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Abstract

Complete mitochondrial genome (mitogenome) sequence of a worm-hunting cone snail,

Conus quercinus, was reported in this study. Its mitogenome, the longest one (16,460 bp)

among reported Conus specie, is composed of 13 protein-coding genes (PCGs), 22 transfer

RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one D-loop region. The mito-

chondrial gene arrangement is highly-conserved and identical to other reported. However,

the D-loop region of C. quercinus is the longest (943 bp) with the higher A+T content

(71.3%) and a long AT tandem repeat stretch (68 bp). Subsequent phylogenetic analysis

demonstrated that three different dietary types (vermivorous, molluscivorous and piscivo-

rous) of cone snails are clustered separately, suggesting that the phylogenetics of cone

snails is related to their dietary types. In conclusion, our current work improves our under-

standing of the mitogenomic structure and evolutionary status of the vermivorous C. querci-

nus, which support the putative hypothesis that the Conus ancestor was vermivorous.

Introduction

Cone snails (Conus spp.), a species-rich genus of venomous marine gastropods, produce a

complex of conotoxins for prey capture and defense. They are usually classified into fish-hunt-

ing (piscivorous), snail-hunting (molluscivorous) and worm-hunting (vermivorous) groups

[1–3]. The number of piscivorous species is the least, while these snails are assessed as deadly

to humans. A larger number of molluscivorous species is dangerous, although some snails

have been implicated in unconfirmed fatalities. Forming the largest group, the vermivorous

species account for 70% of the Conus genus, while they seem to be nonthreatening [2–4].
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There are more than 800 Conus species, and each typically contains 100~200 venom peptides;

therefore, a total of over 80,000 conotoxins have been identified from various cone snails

around the world [5,6].

The colors and diets, along with the composed conotoxins, in different cone snails are

abundant and complicated; hence, related taxonomy, population genetics, evolutionary biol-

ogy and phylogenetics have aroused the interest of scientists [7,8]. Evolutionary relationships

between feeding and conotoxins have been discussed on basis of transcriptomics, proteomics

and genomics [9,10]. The diversity of peptides in the venom of cone snails confirms that most

species are able to produce a variety of conotoxins, as widely reported in literatures [11,12].

There is a specific hypothesis for the shift from an ancestral worm-hunting to more recent

fish-hunting [13]. However, the poor performance of venom components in predicting prey

taxonomic class suggests that conotoxins (gene superfamily) and traditional means of catego-

rizing prey types (worms, mollusa, fish) do not accurately clarify the evolutionary dynamics

between venom composition and diets [14–16].

Nowadays, mitochondrial genome (mitogenome) has been one of the most popular tools

widely applied for gastropod mollusk taxonomy, population genetics, evolutionary biology

and phylogenetics [17]. Gastropod mollusk mitogenomes usually exhibit high diversity of gene

orders, and accordingly offer a suitable model system to study the patterns, rates, and mecha-

nisms of mitogenome rearrangement as well as the phylogenetic utility of arrangement com-

parisons [18]. So far, the mitogenome sequences have been reported for nine cone snails,

including two piscivorous (C. consors and C. striatus), three molluscivorous (C. tulipa, C. textile
and C. gloriamaris), three vermivorous (C. borgesi, C. capitaneus and C. tribblei), and one

broad dietary (C. californicus) species [19–26].

Here, we reported the mitogenome of an additional vermivorous cone snail, C. quercinus,
and described some outstanding features of its mitogenome sequence. Related mitogenomic

structure and phylogentic status are going to provide more supportive evidence for the puta-

tive hypothesis about the vermivorous Conus ancestor and the correlation between traditional

classification of prey types and mitogenome evolution.

Materials and methods

Ethical statement

No specific permits were required for the collection of specimens for this study. These Conus
specimens are common in China, and the field collection did not involve any endangered or

protected species. Our experimental procedures complied with the current laws on animal

welfare and research in China, and were specifically approved by the Animal Research Ethics

Committee of Hainan Medical University.

Genomic DNA extraction and sequencing

Live C. quercinus were collected in the offshore areas of Lingshui City, Hainan Province,

China. Around 150 mg of foot tissue was ground to powder using mortar and pestle under liq-

uid nitrogen. Total genomic DNA was extracted by the Column mtDNAout kit (Tianda, Bei-

jing, China) according to the manufacturer’s instructions with minor modifications. The

purified genomic DNA was quantified with a Nanodrop 2000 spectrometer (ThermoFisher

Scientific, Wilmington, DE, USA).

Normalized DNA of 3 μg was employed to prepare a paired-end library using the NEB

Next DNA sample libraries kit (New England Biolabs, New England) in accordance with the

manufacturer’s instructions. Quantification and size estimation of the library were performed

on a Bioanalyzer 2100 High Sensitivity DNA chip (Agilent, Palo Alto, CA, USA). Finally, the
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library was normalized to 2 nM and sequenced on the Illumina HiSeq2000 (Illumina, San

Diego, CA, USA).

Sequence assembly

Illumina paired-end reads were filtered on the basis of quality values, and the low-quality bases

(quality < 20, perror> 0.01) at upstream and downstream were trimmed. The remained clean

data were de novo assembled by SOAPdenovo2 (http://soap.genomics.org.cn/soapdenovo.

html) on the basis of overlapping and paired-end relationships. All the cleaned reads were

also mapped onto the assembled contigs with Bowtie 2 (2.2.5) [27] to estimate the sequencing

depth. Those contigs with sequencing depth over 30× were mapped to the Conoidea mito-

chondrial genomes that were downloaded from the NCBI non-redundant nucleotide database

(Nt) with blastn (2.2.31+) to validate mito-contigs, and the remaining genome gaps were filled

with a python script.

Genome confirmation was indispensable to perform after assembling. Finally, the paired-

end clean reads were mapped onto the assembled genome with 100% coverage, and the insert-

size matched the information of sequenced library. The sequencing depth, coverage and rela-

tionship of the paired-end reads were the main criteria for confirmation.

Genome annotation and analysis

Preliminary gene annotation was realized through the online program Dual Organellar

GenoMe Annotator (DOGMA) [28] and ORF Finder [29] with invertebrate mitochondrial

genetic codes and default parameters. To verify the exact gene and exon boundaries, putative

nucleotide and protein sequences were BLAST searched in the public Nt and Nr (the NCBI

Non-redundant protein) databases. All tRNA genes were further confirmed through online

tRNAscan-SE and ARWEN search server [30–32], in combination with the annotated results

of ARAGORN. Graphical map of the circular plastome was drawn with Organellar Genome

DRAW (OGDRAW v1.2) [33]. Relative synonymous codon usage (RSCU) value was

employed to evaluate the synonymous codon bias in accordance with a previous report [34].

The skewing of nucleotide composition was calculated according to the following formulas:

AT skew = (A–T)/(A+T) and GC skew = (G−C)/(G+C) [35, 36]. To further analyze the evolu-

tionary adaptation in the Conus lineage, we applied DnaSP 6 [37] to estimate the ratios of non-

synonymous (Ka) and synonymous (Ks) substitutions in the mitochondrial genomes among

cone snails with the three different dietary types.

Phylogenetic analysis

Phylogenetic analysis was performed among ten taxa in the Conidae based on the nucleotide

sequences of eleven protein-coding genes without ATP8 and ND6 from GenBank, and Oxy-
meris dimidiata (NC_013239.1), Fusiturris similis (NC_013242.1) and Lophiotoma cerithiformis
(NC_008098.1) were employed as the out-groups. Before reconstructing phylogenetic trees,

both nucleotide and protein sequences of eleven protein-coding genes were subjected to

concatenated alignments using MUSCLE 3.8.31 (http://www.drive5.com/muscle/) [38]. The

best-fit model GTR+G+I for nucleotide sequences was selected using the Akaike Information

Criterion (AIC) with jModeltest [39]. Bayesian analyses of both nucleotide and protein align-

ments were carried out using PhyloBayes version 3.3f [40] under the best-fit model. Two inde-

pendent Markov Chain Monte Carlo (MCMC) chains were run simultaneously to determine

whether the searching reached stabilization, and were immediately stopped when all chains

converged (maxdiff less than 0.1). The phylogenetic trees were eventually constructed using

the Tree View program v.1.65 and Evolview (www.evolgenius.info/evolview/) [41].
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Results and discussion

Genome organization and nucleotide composition

The mitogenome of C. quercinus is a closed circular molecule of 16,430 bp in length (GenBank

accession No. KY609509; see more details in Fig 1). It encodes a high mutation region (D-

loop), and a typical set of 37 mitochondrial genes including 13 protein-coding genes (PCGs),

two ribosomal RNA (rRNA) genes (12S rRNA and 16S rRNA), and 22 transfer RNA (tRNA)

genes. Eight tRNA genes are encoded on the light (L) strand, whereas the other genes are

located on the heavy (H) strand (Table 1).

In the C. quercinus mitogenome, gene overlapping occurred three times (the negative num-

bers in Table 1), spanning 1~7 nucleotides (nts), for a total of 9 nts. The intergenic spacer

region occurred 20 times (the positive numbers in Table 1), spanning 1~162 bp, for a total of

421 bp. The overall base composition is estimated to be 28.15% for A, 38.32% for T, 14.82% for

C and 18.71% for G, with a high A+T content at 66.47% (Table 2).

Complete mitogenomes of the ten Conus species, including C. quercinus and nine previ-

ously reported [19–26], displayed moderate size variation, with the mean size of 15,755 bp

(SD = 298.4, n = 10), ranging from 15,444 bp (C. californicus) to 16,430 bp (C. quercinus). AT

and GC skews are measures of compositional asymmetry. In the C. quercinus mitogenome,

GC-skew values are always positive, while the values of AT-skew are negative (Table 2).

The mitogenome gene arrangement is conserved and identical to those of other reported

Conus species. The intergenic sequences vary between 0 and 41 nts, and one relatively large

region of 162 nts happens between COX1 and COX2 (Fig 1). The gene sequences of NADH

dehydrogenase subunit 4L (NAD4l) and subunit 4 (NAD4) are overlapped by 7 nts, NAD4

and tRNA-His by 1 nt, and NAD5 and tRNA-Phe by 1 nt.

Protein-coding, tRNA and rRNA genes

The 13 PCGs of C. quercinus are similar in length and arrangement to the nine previously

sequenced Conus mitogenomes. All PCGs are transcribed from the H strand in C. quercinus,
with initiation of the standard start codon ATG. They also display the typical TAN termination

codon, in which 8 PCGs have the complete termination codon TAA and 5 PCGs have the

TAG (Fig 1 and Table 1). The RSCU values of the C. quercinus mitogenome were calculated

(Fig 2), indicating that TTA (Leu), TCT (Ser), GCT (Ala), ACT (Thr), and GTT (Val) are the

five most frequently used codons.

D-loop region of the C. quercinusmitogenome

The D-loop region between tRNA-Phe and COX3 in C. quercinus (Fig 1) is the longest (943

bp), which is much higher than those in other Conus species (97~698 bp; see more details

in Table 3). Based on the sequence alignment of C. quercinus with other Conus species, we

observed that the intergenic sequences of the C. quercinus mitogenome are also the longest

in these Conus species. Usually, in animal mitochondrial genomes, the longest intergenic

sequences were reported to play a key role in the initiation of replication and transcription [22,

42]. Interestingly, the D-loop region in C. quercinus (among the 10 Conus species except C.

californicus) also presents the higher A+T content (71.3%) with a long AT tandem repeat

stretch (68 bp; Fig 3).

Synonymous and nonsynonymous substitutions

In genetics, the Ka/Ks ratio is of significance to estimate the balance between neutral muta-

tions and is especially useful for understanding the evolutionary relations between

Mitochondrial genome sequencing of a Conus vexillum
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Fig 1. Mitochondrial map of Conus quercinus. Genes outside the map are transcribed in a clockwise direction, whereas those inside the map are transcribed

counterclockwise. Gene blocks are filled with different colors as the cut line shows.

https://doi.org/10.1371/journal.pone.0193053.g001
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homologous PCGs in closely related species [43]. To detect the influence of selection on the C.

quercinus, Ka and Ks were estimated [44]. In all the 13 PCGs of three cone snails (Fig 4), the

ratio of Ka/Ks is much less than 1 (between 0 and 0.16), indicating existence of a strong purify-

ing or stabilizing selection.

Table 1. The detailed mitogenome structure of Conus quercinus.

NO. Gene Strand Position Size (bp) GC(%) Amino Acids Initiation Codon Termination Codon Anti-codon Intergenic nucleotide (bp)�

1 COX1 H 1–1548 1548 37.14% 515 ATG TAG 162

2 COX2 H 1711–2397 687 34.93% 228 ATG TAA 0

3 tRNA-Asp H 2398–2464 67 28.36% GTC 0

4 atp8 H 2465–2626 162 25.31% 53 ATG TAA 6

5 atp6 H 2633–3328 696 32.90% 231 ATG TAA 41

6 tRNA-Met L 3370–3436 67 26.87% CAT 9

7 tRNA-Tyr L 3446–3512 67 40.30% GTA 1

8 tRNA-Cys L 3514–3578 65 30.77% GCA 0

9 tRNA-Trp L 3579–3644 66 33.33% TCA 0

10 tRNA-Gln L 3645–3708 64 40.63% TTG 20

11 tRNA-Gly L 3729–3794 66 27.27% TCC 5

12 tRNA-Glu L 3800–3867 68 35.29% TTC 0

13 12s-rRNA H 3868–4825 958 35.18% 0

14 tRNA-Val H 4826–4892 67 16.42% TAC 0

15 16s-rRNA H 4893–6262 1370 30.73% 0

16 tRNA-Leu H 6263–6332 70 30.00% TAG 6

17 tRNA-Leu H 6339–6407 69 31.88% TAA 0

18 ND1 H 6408–7349 942 33.01% 313 ATG TAG 8

19 tRNA-Pro H 7358–7426 69 40.58% TGG 0

20 ND6 H 7427–7933 507 28.01% 168 ATG TAA 11

21 CYTB H 7945–9084 1140 35.00% 379 ATG TAA 15

22 tRNA-Ser H 9100–9164 65 49.23% TGA 16

23 tRNA-Thr L 9181–9248 68 38.24% TGT 23

24 ND4l H 9272–9568 297 31.31% 98 ATG TAG -7

25 ND4 H 9562–10944 1383 32.39% 460 ATG TAG -1

26 tRNA-His H 10944–11010 67 31.34% GTG 0

27 ND5 H 11011–12726 1716 33.39% 571 ATG TAA -1

28 tRNA-Phe H 12726–12791 66 36.36% GAA 0

29 D-loop H 12792–13734 943 28.74% 0

30 COX3 H 13735–14514 780 41.67% 259 ATG TAA 0

31 tRNA-Lys H 14542–14611 70 37.14% TTT 27

32 tRNA-Ala H 14617–14683 67 34.33% TGC 5

33 tRNA-Arg H 14706–14774 69 44.93% TCG 22

34 tRNA-Asn H 14787–14854 68 36.76% GTT 12

35 tRNA-Ile H 14868–14936 69 43.48% GAT 13

36 ND3 H 14942–15295 354 34.75% 117 ATG TAG 5

37 tRNA-Ser H 15310–15377 68 44.12% GCT 14

38 ND2 H 15378–16430 1053 34.38% 350 ATG TAA 0

�Note: The positive intergenic nucleotide value means the number of bases until the next gene, while the negative value represents the number of bases overlapped

between two genes.

https://doi.org/10.1371/journal.pone.0193053.t001
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The average Ka/Ks in ATP8 is the highest among the 13 PCGs, suggesting that this protein

is under the least selective pressure among all the mitochondrial genes. Interestingly, in C. tex-
tile and C. striatus, the ratio of Ka/Ks is the least in nine protein-coding genes (except COX3,

CYTB, ND4L and ND6) compared to C. quercinus, indicating that these two cone snails have a

closer phylogenetic relationship than C. quercinus. These data are consistent with their dietary

difference (Fig 5).

Phylogenetic relationships of Conus species with different dietary types

Molecular phylogeny of the taxonomy is a hypothesis of its evolutionary patterns and pro-

cesses. The molecular-based phylogenetic tree can estimate divergence times and ancestral

distributions, and provides evidence relevant to taxonomic hypotheses [8]. To further

Table 2. Nucleotide composition of Conus mitogenomes.

Species Accession No. Length(bp) A(%) T(%) C(%) G(%) AT(%) AT-skew GC-skew

C. consors (P) NC_023460.1 16,112 27.72 39.39 13.52 19.36 67.11 -0.1738 0.1774

C. striatus (P) NC_030536.1 15,738 25.93 38.61 14.64 20.82 64.54 -0.1964 0.1743

C. tulipa (P) NC_027518.2 15,756 28.55 37.85 15.11 18.49 66.40 -0.1401 0.1005

C. gloriamaris (M) NC_030213.1 15,774 27.73 38.54 15.04 18.70 66.27 -0.1631 0.1084

C. textile(M) NC_008797.1 15,562 27.24 37.95 15.65 19.16 65.19 -0.1643 0.1006

C. tribblei (V) NC_027957.1 15,570 28.10 37.85 15.32 18.73 65.95 -0.1478 0.1000

C. borgesi (V) NC_013243.1 15,536 28.66 38.49 14.60 18.24 67.15 -0.1464 0.1107

C. capitaneus (V) NC_030354.1 15,829 25.60 36.62 16.29 21.49 62.22 -0.1771 0.1376

C. quercinus (V) KY609509 16,430 28.15 38.32 14.82 18.71 66.47 -0.1530 0.1160

C. californicus(B) NC_032377.1 15,444 28.59 37.19 16.76 17.46 65.78 -0.1307 0.0205

Note: M, molluscivorous; P, piscivorous; V, vermivorous. B, broad with a combination of molluscivorous, piscivorous and vermivorous types.

https://doi.org/10.1371/journal.pone.0193053.t002

Fig 2. RSCU values in the mitogenome of Conus quercinus. Codon families are indicated below the X-axis.

https://doi.org/10.1371/journal.pone.0193053.g002
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validate the mitogenome sequence of C. quercinus and understand the evolutionary history

of the Conus species with different feeding ecologies, we constructed a phylogenetic tree

using Bayesian inference analysis with 13 complete mitogenomes downloaded from the

NCBI (Fig 5). It is obvious that three different dietary types (vermivorous, molluscivorous

and piscivorous) of cone snails, except the broad C. californicus, are clustered separately.

This is consistent with previous reports [43, 45] and supports the putative hypothesis that the

cone snail ancestor was vermivorous. However, the inclusion of C. californicus in the phylo-

genetic tree analysis may bias the results, because it is often regarded as an atypical member

of Conidae due to its extremely broad diet and distant phylogenetic relationship to the rest

of Conidae [14, 26].

Table 3. D-loop length of Conus mitogenomes.

Species Start End Length (bp) A+T (%)

C. quercinus 12,792 13,734 943 71.3

C. consors 12,714 13,412 698 70.3

C. capitaneus 12,801 13,142 342 63.7

C. gloriamaris 12,750 13,084 335 65.9

C. striatus 12,715 13,047 333 60.9

C. tulipa 12,742 13,074 333 68.1

C. tribblei 12,723 12,891 169 68.6

C. borgesi 12,721 12,847 127 66.1

C. textile 12,760 12,885 126 67.4

C. californicus 12,695 12,791 97 77.3

https://doi.org/10.1371/journal.pone.0193053.t003

Fig 3. Scheme of the D-loop region in C. quercinus compared with C. consors. The region spans 943 bp and exhibits several outstanding motifs. The upper and

lower red boxes denote the tRNA-Phe and COX3, and the blue box points to a long AT tandem repeat stretch.

https://doi.org/10.1371/journal.pone.0193053.g003
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Venom composition across Conus species has been hypothesized to be shaped by prey type

and dietary breadth. Several studies [14] proved a significant positive relationship between die-

tary breadth and measures of conotoxin complexity by transcriptome sequencing of venom

duct from 12 Conus species. However, given the high evolutionary lability of venom toxins, it

is unclear that a clear relationship between dietary preference and venom composition should

be expected. The prey taxonomic class of Conus can be predicted by venom components, but

the performance of prey taxonomic class in predicting venom components was poor [14–17,

26]. By far, we are certain that the selective pressures driven by diets play a major role in shap-

ing evolutionary patterns in venom across the cone snails.

Conclusion

In this present study, we sequenced and annotated the complete mitogenome of C. quercinus.
We used other nine publically available Conus mitogenomes to illustrate the structure of C.

quercinus mitogenome and investigated the evolutionary relationships among Conus species.

Interestingly, the mitochondrial gene arrangement of C. quercinus is highly conserved and

identical to other Conus species. However, the D-loop region (943 bp) of C. quercinus is the

longest with the higher A+T content (71.3%) and a long AT tandem repeat stretch (68 bp).

The phylogenetic tree (Fig 5) revealed that three different dietary types of cone snails are clus-

tered separately, suggesting that the phylogenetics of cone snails is related to their dietary

types. Our current work improves our understanding of the mitogenomic structure and evolu-

tionary status of the vermivorous C. quercinus, which support the putative hypothesis that the

Conus ancestor was vermivorous.

Fig 4. Ka/Ks ratios for the 13 mitochondrial PCGs among three representative Conus species. GenBank accession numbers:

KY609509 for C. quercinus, NC_008797 for C. textile, and NC_030536 for C. striatus.

https://doi.org/10.1371/journal.pone.0193053.g004
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