Dice coefficient for the pros-
tate contour was >3%. The largest improvement
(approximately 10%) for an individual patient was
observed for patient 5 (Fig. 2).
Fig. 2 Visual contouring analysis for patient 5 of the prostate study, r
contours. Prostate observer contours are shown in red and consensu
inherent soft-tissue contrast than other patients within the study data
algorithm (FDK_CBCT) reconstruction, respectively. Note the variat
sagittal (yellow arrow) views of the contouring; (C) axial and (D) s
reconstruction, respectively. Note the decreased noise and improved un
in both views. Also note the improvement in delineation of the prostate
In addition to the improvement in average Dice coeffi-
cient value, the Iterative_CBCT data set contours also had
less interobserver variation: The standard deviation of the
Dice coefficient scores was approximately 60% of the
corresponding standard deviation for FDK_CBCT data
sets. The Hausdorff distance data for prostate contours in-
dicates a decrease of approximately 1.0mm, on average, for
the Iterative_CBCT data sets, but the difference was not
statistically significant.

For seminal vesicle contours, no statistically significant
difference in Dice coefficient was found between the
FDK_CBCT and Iterative_CBCT data sets. The overall
Dice coefficient score for the seminal vesicles (approxi-
mately 70%) was lower than that observed for prostate
contours (approximately 85%), which is likely due to the
nature of the 2 contour types: The seminal vesicles
comprise a much smaller volume than the prostate gland,
and the Dice coefficient metric is more sensitive to
smaller volume structures. The Hausdorff distance data
showed no statistically significant difference between the
FDK_CBCT and Iterative_CBCT data sets. For organ-at-
risk (OAR) contours, no statistically significant difference
in contouring variation metrics between the FDK_CBCT
and Iterative_CBCT data sets was found for the rectum
and bladder contours.
epresenting the largest Dice coefficient improvement for prostate
s contour in blue. Overall, the patient appeared to exhibit less
set. (A) Axial and (B) sagittal views of the currently available
ion in the prostate-rectal interface on the axial (red arrow) and
agittal views of the novel iterative algorithm (Iterative_CBCT)
iformity of the Iterative_CBCT image set relative to FDK_CBCT
-rectal interface in both views relative to the FDK_CBCT image.



Table 2 Contouring variation data for all head and neck cancer data set structures

Structure Dice coefficient Hausdorff distance (mm)

FDK_CBCT Iterative_CBCT P-value FDK_CBCT Iterative_CBCT P-value

Mean SD Mean SD Mean SD Mean SD

Brain stem 0.85 0.07 0.85 0.10 .48 7.01 2.34 7.51 2.95 .26
Parotid_L* 0.83 0.09 0.86 0.07 .03 10.47 5.43 7.75 3.28 <.01
Parotid_R 0.85 0.07 0.86 0.06 .25 9.27 3.71 8.05 3.47 .05
Parotid_Combined* 0.84 0.08 0.86 0.06 .03 9.87 4.65 7.90 3.35 <.01
SpinalCanal 0.92 0.02 0.92 0.02 .46 5.40 2.56 4.64 1.91 .09
Subman_L 0.83 0.10 0.80 0.12 .28 6.91 4.54 7.26 4.51 .31
Subman_R 0.79 0.21 0.77 0.17 .49 7.52 6.63 8.32 5.55 .16
Subman_Combined 0.81 0.16 0.79 0.15 .39 7.22 5.63 7.79 5.04 .14

Abbreviations: CBCT Z cone beam computed tomography; FDK_CBCT Z currently available algorithm; Iterative_CBCT Z novel iterative al-
gorithm; L Z left; R Z right; SD Z standard deviation.

* Data values correspond to statistically significant improvement.
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The mean contour distance data are shown in Table 1.
On average, the Iterative_CBCT data sets exhibited an
improvement in mean contour distance of approximately
0.20 mm for the overall contour, which is an improve-
ment of approximately 15% relative to the overall average
contouring uncertainty (estimated using the mean contour
distance data for overall contour). For every prostate
contour region, the Iterative_CBCT data sets exhibited an
improvement in mean contour distance score relative to
FDK_CBCT. The largest improvements in mean contour
distance were seen in the posterior (0.32 mm improve-
ment) region, but all regions exhibited an improvement
within a fairly tight rangedfrom 0.14 mm to 0.32 mm. In
addition, the Iterative_CBCT data sets exhibited less
variation in mean contour distance across all observers, as
indicated by the lower standard deviation values for each
prostate region.

Head and neck data sets
The contouring variation data for all structure types for

HN is shown in Table 2. For brain stem and spinal canal
contours, there was no statistically significant difference
between the FDK_CBCT and Iterative_CBCT data sets.
For parotid contours, we noted an approximate 2%
improvement in the Dice coefficient (P Z .03 for left
parotid and total contour) and a 2 mm improvement in the
Hausdorff distance (on average; P < .01). For subman-
dibular contours, there was no statistically significant
difference between the FDK_CBCT and Iterative_CBCT
data sets.
Image quality analysis

Prostate data sets
For the prostate data sets, the mean (standard devia-

tion) score among all observer evaluations was 2.11
(0.68). Observers scored the Iterative_CBCT data sets as
equivalent or of better image quality for 107 of 110
image evaluations (97.2%). For 84 of 110 image evalu-
ations (76.4%), observers noted at least a slight
improvement in image quality, with significant im-
provements in image quality for 17 of 110 image eval-
uations (15.5%). All 10 patients had a mean image
quality score of <3 (averaged over all observers), and all
observers gave a mean score of <3 (averaged over all
patients).

From the observer comments, the following character-
istics were commonly used to describe the improvements in
Iterative_CBCT image quality for the prostate data sets:
sharper image/borders, improvement in the prostate-
bladder and prostate-rectum interfaces, rectum and pros-
tate are better defined, less image noise, improved image
uniformity throughout the image set, and less streaking
from the pelvic bony anatomy. A comparison of the
FDK_CBCT, Iterative_CBCT, and planningCT image sets
for patient 4 of the prostate study are shown in Figure 3.

Head and neck data sets
For the HN data sets, the mean (standard deviation)

score was 2.40 (0.88). Observers scored Iterative_CBCT
as equivalent or of better image quality for 99 of 110
image evaluations (90.0%). For 65 of 110 image evalu-
ations (59.1%), observers noted at least a slight
improvement in image quality, with significant improve-
ments in image quality noted for 14 of 110 image eval-
uations (12.7%). Nine of the 10 patients had a mean
image quality score of <3.

From the observer comments, the following charac-
teristics were used to describe improvements in Iter-
ative_CBCT: fewer artifacts in iterative data set, far
superior image quality in inferior portion of the field of
view (FOV), improved uniformity, less image noise,
better soft-tissue definition near bony anatomy, and better
visualization of the parotid glands in iterative. A com-
parison of the FDK_CBCT, Iterative_CBCT, and plan-
ning CT image sets for patient 7 of the HN study are
shown in Figure 4.



Fig. 3 Comparison of image quality for prostate patient 4. Top images (A) and (B) currently available algorithm (FDK_CBCT).
Middle images (C) and (D) novel iterative algorithm (Iterative_CBCT). Bottom images (E) and (F): Planning computed tomography
(acquired on different day than the cone beam computed tomography [CBCT] data sets). Note the improvement in image intensity
homogeneity in the peripheral portion of the axial field of view (FOV; red arrow), central portion of the axial FOV (yellow arrow), and
central portion of the sagittal FOV (orange arrow) in the Iterative_CBCT image. Also note the improved sharpness and image intensity
uniformity near bony anatomy (green arrow) and the improved overall image noise for the Iterative_CBCT data set.
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Discussion

The use of CBCT for daily localization is a well-
established approach to guide the radiation treatment of
many types of cancers, including prostate cancer and HN
cancer. The conventional FDK reconstruction algorithm
in commercially available CBCT is an improvement
relative to the anatomy visualization offered by planar
imaging. However, the current CBCT reconstruction al-
gorithms have room for improvement in several areas,
including image uniformity, noise, and low-contrast
detectability. With these improvements in mind, a novel
iterative reconstruction algorithm has been developed for
CBCT imaging. In this study, we performed a clinical
evaluation of this algorithm.

From the image quality study for prostate data sets, we
found that the Iterative_CBCT reconstruction algorithm
most notably led to improvements in image noise, image
intensity homogeneity, and boundary sharpness. The im-
provements in uniformity were noted for both the periph-
eral portion of the data set (in particular, the posterior



Fig. 4 Comparison of image quality for patient 7 with head and neck cancer. Top images (A) and (B): currently available algorithm
(FDK_CBCT). Middle images (C) and (D) novel iterative algorithm (Iterative_CBCT). Bottom images (E) and (F) Planning computed
tomography (acquired on different day than the cone beam computed tomography data sets). Note the improvement in image intensity
homogeneity in the peripheral portion of the axial field of view near the left parotid gland (yellow arrow) and inferior portion of the
sagittal field of view (orange and red arrows). Note the lack of streaking artifact in the Iterative_CBCT image near the bony anatomy
(green arrow). Also note the improved overall image noise for the Iterative_CBCT data set.
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superficial fat layer of the patient) and the central portion of
the data set (within the pelvic rim). These improvements
are notable for different reasons. The improved uniformity
in the periphery of the image set is not likely to affect
visualization of the target or OAR structures for prostate
radiation therapy, but it could still help to improve the
accuracy of downstream functionality, such as online dose
calculation, deformable image registration, and deformable
dose accumulation. Improved uniformity in the central
portion of the image set, however, has the potential to both
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aid in the visualization of the target or OAR structures and
potentially improve the accuracy of automated online rigid
image registration, dose calculation, and deformable
registration. Further investigation is warranted to evaluate
the sensitivity of the deformable image registration
and dose accumulation processes to image quality
characteristics, such as image uniformity and noise.

The instructions and methods for the prostate con-
touring study were the same as those used in a previously
published study that included an evaluation of the con-
touring variation for 5 observers on planning CT, as well
as CBCT images acquired with a TrueBeam linear
accelerator.26 The commercially available TrueBeam
CBCT imaging used in both studies (ie, FDK_CBCT)
uses a kernel-based scatter-correction algorithm for the
projection data.11e13 In the previous study, the prostate
contour average Dice coefficient results for the planning
CT (0.892) were approximately 2% larger than those of
the physician observers on CBCT (0.872).

In the current study, we noted a Dice coefficient increase
of approximately 2.4% between Iterative_CBCT (0.877)
and FDK_CBCT (0.853). Of note, the 2 studies evaluated a
different patient sample set, and the current study did not
include planning computed tomography data. Nonetheless,
we believe our results indicate improvements in visualiza-
tion of the soft-tissue target (prostate gland) with Iter-
ative_CBCT reconstruction, bridging a large portion of the
image quality gap between CBCT and planning CT. The
clinical significance of the difference in contouring metrics
depends on the intended application.

To provide further context for the observed differences
in Dice coefficient, the observers performed repeat con-
touring for 2 randomly selected patients. After perform-
ing the repeat contouring, the difference in average Dice
coefficient value difference among all observers was
2.4%. Thus, the observed difference in Dice coefficient
for the prostate gland between FDK_CBCT and Iter-
ative_CBCT in this study is similar in magnitude to the
Dice coefficient variation observed with repeat contour-
ing (ie, measure of intraobserver variation). The Dice
coefficient score is a measure of overall overlap and thus
does not pinpoint the region where agreement or
disagreement occurs.

However, when the Dice coefficient is supplemented
with mean contour distance, the regions of disagreement
can be further analyzed. For prostate image guided ra-
diation therapy, our clinical workflow depends on
registration based on the prostate-rectum interface.
Based on the mean contour distance metric, the confi-
dence interval (m � 1.96s)27 for the posterior region of
prostate contours indicates an approximate 0.7 mm
difference between FDK_CBCT and Iterative_CBCT.
This 0.7 mm value is similar to the magnitude (1.0 mm)
of the systematic component of the residual setup
variation observed by Mayyas et al.28 For OAR con-
tours, we did not observe any difference in ability to
contour the bladder and rectum for observers on Iter-
ative_CBCT and FDK_CBCT. Likewise, the previous
study found a Dice coefficient difference of <1%
for bladder/rectum contours on planning computed
tomography and CBCT.

Recently, studies evaluating contouring for HN can-
cers have been dominated by autocontouring and/or
anatomic change analyses,25,29e37 with fewer studies
focusing on human-observer contouring.38e43 The current
study appears to be one of very few to evaluate manually
segmented contours on CBCT images. There was no
statistically significant difference between FDK_CBCT
and Iterative_CBCT contours for spinal canal, brain stem,
and submandibular contours. The bony border of the
spinal canal provides sufficient contrast for both types of
CBCT imaging, leaving little room for improvement for
Iterative_CBCT. The brain stem was outside of the FOV
in some data sets, and was difficult to distinguish in the
remaining data sets.

Compared with parotid gland results, submandibular
gland contour results were approximately 4% to 7% lower
for average Dice coefficient value, which can be attributed
to at least 2 factors: (1) Our physicians do not routinely
contour the submandibular glands for treatment planning,
and (2) the submandibular glands are surrounded by more
similar soft tissue than the parotid glands and therefore
have less inherent contrast relative to the surrounding
anatomy. In fact, for 1 patient, 1 observer declined to
contour the submandibular glands on both image sets
because of lack of visualization.

We note statistically significant improvements in
parotid gland contouring for the Hausdorff distance
metric as well as statistically significant improvement
for the left parotid gland Dice coefficient value. The
anatomic change of the parotid gland during radiation
therapy is well documented, and the improved ability to
visualize the parotid is an important step toward
improving HN CBCT utility. In particular, improved
visualization of the parotids has the potential to aid in
tracking parotid gland anatomic changes during a pa-
tient’s treatment course, thereby aiding in clinical de-
cisions with regard to parotid dose reduction and the
need for adaptive planning.

At our clinic, we typically use a clockwise direction
with half-trajectory for HN CBCT scans to allow for an
initial volumetric modulated arc therapy beam gantry
angle of 181� (with clockwise delivery), resulting in some
projection sampling discrepancy between the left and
right sides. This may be the reason for difference in image
quality on the patient’s left side (Figs. 4A and C) and
contouring results for the parotid glands. Overall, there
are limitations to the contouring analysis because the
gross tumor volume for patients with HN is not well
visualized on CBCT, and some image quality improve-
ments in the inferior portion of the image set are not
captured by any reasonable OAR contour.
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The HN image quality study indicated that Iter-
ative_CBCT reconstruction resulted in improvements that
were slightly smaller in magnitude than those seen for the
prostate data sets. We believe that this difference in relative
improvement is likely because of differences in the
employment of the reconstruction algorithm for the 2 sites
and inherent differences between the 2 anatomic sites. The
Iterative_CBCT reconstruction uses Acuros CTS for the
pelvis only, so the improved scatter correction is not used in
the HN image sets. The choice to use Acuros CTS for the
pelvis only is reasonable because the human pelvis is much
larger than the cranium, which results in larger scatter
fraction; therefore, Acuros CTS offers more room for
improvement with improved scatter correction.

Of course, there are also differences in the configura-
tion of the target and OARs between the 2 anatomic sites,
with prostate structures located near the image origin and
HN structures scattered throughout the FOV. Overall, the
image quality improvements observed for Iterative_CBCT
certainly have the potential to affect the current localiza-
tion paradigm (ie, bony alignment or soft-tissue matching).
With that said, we believe the more exciting potential of
this novel reconstruction algorithm lies in the domain of
automated image analysis and adaptive radiation therapy.
With improvements in soft-tissue visualization and image
uniformity for the HN and prostate, the potential for
improved deformable image registration and deformable
dose accumulation warrants further study.

We note 2 main limitations of this study. First, we did
not compare the image sets to planning CT, which is the
current standard for delineation and treatment planning in
radiation therapy. Second, as previously mentioned, we
were not able to evaluate visualization of the target for the
HN data sets.
Conclusions

A large and diverse group of observers noted im-
provements in image uniformity, noise level, and overall
image quality for the Iterative_CBCT prostate and HN
data sets. In addition, expert observers displayed an
improved ability to consistently delineate soft-tissue
structures, such as the prostate and parotid glands. Thus,
the novel iterative reconstruction algorithm analyzed in
this study is capable of improving visualization for
prostate and HN cancer IGRT.
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