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A B S T R A C T   

Traditional methods under sparse view for reconstruction of photoacoustic tomography (PAT) often result in 
significant artifacts. Here, a novel image to image transformation method based on unsupervised learning artifact 
disentanglement network (ADN), named PAT-ADN, was proposed to address the issue. This network is equipped 
with specialized encoders and decoders that are responsible for encoding and decoding the artifacts and content 
components of unpaired images, respectively. The performance of the proposed PAT-ADN was evaluated using 
circular phantom data and the animal in vivo experimental data. The results demonstrate that PAT-ADN exhibits 
excellent performance in effectively removing artifacts. In particular, under extremely sparse view (e.g., 16 
projections), structural similarity index and peak signal-to-noise ratio are improved by ~188 % and ~85 % in in 
vivo experimental data using the proposed method compared to traditional reconstruction methods. PAT-ADN 
improves the imaging performance of PAT, opening up possibilities for its application in multiple domains.   

1. Introduction 

Photoacoustic tomography (PAT) is a non-invasive and non- 
radiological multimodal biomedical imaging technique that has gained 
significant attention as a promising preclinical and clinical tool [1–5]. 
By merging the superior contrast capabilities of optical imaging with the 
excellent resolution characteristics of acoustic imaging, this approach 
enables high-resolution structural and functional imaging of tissues 
within the body [6,7]. PAT has been broadly employed in preclinical 
studies involving whole-body imaging of small animals. For instance, it 
has been successfully employed to map microvascular networks and 
explore resting-state functional connectivity in the brains of mice 
[8–10]. Recently, PAT has been widely adopted in clinical practice and 
has been utilized for human imaging purposes. Its applications encom-
pass functional brain imaging, diagnosis of cardiovascular diseases, 
breast cancer and molecular imaging [11–15]. In PAT, the primary 
objective of imaging is to reconstruct the initial pressure distribution 
using time-resolved photoacoustic signals, which are generated by laser 
pulses and captured by ultrasonic transducers [16]. After absorbing the 
energy from a laser pulse, the tissue absorbers undergo thermoelastic 

expansion, generating an initial sound pressure that propagate outward. 
The ultrasonic signals are detected by multiple ultrasonic transducers 
positioned at different locations around the tissue, and the distribution 
of optical absorption in the tissue is reconstructed using reconstruction 
algorithms, such as universal back projection (UBP) [17] or time 
inversion (TR) [18]. These methods rely on the ideal assumption of the 
availability of complete measurement data from full views. However, in 
practical implementation, obtaining complete photoacoustic signals 
becomes challenging due to limitations in the bandwidth and quantity of 
ultrasonic transducers. The utilization of these conventional approaches 
in PAT sparse reconstruction may give rise to image distortion, blurri-
ness, and subpar resolution. 

To tackle these problems, a range of techniques are being investi-
gated, including improvements in physical hardware and optimizations 
in reconstruction methods. Applying the acoustic deflectors [19], uti-
lizing the spherical array system [20], or implementing the toroidal 
sensor arrays [21], these efforts have made improvements at the phys-
ical hardware level, thereby enhancing the imaging quality of PAT. 
Although these techniques can effectively enhance the imaging quality 
of PAT, they contribute to increased system costs and a more complex 
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structure, consequently impeding the broad adoption. On the other 
hand, the imaging performance of PAT can also be enhanced by 
improving the reconstruction method. The utilization of the adaptive 
filtered back-projection algorithm [22] and the improved time reversal 
reconstruction algorithm based on particle swarm optimization [23] can 
significantly improve image quality with a reduced number of mea-
surement positions or scanning times. 

In recent years, deep learning has been extensively implemented in 
the realm of biomedical imaging, and its application in PAT recon-
struction has demonstrated remarkable potential [24–36]. At present, 
deep learning methods utilized for PAT reconstruction are primarily 
categorized into supervised learning [24–28] and unsupervised learning 
[29–33]. U-Net networks are the primary framework for supervised 
learning in PAT. Guan et al. presented the Dense Dilation U-Net for 
eliminating artifacts in 3D PAT [27]. Deng et al. introduced the SE-Unet 
network architecture for artifact removal, which demonstrated superior 
performance when compared to back projection algorithm [28]. A 
substantial amount of paired datasets is required by supervised 
learning-based approaches. Nevertheless, gathering a large number of 
ground truth images in practical scenarios is impractical. 

Compared to supervised learning, unsupervised learning models are 
more flexible and capable of handling unlabeled samples while also 
identifying potential patterns and structures in the data, ultimately 
improving generalization performance of the mode. Vu et al. put for-
ward Wasserstein-generated adversarial networks with gradient pen-
alties (WGAN-GP) to remove limited-views and limited-bandwidth 
artifacts in PAT [30]. Shahid et al. applied ResGAN to extract and learn 
low-frequency features that are obscured by severe interference, aiming 
to recover high-quality images [31]. Over the past few years, artifact 
disentanglement network (ADN) has shown its effectiveness in accom-
plishing high-resolution image-to-image translation tasks in the field of 
biomedical imaging [32–35]. Liao et al. introduced an ADN network 
designed for unsupervised disentanglement of metal artifacts from CT 
images [32]. Lyu et al. further utilized an improved unsupervised ADN 
network to successfully tackle the challenges of modality translation, 
artifact reduction and vertebra segmentation [33]. Motivated by these 
advancements, this study proposes a photoacoustic tomography artifact 
disentanglement network (PAT-ADN) to remove artifacts caused by 
sparse-view sampling. A series of simulated and in vivo experimental 
data were employed to assess the performance of the proposed method. 
The results demonstrate the efficacy of the PAT-ADN in capably 
removing artifacts in PAT. Particularly, when handling extremely sparse 
data (e.g., 16 projections), the PAT-ADN outperforms the supervised 
learning methods (e.g., U-Net), resulting in an improvement of 

approximately 15% in Structure Similarity Index (SSIM) and 14% in 
Peak Signal to Noise Ratio (PSNR) for circular phantom experimental 
data. 

2. Principles and methods 

2.1. Artifacts Removal based on PAT-ADN 

PAT image post-processing can be regarded as a challenging image- 
to-image translation problem, presenting the opportunity to transform 
artifact images into high-quality, artifact-free images. The proposed 
network is formulated within the framework of ADN to handle the 
challenge of artifact removal in PAT in an unsupervised learning 
approach. Let Pa represent the domain of the PAT image with artifacts 
captured under sparse views, while P denotes the domain of the full- 
view PAT. S = {(ua, v)|ua ∈ Pa, v ∈ P, g(ua) = u} is denoted as a collec-
tion of unpaired images, and g : Pa→Pis an artifact removal model that 
removes artifacts from ua. v is an artifact-free image not paired with ua. 
The process diagram for artifact disentanglement of PAT-ADN is 
depicted in Fig. 1. In this method, the artifact and content components 
are disentangled by encoding the artifact-affected image ua to a content 
space C and an artifact space A. The image v, obtained from the artifact- 
free domain P, is exclusively encoded to yield the content code cv. 
Accomplishing the decoding process of cu, which corresponds to the 
removal of artifacts from ua, results in obtaining an artifact-free image u. 
Similarly, through the act of decoding the artifact code a and content 
component va, artifacts are inserted into images that are previously 
devoid of any artifacts, generating the image containing artifacts va. It is 
worth noting that the proposed PAT-ADN method contributes to the 
learning of these encoding and decoding processes without paired 
datasets. 

The architecture of PAT-ADN is shown in Fig. 2. Two unpaired im-
ages ua ∈ Pa and v ∈ P are given as input images. The image û denotes 
the expected output, recovered by eliminating artifacts from ua. It in-
cludes a pair of encoders EP : P→C for artifact-free images and EPa = {

Ec
Pa : Pa→C,Ea

Pa : Pa→A} for artifact-affected images. Mapping an image 
sample from the image domain to the latent space is the function of the 
encoders. A content encoder Ec

Pa and an artifact encoder Ea
Pa indepen-

dently encode content and artifacts, respectively. The combination of 
these two encoders forms the encoder EPa . The content components of ua 

and v are individually mapped to the content space C by Ec
Pa and EP, 

giving rise to the corresponding content codes cu and cv. Furthermore, 
the components of ua is transformed into the component space A by Ea

Pa , 
generating the artifact code a. The corresponding latent codes are 

Fig. 1. Artifact disentanglement flowchart of PAT-ADN. The artifact-affected image ua obtained under sparse view sampling is encoded into both artifact space A and 
content space C. The artifact-free image v obtained under full-view sampling is encoded into content space C. Encoding ua and v into the content space C to generate 
the content encoding cu and cv. Encoding ua into artifact space A to get artifact code a. By decoding the content code cu, artifacts can be removed from the artifact- 
affected image (blue arrows ua→u). By decoding the artifact code a and content code cv, artifacts are introduced into artifact-free images, producing the image va with 
artifacts (green arrows v→va). 
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represented as Eq. (1): 

cu = Ec
Pa (ua), a = Ea

Pa (ua), cv = EP(v) (1) 

In addition, PAT-ADN also includes a pair of the decoder GP : C→P 
for artifact-free images and the decoder GPa : C × A→Pa for artifact- 
affected images. The decoders are responsible for mapping a latent 
code from the latent space back to the image domain. GP receives the 
content code as input and generates an image that is free from artifacts. 
Decoding from cu can obtain û which removes artifacts from ua. The 
images decoded by GP can be expressed as Eq. (2): 

û = GP(cu) (2) 

GP leverages the content code and artifact code as inputs to attain an 
image that incorporates the intended artifacts. Decoding from cu and a 
results in ûa which reconstructs from ua, while decoding from cv and a 
may introduce artifacts to v. The images decoded by GPa is shown as Eq. 
(3): 

ûa
= GPa (cu, a), v̂a

= GPa (cv, a) (3) 

The image v̂a can be comprehended as an integrated representation 
that combines both the artifacts from ua and the underlying content from 
v. With the utilization of Ec

Pa and GP, the artifacts can be effectively 
eliminated, consequently obtaining artifact-free image ̃v, as shown in Eq. 
(4): 

ṽ = GP
(
Ec

Pa (v̂a
)
)

(4) 

In the training stage, an artifact image ua and an artifact-free image v 
serve as inputs to the network, with the two images being non-paired. 
The artifact image ua undergoes the encoder Ec

Pa , separating its content 

components cu, and is then reconstructed into an artifact-free image û 
through the decoder GP. The artifact image ua, after being processed by 
the encoder Ea

Pa , separates the artifact components a. Then through the 
decoder GPa , both cu and a contribute to obtaining the artifact image ûa, 
which is very close to ua. The artifact-free image v, after content sepa-
ration by the encoder EP, is combined with the artifact component a. 
Together, they pass through the decoder GPa , resulting in the artifact- 
transferred image v̂a. Subsequently, v̂a undergoes encoding with Ec

Pa 

and decoding with GP, effectively removing the artifact and yielding the 
artifact-free image ṽ. In the training process, following each training 
iteration of the ADN network, both Ec

Pa and GP are applied twice. It re-
sults in enhanced training that significantly strengthens the ability of Ec

Pa 

to separate content components from artifact images and the ability of 
GP to restore images. In the testing stage, the artifact image, after being 
processed by the trained encoder Ec

Pa and the trained decoder GP, yields 
the artifact-free image. 

2.2. Network architectures 

The proposed network consists of the encoders and decoders. The 
details of the encoder and decoder are presented in Table 1. Each 
building component is organized as a sequence of building blocks, 
comprising five distinct block types. Fig. 3 illustrates both the basic 
building blocks of the PAT-ADN and the detailed architecture of artifact 
pyramid decoding. Fig. 3(a) shows that the residual block incorporates 
residual connections, facilitating the consideration of low-level features 
in the computation of high-level features. Fig. 3(b) depicts that the 
down-sampling block utilizes stride convolution to decrease the 
dimensionality of the feature map. Fig. 3(c) demonstrates that the up- 

Fig. 2. Architecture of the proposed PAT-ADN. PAT-ADN takes unpaired images ua and v as input (ua ∈ Pa, v ∈ P). The image û corresponds to the desired output, 
obtained after ua effectively removes the artifacts. The encoders consist of EP and EPa = {Ec

Pa ,Ea
Pa}, whereas GP and GPa serve as the decoders. The green connection 

line represents the flow of content encoding to the content decoder, the red connection line represents the flow of artifact encoding to the artifact decoder, and the 
black connection line represents the flow of other data. 
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sampling block restores the feature map to its original dimension. In the 
merge block (Fig. 3(d)), the content feature map and the artifact feature 
map are connected. Fig. 3(e) exhibits the final block. Fig. 3(f) shows the 
intricate architecture of artifact pyramid decoding. 

By combining artifact codes of different scales, artifact pyramid 
decoding achieves high-definition functionality at a relatively lower 
cost. Ec

Pa comprises multiple down-sampling blocks and produces feature 
maps at various scales. GPa comprises a sequence of residual blocks, 
merging blocks, up-sampling blocks, and final blocks. 

2.3. Loss function 

Learning to generate û and v̂a is crucial for effectively disentangling 
artifacts. However, due to the absence of paired images, applying a 
simple regression loss is not feasible. Hence, we leverage the concept of 
adversarial learning [36] and introduce two discriminators DPa and DP to 
regularize û and v̂a. Then adversarial losses LP

adv and LPa

adv can be 
expressed as Eq. (5): 

LP
adv = EP

[
log Dp(v)

]
+ EPa

[
1 − log Dp(û)

]

LPa

adv = EPa
[
log Dpa(ua)

]
+ EP,Pa [1 − log DPa (v̂a

)]

Ladv = LP
adv + LPa

adv

(5) 

Adversarial loss mitigates artifacts by promoting the resemblance of 
û to sample from P. However, û obtained through this process is 
anatomically credible but not anatomically precise. PAT-ADN tackles 
the issue of anatomical accuracy by introducing the artifact consistency 
loss. Lart necessitates anatomical proximity between û and ua, without 
requiring complete alignment. The same principle applies to v and v̂a. 
Lart as shown in Eq. (6): 

Lart = EI,Ia
[
‖(ua − û) − (v̂a

− v)‖1

]
(6) 

The introduction of reconstruction loss Lrec essentially encourage 
encoders and decoders to retain information and avoid adding any new 
artifacts. In particular, PAT-ADN utilizes {EPa ,GPa} and {EP,GP} for 
encoding and decoding to achieve the results {ûa

, ṽ} consistent with the 
input {ua, v}. To promote sharper output, L1 loss is employed. Recon-
struction loss satisfies Eq. (7): 

Lrec = EP,Pa [‖ûa
− ua‖1 +‖ṽ − v‖1] (7) 

In this study, PAT-ADN incorporates S = {(ua,v)|ua ∈ Pa,v ∈ P,g(ua)

Table 1 
Design and structure of the building components.  

Network Block Channel Count Padding Kernel Stride 

Gp Residual  256  4  1  3  1 
Up.  128  1  2  5  1 
Up.  64  1  2  5  1 
Final  1  1  3  7  1 

GPa Residual  256  4  1  3  1 
Merge  256  1  0  1  1 
Up.  128  1  2  5  1 
Merge  128  1  0  1  1 
Up.  64  1  2  5  1 
Merge  64  1  0  1  1 
Final  1  1  3  7  1 

EP/EPa Down.  64  1  3  7  1 
Down.  128  1  1  4  2 
Down.  256  1  1  4  2 
Residual  256  4  1  3  1 

Ea Down.  64  1  3  7  1 
Down.  128  1  1  4  2 
Down.  256  1  1  4  2  

Fig. 3. Building blocks of PAT-ADN and architecture details of artifact pyramid decoding. (a) Residual block. (b) Down-sampling block. (c) Up-sampling block. (d) 
Merging block. (e) Final block. (f) Architectural features of artifact pyramid decoding. Down. Block, down-sampling block; Up. Block, up-sampling block. 
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= u}the above four types of losses, including two adversarial losses LP
adv 

and LPa

adv, an artifact consistency loss Lart and a reconstruction loss Lrec. 
The weighted sum of these losses is referred to as the total loss L, as 
shown in Eq. (8): 

L = λadv
(
LP

adv + LPa

adv

)
+ λartLart + λrecLrec (8) 

Here, λ represents the hyperparameter that determines the weighting 
of each term. 

2.4. Dataset and network parameter setting 

The dataset utilized in this study comprises photoacoustic tomo-
graphic images of circular phantom and in vivo mouse. The experimental 
data employed in this work are derived from https://doi.org/10.6084/ 
m9.figshare.9250784[37]. The circular phantom dataset is divided 
into 496 images under the full view (512 projections) and an equal 
number of images under other sparse views (8, 16, 32, and 64 pro-
jections). The in vivo mouse abdomen dataset is divided into 274 images 
under the full view (512 projections) and an equal number of images 
under other sparse views (8, 16, 32 and 64 projections). Full-view im-
ages are used as the ground truth during the training and testing stage of 
the proposed method and U-Net method. 

In the process of training, a small batch size of 5 and an initial 
learning rate of 5 × 10− 5 are implemented, with the number of epochs 
set at 50. The Adam optimization technique is employed during the 
training phase. For the hyperparameters in the loss function, the 
configuration is set as λadv = 1.0, λart = λrec = 15.0. λadv represents the 
weight of adversarial loss LP

adv and LPa

adv. If λadv is excessively high, it will 
lead the network to be more inclined to generate the content informa-
tion of the image. On the contrary, if λadv is set excessively low, the 
network will generate inadequate content information. Therefore, it is 
common to set λadv = 1.0 as a baseline to balance the generated content 
information. λart indicates the weight of artifact consistency loss Lart, 
influencing the composition of artifacts. λrec signifies the weight of the 
reconstruction loss Lrec, which guarantees the preservation of all content 
information without introducing new artifacts during artifact removal. 

The artifact consistency loss and the reconstruction loss are considered 
to be equally important [32], thus setting λart = λrec. The GeForce RTX 
2080Ti GPU with 11 GB of memory is utilized for training and testing of 
the PAT-AND, U-Net and CycleGAN methods. 

3. Results 

3.1. Results on circular phantom data 

To illustrate the effectiveness of the PAT-ADN network in artifact 
removal, we contrast the PAT-ADN method with the highly utilized 
supervised deep learning technique, U-Net [38], and the unsupervised 
deep learning model, CycleGAN [39]. The training environment and 
dataset used for U-Net and CycleGAN are identical to those of PAT-ADN. 
SSIM and PSNR are calculated to quantitatively assess the performance 
of PAT-ADN. 

Fig. 4 illustrates the results of artifact disentanglement using the 
PAT-ADN method on the circular phantom. Fig. 4(a) represents the 
artifact image ua inputted into this network. Fig. 4(b) shows the artifact- 
free image v used as input for this network. Fig. 4(c) demonstrates the 
artifact removal outcome û achieved through the proposed method. 
Fig. 4(d) is the artifact image ûa synthesized through the fusion of the 
artifact component and the content component. Fig. 4(e) illustrates the 
artifact-transferred image v̂a, obtained by transferring artifacts from ua 

to v. Fig. 4(f) depicts the artifact-free image ṽ obtained by eliminating 
artifacts from v̂a. 

Fig. 5 compares the artifact removal capabilities of U-Net, CycleGAN 
and PAT-ADN in circular phantom under different projection views. In 
Fig. 5, the PSNR value is indicated by the white number at the bottom 
left, while the SSIM value is represented by the yellow number. Fig. 5 
(a)–(d) show reconstructed PAT images of measurement data under 
different projection views (e.g. 8, 16, 32 and 64 projection views) ob-
tained using the UBP method. The PAT images reconstructed using UBP 
method suffer from a substantial presence of artifacts. Fig. 5(e)–(h) 
represent the corresponding artifact removal images obtained using U- 
Net. Under 64 projection views, the U-Net method eliminates a 

Fig. 4. Results of artifact disentanglement employing the PAT-ADN method on the circular phantom. (a) is the artifact image ua as the input of this network. (b) is the 
artifact-free image v as the input of this network. (c) is the artifact removal result û obtained using the proposed method. (d) is the artifact image ûa synthesized by 
combining the artifact component and the content component. (e) is the artifact-transferred image v̂a obtained by transferring the artifacts from ua to v. (f) is the 
artifact-free image ṽ obtained by removing artifacts from v̂a. 
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substantial quantity of artifacts. When the projection view is further 
sparse, the reconstruction results still exhibit some residual artifacts. 
And these reconstructed images suffer from details loss, as indicated by 
the yellow arrows in Fig. 5(e)–(g). Fig. 5(i)–(l) depict the corresponding 
artifact removal images obtained using CycleGAN. In comparison with 
the traditional U-Net method, the CycleGAN method reconstructed im-
ages with fewer artifacts. However, there still remains a minor presence 
of distortion in the reconstructed phantom images. Fig. 5(m)-(p) 

demonstrate the artifact removal images obtained using PAT-ADN, 
respectively. The proposed method presents excellent performance in 
removing artifacts under different projection views. Notably, even under 
highly sparse measurement conditions (8 and 16 projection views), the 
proposed method is also capable of substantially removing artifacts. 
Fig. 5(q)–(t) illustrate the same ground truth acquired using UBP under 
512 projection views. Fig. 5(u) and Fig. 5(v) depict the close-up images 
of the red rectangles 1 and 2 in Fig. 5(q), respectively. From the close-up 

Fig. 5. Comparison of artifact removal capabilities of U-Net, CycleGAN and PAT-ADN in circular phantom under different projections. (a)-(d) are the reconstructed 
results obtained using the UBP method under 8, 16, 32 and 64 projections, respectively. (e)-(h) are the artifact removal results obtained using the U-Net method 
under 8, 16, 32 and 64 projections, respectively. (i)-(l) are the artifact removal results obtained using the CycleGAN method under 8, 16, 32 and 64 projections, 
respectively. (m)-(p) are the artifact removal results obtained using the proposed method under 8, 16, 32 and 64 projections, respectively. The white numbers in the 
lower left corner indicate PSNR, and the yellow numbers indicate SSIM. (q)-(t) are the same ground truth images. (u) and (v) are the close-up images indicated by the 
red rectangles 1 and 2 in (q), respectively. (w) and (x) are the signal distribution along the red dashed lines 1 and 2 in (u) and (v) under 8 and 16 projections, 
respectively. GT, ground truth. 
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images, it can be observed that the results using the PAT-ADN method 
depict more precise details under different projection views. Fig. 5(w) is 
the signal distribution along the red dashed line in Fig. 5(u) under 8 
projection views, while Fig. 5(x) corresponds to the signal distribution 
along the red dashed line in Fig. 5(v) under 16 projection views. In 
comparison to other traditional approaches, such as UBP, the proposed 
method yields a signal distribution that is more closely aligned with the 
ground truth, thus verifying the outstanding advantage of PAT-ADN in 
removing artifacts of the circular phantom under sparse projection 
views. 

Fig. 6(a)–(p) show the error map corresponding to Fig. 5(a)–(p), 
indicating the difference between the ground truth and the recovered 
images by the mentioned methods under projection views of 8, 16, 32 
and 64. The reconstructed results obtained using the PAT-ADN method 
closely resemble the ground truth exhibiting minimal artifacts. This 
observation indicates that the reconstructed images using the proposed 
method possess higher quality than the other three methods. From a 
quantitative analysis perspective, under 64 projection views, the 
reconstructed result using PAT-ADN method achieves a PSNR of 
36.05 dB and an SSIM of 0.9537, which are 5.14 dB and 0.0891 higher, 
respectively, compared to the U-Net method. As the number of projec-
tion views becomes sparser (e.g., 8 projection views), the reconstructed 
results using PAT-ADN method reveals a ~9 % elevation in PSNR and a 
~14 % advancement in SSIM over the reconstructed results using 

CycleGAN. It further demonstrates that the proposed method can effi-
ciently removing artifacts under extremely sparse view conditions. 

Through an ablative experiment on the Loss function, this study 
validates the efficacy of the PAT-ADN network design. The experimental 
results in Fig. 7 demonstrate a comparison of the performance between 
PAT-ADN and its two variants (M1, M2). M1 refers to a model trained 
solely with adversarial loss Ladv. M2 refers to a model trained with both 
adversarial loss Ladv and reconstruction loss Lrec. For both qualitative and 
quantitative analysis, all experiments were performed using circular 
phantom experimental data under 16 projection views. In Fig. 7, the 
reconstructed PAT images exhibit fewer artifacts using M1 and M2 
methods than using UBP method. Fig. 7(f) and Fig. 7(g) depict the close- 
up images of the red rectangles 1 and 2 in Fig. 7(e). It’s obvious that the 
results reconstructed using M1 method still exhibit some persistent ar-
tifacts and even detail loss. The reconstructed structures are relatively 
more complete compared to M1 method, yet some artifacts still remain, 
as shown in Fig. 7(c). In Fig. 7(d), the results using PAT-ADN method 
maintain a substantial amount of details while eliminating artifacts. 
Quantitative analysis of the reconstruction results of models trained 
with different combinations of loss functions is presented in Table 2, 
demonstrating that the proposed method achieves a 9.43 % improve-
ment in PSNR and a 1.15 % improvement in SSIM compared to M2. The 
above results indicate that the PAT-ADN model trained with adversarial 
loss Ladv, reconstruction loss Lrec, and artifact consistency loss Lart 

Fig. 6. Error map obtained from the recovered results in the circular phantom data under different projections. (a)-(p) are the error maps corresponding to Fig. 5 
(a)–(p). 
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exhibits significantly superior artifact removal capabilities compared to 
M1-M2 methods. This demonstrates the effectiveness of the proposed 
PAT-ADN network. 

3.2. Results on in vivo data 

The artifact removal performance of the PAT-ADN method is further 
validated in in vivo data, the results are shown in Fig. 8. Fig. 8(a)–(d) 
depict a mouse abdominal image reconstructed using the UBP method 
with 8, 16, 32 and 64 projections, respectively. From these images, it is 
evident that the reconstructed images exhibit serious artifacts, making it 
challenging to discern image details. Fig. 8(e)–(h) illustrate the corre-
sponding artifact removal images obtained using the U-Net method. 
Fig. 8(i)–(l) demonstrate the artifact removal images obtained using the 
PAT-ADN method. The PAT-ADN method demonstrates a favorable ef-
fect in removing artifacts under various projection conditions. It is 
obvious that even under highly sparse measurement conditions (8 and 
16 projections), the method effectively suppresses artifacts. In Fig. 8, the 
PSNR value is indicated by the white number at the bottom left, while 
the SSIM value is represented by the yellow number at the bottom right. 
Fig. 8(m)–(p) represent the same ground truth acquired using UBP under 
512 projections. Fig. 8(q) and (r) are the close-up images indicated by 
the red rectangles 1 and 2 in Fig. 8(m), respectively. The close-up images 
reveal that the PAT-ADN method outperforms both the U-Net method 
and the UBP method in terms of restoring edge details. Fig. 8(s) and (t) 
are the signal distribution along the red dashed lines 1 and 2 in Fig. 8(q) 
and (r) under extremely sparse views (16 projections), respectively. 
Obviously, the signal distribution obtained by PAT-ADN is closer to the 
ground truth, which verifying the feasibility of the proposed method in 
artifacts removal for the in vivo data. 

Fig. 9(a)-(l) show the error map corresponding to Fig. 8(a)–(l), 
indicating the difference between the ground truth and the recovered 
images by the mentioned methods above under projections of 8, 16, 32 
and 64. It is visually evident from the error map that the recovered 
images obtained using the PAT-ADN method have a close resemblance 
to the ground truth images. The experimental results further demon-
strate that the unsupervised PAT-ADN method is capable of effectively 
removing artifacts in PAT in terms of SSIM and PSNR. Under 32 

projections, the PSNR and SSIM of the proposed method can reach 
28.13 dB and 0.7330, respectively, which is 11.14 dB and 0.1961 higher 
than that of U-Net method. When the number of projection views is 
further reduced to 16, the PSNR and SSIM are 27.22 dB and 0.7154, 
respectively, which is 12.9 dB and 0.3007 higher than that of U-Net. The 
above results confirm the powerful effect of the proposed method in 
removing artifacts in photoacoustic tomographic images. 

4. Conclusion and discussion 

A novel image domain transformation method, named PAT-ADN, 
was proposed to address the issue of artifacts caused by sparse-view 
sampling in PAT. The proposed network performs disentanglement of 
PAT artifact-affected images into artifact space and content space, pre-
serving the content domain, resulting in artifact-free images. During the 
training phase, an artifact image and an artifact-free image, both un-
paired, are provided as input. The artifact image undergoes content 
encoding to isolate its content component, which is then reconstructed 
into a new artifact-free image through content decoding. During the 
testing phase, the artifact image is processed by a trained set of encoders 
and decoders to directly generate artifact-free images. The performance 
of the proposed PAT-ADN was evaluated using circular phantom data 
and the animal in vivo experimental data. For the circular phantom data, 
the proposed method performed excellently under extremely sparse 
views (e.g. 8 projections). The SSIM and PSNR of the proposed method 
are 0.9442 and 28.70 dB, respectively, representing improvements of 
0.1827 and 4.25 dB compared to the U-Net method. For the in vivo 
experimental data, this method showcases advancements over the U-Net 
method. Under 16 projections, the SSIM and PSNR values of this method 
reach 0.7154 and 27.22 dB, respectively, exhibiting enhancements of 
0.3007 and 12.9 dB compared to the U-Net method. These results 
illustrate the exceptional artifact removal capability of the PAT-ADN 
method, even in the case of highly sparse views. This significant 
advancement enhances the quality of PAT images, providing greater 
flexibility for various applications of PAT. 

The PAT-ADN model demonstrates certain generalizability and holds 
great potential for clinical applications. The datasets used in the ex-
periments all generated from the same kind of imaging objects within 
the same system. By expanding the datasets, the generalizability of the 
method can be further improved to accommodate clinical scenarios. The 
expanded dataset should include full-view clinical PAT images from 
various samples obtained by different PAT systems. 

The core idea of PAT-ADN for artifact removal lies in integrating 
adversarial training with an encoder-decoder network to learn about the 
data distribution of image content and latent representation of artifacts, 
in order to improve disentanglement effect between content and artifact 
components. Through training, the encoder-decoder network develops 
the ability to separate artifact components from artifact images while 

Fig. 7. Comparison of the artifact removal capabilities of different variants of PAT-ADN on circular phantom under 16 projections. (a) is the reconstructed results 
obtained using the UBP method under 16 projections. (b) is the artifact removal results obtained using M1 method. (c) is the artifact removal results obtained using 
M2 method. (d) is the artifact removal results obtained using the PAT-ADN method under 16 projections. (e) is ground truth image. (f) and (g) are the close-up images 
indicated by the red rectangles 1 and 2 in (e), respectively. GT, ground truth. 

Table 2 
Quantitative comparison of different variants trained with different combina-
tions of the loss functions of PAT-ADN.  

Method Metrics 

PSNR SSIM 

M1 (Ladvonly)  27.11  0.9286 
M2 (M1 withLrec)  29.17  0.9383 
Ours (PAT-ADN)  31.92  0.9491  
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maintaining the integrity of the content components. As a result, the 
proposed PAT-ADN network can effectively reduce artifacts without 
compromising image quality. 

In conclusion, this method mainly achieves high-quality artifact 
removal in a relatively short time by training both encoders and 

decoders. As the network training does not focus on specific artifact 
structures, it treats irregular data distributions in the images as artifacts 
and separates them from other content components. The proposed PAT- 
ADN network is applicable to other reconstruction tasks, such as limited- 
view sampling reconstruction and reconstruction under low-bandwidth 

Fig. 8. Comparison of artifact removal capabilities of U-Net and PAT-ADN in in vivo data under different projections. (a)-(d) are the reconstructed results obtained 
using the UBP method under 8, 16, 32 and 64 projections, respectively. (e)-(h) are the artifact removal results obtained using the U-Net method under 8, 16, 32 and 
64 projections, respectively. (i)-(l) are the artifact removal results obtained using the proposed method under 8, 16, 32 and 64 projections, respectively. The white 
number in the lower left corner indicates PSNR, and the yellow number in the lower right corner indicates SSIM. (m)-(p) are the same ground truth images. (q) and (r) 
are the close-up images indicated by the red rectangles 1 and 2 in (m), respectively. (s)-(t) show the signal distribution along the red dashed lines in (q) and (r), 
respectively. GT, ground truth. 
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conditions. Actually, the PAT-ADN network can transform artifact-free 
images into artifacts images. This provides a new approach to dataset 
creation, thus reducing the difficulty of obtaining a large amount of 
training data. The proposed method will further expand the clinical 
applications of photoacoustic imaging, including eliminating motion 
artifacts caused by respiratory motion and early diagnosis of breast 
cancer. 
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